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1 Introduction

It is well known that the real photon has a partonic substructure, induced by virtual fluc-
tuations into qq pairs. These fluctuations are in part non-perturbative, and so cannot be
calculated from first principles (at least not without major advances in lattice-gauge the-
ory). Only if the parton distributions are specified by hand at some sufficiently large input
scale Q0 can the continued evolution with Q2 be described perturbatively. Here Q2 is the
scale of the “probing” hard process. Such a partonic substructure also exists for a space-
like photon, P 2 = −p2

γ > 0. Only if P 2 is in the deeply inelastic scattering region can the
substructure be neglected; the effects here die away like a higher-twist contribution. For
the experimentally accessible and theoretically challenging region Λ2

QCD
<∼ P

2 <∼ 2 GeV2

evolution equations for the parton distributions and their boundary conditions cannot be
derived from perturbative QCD. In this letter we propose a theoretical ansatz to prescribe
the modification of the Q2-evolution equations of the parton distributions with changing
P 2 and the input at Q0 as a function of P 2.

While the parton distribution functions (pdf’s) of the real photon have been studied
in some detail, both experimentally and theoretically (for a recent survey see e.g. [1]),
much less is known about the virtual photon. The only published data are by the PLUTO
Collaboration [2]. However, recently the ZEUS Collaboration presented new data from
HERA [3]. The observed xγ distribution has been constructed for events with two jets
above 4 GeV transverse momentum. As P 2 is increased, this distribution is gradually
suppressed at small xγ, in agreement with theoretical expectations. These first results
will be followed by more with increasing precision. Also LEP 2 should contribute in the
future [1].

In a previous publication we presented several parametrizations for the parton distri-
butions of the real photon [4], with a proposed extension to virtual photons. This is one
of the very few studies that give explicit predictions. Drees and Godbole [5], following an
analysis of Borzumati and Schuler [6], have proposed a method based on simple multi-
plicative factors relative to the parton distributions of the real photons. A similar recipe
has been used by Aurenche and collaborators [7]. This may be useful for estimating the
effects of mildly virtual photons in a sample of almost real photons, but does not appear
well suited for QCD tests of the virtual-photon distributions. A detailed study is per-
formed by Glück, Reya and Stratmann [8], but a main disadvantage here is that there
exists no explicit parametrizations of the resulting distributions. The strategy adopted is
also only one possibility.

In this letter we extend our previous study to a few alternative approaches for the
virtual photon, allowing a study of the limits of our current understanding. Numerical
approximations are introduced, which permits the parametrizations of real-photon pdf’s
to be easily extended to virtual-photon dittos. Section 2 contains a brief summary on the
real photon, the virtual one is covered in section 3 and some comparisons are shown in
section 4.
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2 The Real Photon

The parton distributions of the real photon obey a set of inhomogeneous evolution equa-
tions:

∂fγa (x,Q2)

∂ lnQ2
=
∫ 1

x

dy

y
fγb (y,Q2)

αs

2π
Pa/b

(
x

y

)
+ 3 e2

a

αem

2π

(
x2 + (1− x)2

)
, (1)

to leading order. The first term is the one present in standard evolution equations, e.g.
for the proton. The second term, the so-called anomalous one, comes from branchings
γ → qq, and is unique for the photon evolution equations.

The solution can be written as the sum of two terms,

fγa (x,Q2) = fγ,NP
a (x,Q2;Q2

0) + fγ,PT
a (x,Q2;Q2

0) . (2)

The former term is a solution to the homogeneous evolution (i.e. without the second
term in eq. (1)) with a non-perturbative input at Q = Q0, and the latter is a solution
to the full inhomogeneous equation with boundary condition fγ,PT

a (x,Q2
0;Q

2
0) ≡ 0. One

possible physics interpretation is to let fγ,NP
a correspond to γ ↔ V fluctuations, where

V = ρ0, ω, φ, J/ψ, . . ., is a set of vector mesons, and let fγ,PT
a correspond to perturbative

(“anomalous”) γ ↔ qq fluctuations, q = u, d, s, c and b. The discrete spectrum of
vector mesons can be combined with the continuous (in virtuality k2) spectrum of qq
fluctuations, to give

fγa (x,Q2) =
∑
V

4παem

f2
V

fγ,Va (x,Q2;Q2
0) +

αem

2π

∑
q

2e2
q

∫ Q2

Q2
0

dk2

k2
fγ,qq
a (x,Q2; k2) , (3)

where each component fγ,V and fγ,qq obeys a unit momentum sum rule. Although each
component formally depends on two scales, Q2

