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1 Introduction

In recent years we have learned that the generic conformal �eld theory has irrational

central charge, even when the theory is unitary. The study of this subject is called

irrational conformal �eld theory (ICFT), which properly includes rational conformal �eld

theory (RCFT) as a small subspace,

ICFT �� RCFT (1.1)

where RCFT is understood here as the a�ne-Sugawara [1-6] and coset constructions

[1,2,7]. A comprehensive review of ICFT is found in Ref.[8].

The foundation of ICFT is a�ne Lie algebra [9,1] and the general a�ne-Virasoro

construction [10,11],

T = Lab �
�
JaJb

�

�
(1.2)

on the currents Ja, a = 1 : : :dim g of the general a�ne algebra. The construction (1.2)

is summarized by the Virasoro master equation [10,11] for the inverse inertia tensor Lab,

and the system is understood as a conformal spinning top.

The solutions of the master equation show a symmetry hierarchy [12] in ICFT,

ICFT �� H-invariant CFTs �� Lie h-invariant CFTs �� RCFT (1.3)

where the H-invariant CFTs, which are also generically irrational, include all theories

with a symmetry H, where H may be a �nite group or a Lie group. In this hierarchy,

the RCFTs are understood as special cases of exceptionally high symmetry, with ever-

increasing symmetry breakdown to the left. The generic ICFT is completely asymmetric.

The central computational tools of the subject are the generalized Knizhnik-Zamolod-

chikov (KZ) equations of ICFT [13], which provide a uni�ed description of rational and

irrational conformal �eld theory, including powerful new tools for RCFT. In particular,

the recent solution of these equations for the general coset correlators [14,15,13] appears

to be inaccessible by other methods.

Moreover, the semi-classical or high-level solution of the generalized KZ equations has

been known for some time, providing a uniform and apparently simple description of all

ICFT �� RCFT on simple g. The high-level solution is deceptively simple, however, be-

cause it is expressed in a Lie algebra basis, which is not the block basis in which conformal

blocks are conventionally expressed, and it is only in solving the general problem,

� Lie algebra basis ! block basis

that one confronts the full complexity of the ever-increasing symmetry breakdown of

ICFT.

In this paper we begin the study of the known high-level solutions, obtaining the

high-level conformal blocks and non-chiral correlators of the simplest and most symmetric

cases.
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In particular, we will �rst �nd closed-form expressions for the high-level conformal

blocks and correlators of all the a�ne-Sugawara and coset constructions. Both results

are new.

Using intuition gained in this analysis, we then identify what we believe to be the

simplest and most symmetric class of correlators in ICFT, which we call

� the L(g;H)-degenerate processes in the H-invariant CFTs.

This is the set of correlators all of whose external states have completely degenerate con-

formal weights. The set includes all the a�ne-Sugawara correlators, a highly-symmetric

set of coset correlators and a presumably large set of irrational correlators, examples of

which are known. For this class of processes, we are also able to �nd general expres-

sions for the high-level conformal blocks and non-chiral correlators, and we discuss an

irrational example with octohedral symmetry in some detail.

2 The High-Level Chiral Correlators of ICFT

Our starting point is the set of high-level four-point chiral correlators of ICFT,

Y �
L (y) = �v�g [1l + 2Lab

1
(T 1

a T 2
b ln y + T 1

a T 3
b ln(1 � y))]�

� +O(k�2) (2.1a)

Lab
1
=
P ab

2k
; a; b = 1 : : : dim g (2.1b)

on simple compact G, where G is the Lie group whose algebra is g, and k is the level

of a�ne g. These correlators were conjectured in Ref.[14], derived in Ref.[15], and were

also obtained as solutions of the generalized Knizhnik-Zamolodchikov (KZ) equations of

ICFT in Ref.[13].

In what follows, we discuss the notation and concepts involved in the result (2.1).

A. The symmetric matrix Lab
1

in (2.1b) is the high-level form L ! L1 of the inverse

inertia tensor of any high-level smooth solution of the Virasoro master equation. The

matrix P ab, which solves [16,17],

P ac�cdP
db = P ab (2.2)

is the high-level projector of the L theory and �ab is the Killing metric of g.