0/k
2 and Q2, it is the combination

s =
∫ Q2

Q2
0/k

2

αs(r2)

2π

dr2

r2
(4)

that sets the length of the evolution range and thus gives the full scale dependence.
Beyond this fairly general ansatz, a number of choices has to be made. The approach

adopted in the SaS sets [4] is described in the following.
What is Q0? A low scale, Q0 ≈ 0.6 GeV, is favoured if the V states above are to

be associated with the lowest-lying resonances only. Then one expects Q0 ∼ mρ/2–mρ.
Furthermore, with this Q0 one obtains a reasonable description of the total γp cross
section, and continuity, e.g. in the primordial k⊥ spectrum [9]. Against this choice there
are worries that perturbation theory may not be valid at such low Q, or at least that
higher-twist terms appear in addition to the standard ones. Alternatively one could
therefore pick a larger value, Q0 ≈ 2 GeV, where these worries are absent. One then
needs to include also higher resonances in the vector-meson sector, which adds some
arbitrariness, and one can no longer compare with low-Q data. We have chosen to prepare
sets for both these (extreme) alternatives.

How is the direct contribution to be handled? Unlike the p, the γ has a direct com-
ponent where the photon acts as an unresolved probe. In the definition of F γ

2 this adds a
component Cγ, symbolically

F γ
2 (x,Q2) =

∑
q

e2
q

[
fγq + fγq

]
⊗ Cq + fγg ⊗ Cg + Cγ . (5)
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Since Cγ ≡ 0 in leading order, and since we stay with leading-order fits, it is permissible
to neglect this complication. Numerically, however, it makes a non-negligible difference.
We therefore make two kinds of fits, one DIS type with Cγ = 0 and one MS type including
the universal part of Cγ[10].

How are heavy flavours, i.e. mainly charm, to be dealt with? When jet production
is studied for real incoming photons, the standard evolution approach is reasonable, but
with a lower cut-off Q0 ≈ mc for γ → cc. Moving to deep inelastic scattering, eγ → eX,
there is an extra kinematical constraint: W 2 = Q2(1− x)/x > 4m2

c. It is here better to
use the “Bethe-Heitler” cross section for γ∗γ∗ → cc. Therefore two kinds of output are
provided. The parton distributions are calculated as the sum of a vector-meson part and
an anomalous part including all five flavours, while F γ

2 is calculated separately from the
sum of the same vector-meson part, an anomalous part and possibly a Cγ part now only
covering the three light flavours, and a Bethe-Heitler part for c and b.

Should ρ0 and ω be added coherently or incoherently? In a coherent mixture, uu :
dd = 4 : 1 at Q0, while the incoherent mixture gives 1 : 1. We argue for coherence at
the short distances probed by parton distributions. This contrasts with long-distance
processes, such as pγ → pV .

What is ΛQCD? The F γ
2 data are not good enough to allow a precise determination.

Therefore we use a fixed value Λ(4) = 200 MeV, in agreement with conventional results
for proton distributions.

In total, four distributions are presented [4], based on fits to available data:
• SaS 1D, with Q0 = 0.6 GeV and in the DIS scheme.

• SaS 1M, with Q0 = 0.6 GeV and in the MS scheme.

• SaS 2D, with Q0 = 2 GeV and in the DIS scheme.

• SaS 2M, with Q0 = 2 GeV and in the MS scheme.
The VMD distributions and the integral of the anomalous distributions are parametrized
separately and added to give the full result; this is of importance for the following.

3 The Virtual Photon

The evolution equations (in Q2) of the pdf’s of the virtual photon (and its solutions) can
be exactly calculated in perturbative QCD for a restricted P 2 range, namely [11]

Q2
0 � P 2 � Q2 . (6)

Experimentally accessible, and theoretically challenging is, however, the low-P 2 range
Λ2

QCD
<
∼ P

2 <
∼Q

2
0 where evolution equations cannot be derived from perturbative QCD.

We propose pdf’s that are valid for all 0 ≤ P 2 ≤ Q2. These are arrived at as follows. We
start from the observation that the moments of the pdf’s are analytic in the P 2 plane. A
natural way to make use of this property is [12] to express them in terms of a dispersion-
integral in the (time-like) mass square k2 of the qq fluctuations. This links perturbative
and non-perturbative contributions and allows the smooth limit P 2 → 0. The model-
dependence enters when specifying the necessary weight functions. We choose these in
such a way that the resulting expressions possess the correct, known behaviours for both
P 2 → 0 and the range (6). The result is

fγ
?

a (x,Q2, P 2) =
∫ Q2

0

dk2

k2

(
k2

k2 + P 2

)2
αem

2π

∑
q

2e2
q f

γ,qq
a (x,Q2; k2) . (7)
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A definite behaviour for P 2 → Q2 has not yet been imposed.
The non-appearance of a 1/P 2 contribution in (7) can be argued in two ways. First this

is what one expects when applying generalized vector-meson dominance to a continuous
(in k2) spectrum of qq fluctuations. Second, at large P 2 an operator-product expansion
of the pdf’s in powers of 1/P holds, but the first non-vanishing higher-twist contribution
comes from the dimension-4 gluon condensate [13].