The chiral correlators (2.1) provide a uniform high-level description of the rational

and irrational conformal �eld theories on g, including

P ab
g = �ab ; P ab

g=h = P ab
g � P ab

h (2.3)

for the a�ne-Sugawara and coset constructions respectively, where �ab is the inverse

Killing metric of g. More generally, the projectors P are closely related to the adjacency

3



matrices of graph theory [18] and generalized graph theory [19] in the partial classi�cation

of ICFT. For example, one has [18]

Pij;kl = �ik(Gn)�ij;kl ; 1 � i < j � n ; 1 � k < l � n (2.4)

in the graph theory ansatz on SO(n), where a = (ij) is the adjoint index and �(Gn) is
the adjacency matrix of any graph Gn of order n. The level-families classi�ed by the

graphs and generalized graphs are generically unitary and irrational on integer levels of

the a�ne algebras.

B. The complex variable y is the anharmonic ratio y = z12z34
z14z32

.

C. The Greek letters �; �; : : : are composite indices, e.g. � = (�1�2�3�4), and the

correlators may be written schematically as,

Y �
L � hR�1

L (T 1)R�2

L (T 2)R�3

L (T 3)R�4

L (T 4)i (2.5)

where R�
L(T ), � = 1 : : : dimT is the broken a�ne primary �eld of the L theory cor-

responding to irreducible matrix representation T of g. The correlators are written

assuming an L-basis [14] for each T i, where the high-level conformal weight matrix of

the broken a�ne primary �eld R�i
L (T i) is diagonal,

(Lab
1
T i
aT i

b )�i
�i = ��i(T i)��i�i ; ��i(T i) = O(k�1) : (2.6)

As we will see below, the fact that the broken a�ne primary conformal weights ��i(T i)

are O(k�1) is central for the interpretation of the logarithms in (2.1). Fig.1 shows our

conventions for the s and t-channels of the correlators, and the 13 channel is the u-channel.

�

�

�

�

Z

Z

Z

Z �

�

�

�

Z

Z

Z
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2 3

4

-

?s

t

Fig. 1. The correlators.

D. Multiplication of irreps is by tensor product, so that

(1l)�� = ��� � ��1�1
��2�2
��3�3
��4�4

(2.7a)

(T 1
a )�

� � (T 1
a )�1

�1��2�2
��3�3
��4�4

(2.7b)

(T 1
a T 2

b )�
� � (T 1

a )�1

�1(T 2
b )�2

�2��3�3
��4�4

: (2.7c)

E. The objects �v�g are arbitrary linear combinations of g-invariant tensors of T 1
� � �
T 4,

which satisfy the g-global Ward identity,

�v�g (
4X

i=1

T i
a )�

� = 0 ; a = 1 : : : dim g : (2.8)
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F. The matrix irreps Ta satisfy the hermiticity condition,

T y

a = �a
bTb (2.9a)

(T y

a )�
� � ����

��(Ta)��� (2.9b)

where star is complex conjugation and ��� = ���� is the carrier space metric of irrep T .
Moreover, we will consider only unitary theories (integer level of the a�ne algebra and

Ly(m) = L(�m)), for which the inverse inertia tensor satis�es

Lab� = Lcd(��1)c
a(��1)d

b (2.10)

and similarly for L1. It follows that all the terms in (2.1) are hermitean, e.g.

(2Lab
1
T 1
a T 2

b )
y = 2Lab

1
T 1
a T 2

b (2.11)

with orthonormal, complete sets of eigenvectors and real eigenvalues.

G. The correlators (2.1) are given in the 2-3 symmetric KZ gauge,

Y �(y) = (
4Y
i<j

z
ij
ij )A

�(z1; z2; z3; z4) (2.12a)

12 = 13 = 0 ; 14 = 2��1
; 23 = ��1

+��2
+��3

���4
(2.12b)

24 = ���1
+��2

���3
+��4

; 34 = ���1
���2

+��3
+��4

(2.12c)

where A�(z) are the non-invariant chiral four-point correlators.

H. For any conformal �eld theory in the KZ gauge, the conformal weights �(s), �(u) and

�(t) of the s, u and t-channel intermediate states appear in the limiting behaviour,

Y �(y) �

8>><
>>:

y�(s)���1 (T
1)���2 (T

2) ; y ! 0

(1� y)�(u)���1 (T
1)���3 (T

3) ; y ! 1�
1
y

��(t)+��1 (T
1)���4(T

4)
; y !1

: (2.13)

Here, we will use these facts in the high-level form

y�(s)���1 (T
1)���2 (T

2) = 1 + [�(s) ���1
(T 1)���2

(T 2)] ln y +O(k�2) (2.14)

where we have recalled that the conformal weights of the broken a�ne primary �elds are

O(k�1).
I. In Ref.[15], it was shown that the high-level chiral correlators (2.1) have physical

singularities in all channels, and that the high-level fusion rules of the broken a�ne

primaries follow the Clebsch-Gordan coe�cients of their corresponding matrix irreps.