Associating the low-k2 part of relation (7) with the discrete set of vector mesons gives
a generalization of eq. (3) to

fγ
?

a (x,Q2, P 2) =
∑
V

4παem

f2
V

(
m2
V

m2
V + P 2

)2

fγ,Va (x,Q2; Q̃2
0)

+
αem

2π

∑
q

2e2
q

∫ Q2

Q2
0

dk2

k2

(
k2

k2 + P 2

)2

fγ,qq
a (x,Q2; k2) . (8)

In addition to the introduction of the dipole form factors, note that the lower input scale
for the VMD states is here shifted from Q2

0 to some Q̃2
0 ≥ Q2

0. This is based on a study
of the evolution equation [6] that shows that the evolution effectively starts “later” in
Q2 for a virtual photon. Q̃0 can be associated with the P0, P ′0, Peff or Pint scales to be
introduced below.

Equation (8) is one possible answer, which we will use as a reference in the following. It
depends on both Q2 and P 2 in a non-trivial way, however, so that results are only obtained
by a time-consuming numerical integration rather than as a simple parametrization.

In order to obtain a tractable answer, one may note that the factor (k2/(k2 + P 2))2

provides an effective cut-off at k ≈ P , so one possible substitution for the anomalous
component is ∫ Q2

Q2
0

dk2

k2

(
k2

k2 + P 2

)2 [
· · ·

]
7−→

∫ Q2

P2
0

dk2

k2

[
· · ·

]
, (9)

with P 2
0 = max(Q2

0, P
2). All the Q2 and P 2 dependence is now appearing in a combination

like s in eq. (4), i.e. parametrizations of fγ
?

a (x,Q2, P 2) are readily available by simple
modifications of those for P 2 = 0. This gives the approach we adopted in ref. [4].

Some objections can be raised against this substitution. The choice of P0 means
that the anomalous component is independent of P for P < Q0, and that there is a
discontinuous change in behaviour at P = Q0. Other simple expressions could have been
adopted to solve the problem, such as1 P ′20 = Q2

0 + P 2, but this only illustrates the
arbitrariness of the choice.

One guiding principle could be the preservation of the momentum sum. We recall that
the components fγ,V and fγ,qq integrate to unit momentum, i.e.

∑
a

∫ 1

0
dx fγ

?

a (x,Q2, P 2) =
∑
V

4παem

f2
V

(
m2
V

m2
V + P 2

)2

+
αem

2π

∑
q

2e2
q

∫ Q2

Q2
0

dk2

k2

(
k2

k2 + P 2

)2

(10)
is a measure of the probability for a photon to be in a V or qq state. Momentum sum
preservation would thus suggest the introduction of a scale P 2

eff according to∫ Q2

Q2
0

dk2

k2

(
k2

k2 + P 2

)2

≡
∫ Q2

P2
eff

dk2

k2
, (11)

1In the following the P ′0 prescription implies also the replacement Q2 7−→ Q2 +P 2 Q2
0/Q

2 in (8) so as
to ensure sensible behaviours for Q2 → Q2

0 and P 2 → Q2.
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which gives

P 2
eff = Q2Q

2
0 + P 2

Q2 + P 2
exp

{
P 2(Q2 −Q2

0)

(Q2 + P 2)(Q2
0 + P 2)

}
. (12)

For Q2 � P 2 this simplifies to P 2
eff = (Q2

0+P 2) exp(P 2/(Q2
0+P 2)). A simple recipe is then

to use Peff as a lower cut-off for the anomalous components (and also as the expression
for Q̃0 in fγ,Va in (8)).

While Peff gives the same normalization of parton distributions as does eq. (8), it does
not give the same average evolution range and therefore not the same x shape. That is,
eq. (8) receives contributions from components fγ,qq(x,Q2, k2) with k down to Q0, and
thus corresponds to a larger average evolution range s than a procedure with a sharp
cut-off k > Peff . In order to reproduce the x shape better, an intermediate Pint in the
range Q0 < Pint < Peff is to be preferred. We found no simple formula that defines an
optimal Pint, so will use P 2

int = Q0Peff as a pragmatic choice. The momentum sum can
be preserved by a simple prefactor, i.e. in total the anomalous component is changed
according to

∫ Q2

Q2
0

dk2

k2

(
k2

k2 + P 2

)2 [
· · ·

]
7−→

ln(Q2/P 2
eff)

ln(Q2/P 2
int)

∫ Q2

P2
int

dk2

k2

[
· · ·

]
. (13)

One should note that the above approaches correspond to different evolution equa-
tions. The pdf’s of the virtual photon given by our ansatz (8) obey evolution equations
different from those of the real photon, eq. (1): the homogeneous term is the same but
the inhomogeneous one is multiplied by a factor (Q2/(Q2 +P 2))2. That is, the branchings
γ? → qq are suppressed relative to those of a real photon, in accordance with the relation
(7). Approximately this also holds for the Peff and Pint prescriptions. The introduction of
P0 or P ′0 according to eq. (9) removes the (Q2/(Q2 +P 2))2 factor, i.e. restores evolution to
be fully according to eq. (1). Hence differences between the pdf’s of the real photon and
those of the virtual photon in the P0 and P ′0 schemes (and also the difference between the
latter two) arise solely from different input distributions. Evolution equations for parton
distributions are rigorously defined only in the range (6), where (Q2/(Q2 + P 2))2 ≈ 1.
Hence, differences of the kindQ2/(Q2+P 2) are formally legitimate, but since the evolution
normally is started from a Q0 of the same order as P , they are non-negligible numerically.

So far we have not imposed any constraint on the P 2 → Q2 behaviours of the pdf’s
of the virtual photon. For P 2 ≈ Q2 power-like terms ∝ (P 2/Q2)p are more important
than the logarithmic ones (∝ lnQ2/P 2). Then calculations based on fixed-order pertur-
bation theory, where the full P 2 dependence is kept to the order considered, are more
appropriate than ones invoking pdf’s that sum leading logarithms. Indeed, for P 2 → Q2

resolved-photon contributions originating from the quark (gluon) content of the virtual
photon become part of the O(αs) (O(α2

s)) corrections2 to the leading (in αs) direct-photon
contributions. A sensible scheme is therefore arrived at by demanding the pdf’s of the
virtual photon to approach the respective parton-model expressions, which vanish like
lnQ2/P 2 for the quark distributions and faster for the gluon distribution. Such a be-
haviour is already respected by the P0 and P ′0 schemes. To ensure the same limiting
behaviour also for the other two schemes we modify the Peff and Pint schemes as follows
(recall P 2

0 = max(Q2
0, P

2)):

P 2
eff 7−→

(
1− P 2/Q2

)
P 2

eff +
(
P 2/Q2

)
P 2

0 ;

2That is, the gluon distribution vanishes faster than the quark distributions for P 2→ Q2 [6].
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P 2
int 7−→

(
1− P 2/Q2

)
P 2

int +
(
P 2/Q2

)
P 2

eff in ln(Q2/P 2
int) in eq. (13) ;

P 2
int 7−→

(
1− P 2/Q2

)
P 2

int +
(
P 2/Q2

)
P 2

0 in the k2 integration in eq. (13) . (14)

Eventually one will aime at a complete description of photon-induced reactions where
resolved-photon contributions (i.e. those involving the pdf’s of the virtual photon) are
matched with direct-photon ones by subtracting from the latter those terms that are
already included through the pdf’s of the photon.

4 Comparisons

The different approaches studied above may be seen as alternatives, indicating a spread
of uncertainty caused by our limited understanding. The Peff and Pint ones are attempts
to obtain simple numerical approximations to eq. (8), while the P0 and P ′0 ones are more
loosely related, cf. the comment above on evolution equations.

Further uncertainties come from the assumed pdf’s of the real photon and from the
conventional scale ambiguity problems. (Is Q set by the p⊥ of a jet or by some multiple
thereof?) While very significant in their own right, they are not studied here.

The above prescriptions can be applied to any set of parton distributions, provided
that the VMD and anomalous parts have been parametrized separately. For illustrative
purposes, we use SaS 1D throughout in the following. The results are similar for set 2D
although differences are reduced in magnitude due to the larger Q0 value.