Symmetry hierarchy in ICFT

The high-level correlators (2.1) provide a uniform description of all IFCT on simple

g, which is a bewildering variety of theories [8]. In this paper we make the �rst attempt

to identify simpler, tractable ICFTs among these varieties.
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Towards this end, we remind the reader of the symmetry hierarchy [12] in ICFT,

ICFT �� H-invariant CFTs �� Lie h-invariant CFTs �� RCFT (2.15)

which organizes the space of ICFTs on G according to the residual symmetry group H �
G of the theory. As seen in this hierarchy, the generic ICFT has no residual symmetry

groupa, and these generic theories are expected to be the most complex. Consequently,

we focus here on the theories with a symmetry, which are also generically irrational.

The set of all ICFTs with a non-trivial symmetry group H (which may be a discrete

subgroup of G or a Lie subgroup) is called the set of H-invariant CFTs. Among the

H-invariant CFTs, the subspace of theories with a Lie symmetry is called the set of Lie

h-invariant CFTs, where h � g. This subspace includes the a�ne-Sugawara and coset

constructions as a much smaller subspace.

When a theory L is an H-invariant CFT, the correlators (2.1) also satisfy the global

H-invariance condition,

YH
(H) = YH ; 
(H) 2 G ; 
(H)�
� =

4Y
i=1


(H;T i)�i
�i (2.16)

where 
(H;T i)�i
�i is the subgroup H in matrix irrep T i. When the theory is a Lie

h-invariant CFT, the condition (2.16) reduces to the h-global Ward identity

YLie h

4X
i=1

T i
a = 0 ; a = 1 : : :dim h (2.17)

which applies for example in the cases of the a�ne-Sugawara construction (with h = g)

and the g=h coset constructions.

For the a�ne-Sugawara and g=h coset constructions, it is known [4,13] that the res-

olution of chiral correlators into conformal blocks is a basis change from the Lie algebra

basis to the block basis, using the h-invariant tensors de�ned by (2.17). More generally,

one expects that the H-invariant tensors de�ned by (2.16) will play an analogous role in

�nding the block bases of the H-invariant CFTs.

3 The A�ne-Sugawara Constructions

3.1 The a�ne-Sugawara blocks

The simplest and most symmetric conformal �eld theories are the a�ne-Sugawara con-

structions [1-6] on G, whose high-level correlators are described by (2.1) with

Lab
g;1 =

�ab

2k
(3.1a)

aIn the graph theory ansatz [18] on SO(n), whose high-level projectors are given in (2.4), this

corresponds to the fact that the generic graph has no symmetry.
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Yg(y)
4X
i=1

T i
a = 0 ; a = 1 : : :dim g (3.1b)

where P ab
g = �ab is the inverse Killing metric of g. In this case, the correlators (2.1) are

the high-level solutions of the KZ equations [3,4] on simple g.

We begin by de�ning the s-channel block basis of g-invariants v(s; g)m as the solutions

of the simultaneous eigenvalue problem and g-global condition

(2Lab
g;1T 1

a T 2
b )�

�v(s; g)m� = (�
g
(s)(m)��g(T 1)��g(T 2))v(s; g)m� (3.2a)

4X
i=1

(T i
a )�

�v(s; g)m� = 0 ; a = 1 : : :dim g : (3.2b)

The g-global condition (3.2b) is compatible with the eigenvalue problem because the

generators
P4

i=1 T i
a commute with Lab

g;1T 1
a T 2

b . Here �g(T i), i = 1; 2 are the (unbroken)

conformal weights of irrep T i under the a�ne-Sugawara construction,

��i(T i)jL=Lg = �g(T i) =
I(T i)

x+ ~h
(3.3a)

x =
2k

 2
g

(3.3b)

where  g, ~h, I(T ) and x are respectively the highest root and dual Coxeter number of

g, the invariant Casimir of irrep T and the invariant level of the a�ne algebra. The

quantity �
g
(s)(m) = �g(T m) is the corresponding conformal weight of an irrep T m in

T 1 
 T 2. The associated dual eigenvalue problem is

�v(s; g)�m(2L
ab
g;1T 1

a T 2
b )�

� = �v(s; g)�m(�
g
(s)(m)��g(T 1) ��g(T 2)) (3.4a)

�v(s; g)�m

4X
i=1

(T i
a )�

� = 0 ; a = 1 : : : dim g (3.4b)

where �v(s; g)�m = v(s; g)m�
���� and ��� =

Q4
i=1 ��i�i is the product of the carrier space

metrics.

Because 2Lab
g;1T 1

a T 2
b is hermitean we know that the eigenvectors are orthonormal and

complete,

�v(s; g)mv(s; g)
n = �nm ; v(s; g)m� �v(s; g)

�
m = (Ig)

�
� (3.5)

where Ig is the projector onto the g-invariant subspace of T 1 
 � � � 
 T 4. The relation

[Lab
g;1T i

aT j
b ; Ig] = 0 ; 1 � i; j � 4 (3.6)

also holds on the g-invariant subspace de�ned by (3.2). An explicit solution to the

eigenvalue problem and global condition in (3.2) is known [15]

�v(s; g)�m =
X
�r��r

�ws(r; �)
�1�2�r �ws(�r; �

0)�3�4��r��r��r ; m = (r; �; �0) (3.7a)

�ws(r; �)
�1�2�r(T 1

a + T 2
a + T r

a )�1�2�r
�1�2�r = 0 ; a = 1 : : : dim g (3.7b)
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�ws(r; �)
�1�2�r [2Lab

g;1T
1
aT 2

b ]�1�2
�1�2 = �ws(r; �)

�1�2�r [�g(T r) ��g(T 1)��g(T 2)] (3.7c)

where �ws(r; �)
�i�j�r are the Clebsch-Gordan coe�cients of T i
T j into irrep T r, � labels

copies of the same irrep T r and �r is the conjugate representation of r. Using (3.7), it is

easy to check that �
g
(s)(m) =�g(T m) in (3.2a) is the conformal weight of irrep m under

the a�ne-Sugawara construction.

As an explicit example, one �nds for n�n�nn correlators on SU(n) that the invariant

tensors (3.7) are

�v(s; SU(n))�V = v(s; SU(n))V� =
1

n
��1�2

��3�4
(3.8a)

�v(s; SU(n))�A = v(s; SU(n))A� =
1p

n2 � 1
[��1�3

��2�4
� 1

n
��1�2

��3�4
] (3.8b)

where V and A are vacuum and adjoint. This is the original example [4] considered by

Knizhnik and Zamolodchikov, although our Clebsch basis (3.7), (3.8) is slightly di�erent

than theirs.

From (2.1),(3.1) and the completeness relation (3.5), we use eigenvector expansions

to de�ne the s-channel conformal blocks F (s)
g (y) of the a�ne-Sugawara construction

�v�g =
X
m

d(s)m�v(s; g)�m (3.9a)

Y �
g (y) =

X
m;n

d(s)mF (s)
g (y)m

n�v(s; g)�n (3.9b)

F (s)
g (y)m

n = �v(s; g)m[1l + 2Lab
g;1(T 1

a T 2
b ln y + T 1

a T 3
b ln(1 � y))]v(s; g)n +O(k�2) (3.9c)

as the coe�cients of the chiral correlators expanded in the block basis. Here, d(s)m are

a set of undetermined constants.

To study the small y behavior of the s-channel blocks, we rearrange (3.9c) as follows,

F (s)
g (y)m

n = �v(s; g)m[1l+L
ab
g;1T 1

a T 2
b ln y][1l+Lab

g;1T 1
a T 3

b ln(1�y)]v(s; g)n+O(k�2) (3.10a)

= [1 + (�g
(s)
(m)��g(T 1)��g(T 2)) ln y]

� �v(s; g)m[1l + Lab
g;1T 1

a T 3
b ln(1 � y)]v(s; g)n +O(k�2)

(3.10b)

= y
�
g

(s)
(m)��g(T 1)��g(T 2)

2
4�nm � c(g)m

n
1X
p=1

yp

p

3
5+O(k�2) (3.10c)

c(g)m
n = �v(s; g)mL

ab
g;1T 1

a T 3
b v(s; g)

n (3.10d)

where we have used the dual eigenvalue problem (3.4a) to obtain (3.10b) and the high-

level relation (2.14) to obtain (3.10c). In particular, the eigenvector resolution correctly

guarantees that each block has only a single leading singularity,

F (s)
g (y)m

n �
y!0

�nmy
�
g

(s)
(m)��g(T 1)��g(T 2)

+O(k�2) (3.11)
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followed by integer-spaced secondaries from ln(1�y). According to eq.(3.11), the leading
singularities of the m = n blocks correspond to the s-channel exchange of a�ne primary

states, while the leading singularities of the m 6= n blocks are a�ne secondaries.