Fig. 1 compares the u quark distribution at P 2 = 0, 0.25 and 1 GeV2, for Q2 =
10 GeV2. All approaches have in common that the small-x part of the spectrum is reduced
more than the high-x one, proportionally speaking, reflecting the larger suppression of
components with longer evolution range s. The P0 and P ′0 approaches are considerably
above the integral of eq. (8), reflecting the difference in momentum sum. Among the
alternatives with the same momentum sum, the shorter average evolution range for Peff is
reflected in more quarks at large x (and less gluons), while Pint gives a good approximation
to eq. (8). (In principle the integral could be performed with either scale choice for Q̃0 in
the VMD evolution range, but differences are minor and so we choose to use Q̃0 = P ′0 as
a simple alternative.)

ZEUS studies the QCD jet rate for p⊥ > 4 GeV, i.e. for 〈Q2〉 ≈ 20 GeV2, in the
range 0.1 <∼ x < 0.75 [3]. Events with x > 0.75 are assumed to be dominated by the
direct process, which is less sensitive to the P 2 variation and is therefore used to fix the
normalization. The ZEUS results cannot be directly compared with pdf parametrizations,
since effects of event migration and experimental cuts are non-trivial. However, to give
some first impression, we study the quantity

I(P 2;Q2 = 20 GeV2) =
∫ 0.75

0.1
dx

{∑
q

[
xq(x,Q2;P 2) + xq(x,Q2;P 2)

]
+

9

4
xg(x,Q2;P 2)

}
,

(15)
which is related to the QCD jet rate. The colour factor 9/4 is the standard enhancement
of gluon interactions relative to quark ones. The variation of I(P 2)/I(0) is shown in
Fig. 2. (It can be discussed whether one should have omitted the x factor in eq. (15);
one would then have obtained a slightly steeper fall-off.) The integral in eq. (8) and its
Peff and Pint approximations give a drop by a factor of about 2 between P 2 = 0 and
P 2 = 0.5 GeV2, in rough agreement with the ZEUS data, while the P0 and P ′0 approaches
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do not drop at all as much. (Note the discontinuous derivative in the P0 curve at P = Q0,
caused by the way P0 is defined. There are also smaller kinks visible in the P0 and P ′0
curves for P ≈ mc = 1.3 GeV, related to the way the charm threshold is modelled.) With
more precise data and acceptance corrections understood, it should therefore be possible
to discriminate among the alternatives.

5 Summary

In this letter we have studied the extension of the parton distributions of the real photon
to those of the virtual one. Analyticity in P 2 allows us to represent the pdf’s of the
virtual photon as a dispersion integral in the mass of the qq fluctuations. We have
obtained an explicit solution for the pdf’s. Under the assumption of a separation of
the qq fluctuations in a low-mass, discrete sum of vector-meson states and a high-mass,
continuous spectrum, various constraints on the pdf’s provide us with a unique result for
P 2 � Q2. The final expressions for pdf’s of the virtual photon fγ

?

a (x,Q2, P 2) cannot
be given a closed form due to their non-trivial dependence on the three variables x, Q2,
and P 2. Therefore we constructed a parametrization (the Pint prescription) which allows
the fγ

?

a (x,Q2, P 2) to be very well approximated by simple modifications to the parton
distributions of the real photon, i.e. parametrizations are only needed for the x and Q2

dependence. This extension of real-photon pdf’s to those of a virtual photon can be
applied to any set of parton distributions, provided that the VMD and anomalous parts
are available separately. It also gives F γ?

2 (x,Q2, P 2).
In order to allow for a test of the model-dependence of the pdf’s of the virtual photon

we have constructed three prescriptions alternative to Pint, all provided in closed form.
The various prescriptions correspond to variants of order P 2/Q2 in the evolution equations
and/or boundary conditions. The differences are readily visible in the P 2 dependence of
distributions, so HERA and LEP 2 should offer the opportunity to distinguish between
alternatives.

A program with the SaS parametrizations modified according to the prescriptions
studied in this paper is available on WWW under
http://thep.lu.se/tf2/staff/torbjorn/lsasgam2.
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Figure 1: The u-quark parton distribution xu(x,Q2 = 10 GeV2)/αem. Top full line for
P 2 = 0, below comparison of five alternatives for P 2 = 0.25 and 1 GeV2. Ordered roughly
from top to bottom, dashed is P0, dotted is P ′0, dash-dotted is Peff , large dots is Pint and
full is the integral in eq. (8).
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Figure 2: The fall-off of parton distributions with virtuality P (we have chosen P as x
scale rather than P 2, so as to better show the small-P region), normalized to the value
at P 2 = 0, I(P 2)/I(0), for Q2 = 20.25 GeV2. Here I, defined by eq. (15), is the colour-
factor-weighted sum of parton distributions in the range 0.1 < x < 0.75. Curves are
labelled as in Fig. 1.
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