To de�ne block bases for the other channels, we also introduce the u and t-channel

g-invariants as solutions to their corresponding eigenvalue problems,

2Lab
g;1T 1

a T 3
b v(u; g)

m = (�g
(u)
(m)��g(T 1)��g(T 3))v(u; g)m (3.12a)

2Lab
g;1T 2

a T 3
b v(t; g)

m = (�
g
(t)(m)��g(T 2)��g(T 3))v(t; g)m (3.12b)

(
4X

i=1

T i
a )v(u; g)

m = (
4X

i=1

T i
a )v(t; g)

m = 0 ; a = 1 : : :dim g (3.12c)

�v(u; g)mv(u; g)
n = �v(t; g)mv(t; g)

n = �nm (3.12d)

v(u; g)m�v(u; g)m = v(t; g)m�v(t; g)m = Ig : (3.12e)

Here �
g
(u)(m) = �g(T m) and �

g
(t)(m

0) = �g(T m0

) are the conformal weights under the

a�ne-Sugawara construction of irreps T m and T m0

in T 1
T 3 and T 2
T 3 respectively.

Explicit forms of the u and t-channel invariants are obtained formally by a 2$ 3 and a

2$ 4 interchange respectively in eq.(3.7).

Using the u and t-channel invariants, we de�ne the corresponding u and t-channel

blocks F (u)
g and F (t)

g ,

Yg(y) =
X
m;n

d(u)mF (u)
g (y)m

n�v(u; g)n =
X
m;n

d(t)mF (t)
g (y)m

n�v(t; g)n (3.13a)

F (u)
g (y)m

n = �v(u; g)m[1l + 2Lab
g;1(T 1

a T 2
b ln y + T 1

a T 3
b ln(1 � y))]v(u; g)n +O(k�2) (3.13b)

F (t)
g (y)m

n = �v(t; g)m[1l + 2Lab
g;1(T 1

a T 2
b ln y + T 1

a T 3
b ln(1� y))]v(t; g)n +O(k�2) (3.13c)

in analogy to the s-channel blocks F (s)
g in eq.(3.9). The limiting behaviour of the u and

t-channel blocks,

F (u)
g (y)m

n �
y!1

�nm(1 � y)
�
g

(u)
(m)��g(T 1)��g(T 3)

+O(k�2) (3.14a)

F (t)
g (y)m

n �
y!1

(�g)m
n

 
1

y

!�
g

(t)
(m)+�g(T 1)��g(T 4)

+O(k�2) (3.14b)

(�g)m
n = (�1)�

g

(t)
(m)+�g(T 1)��g(T 4)

�v(t; g)m(�1)�2Labg;1T
1
a T

2
b v(t; g)n (3.14c)

is obtained from (3.13) and the corresponding eigenvalue problems. Integer-spaced sec-

ondaries are also obtained, as in (3.10), from the cross-channel logarithms. To obtain

(3.14b,c) we have also used the g-global Ward identity

�v(t; g)m[2L
ab
g;1(T 1

a T 2
b + T 2

a T 3
b + T 3

a T 1
b )� ] = 0 (3.15a)

 = �g(T 4)��g(T 1)��g(T 2)��g(T 3) (3.15b)
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to write the t-channel blocks in the alternate form

F (t)
g (y)m

n = �v(t; g)m[1� 2Lab
g;1(T 1

a T 2
b ln(

1

y
� 1) + T 2

a T 3
b ln(1 � y)) +  ln(1 � y)]v(t; g)n

(3.16)

+O(k�2) :

Using the inverse of the matrix �g, another basis can be found for the t-channel blocks,

in which their y!1 behaviour is also proportional to Kronecker delta, as for the s and

u-channel blocks. In such a basis, however, the crossing relations given below would be

more complicated.

In what follows, we introduce a uni�ed notation � = s, t, u for the three channels and

their corresponding blocks (F (�)
g )m

n,

�v(�; g)mv(�; g)
n = �nm ; v(�; g)m� �v(�; g)

�
m = (Ig)

�
� (3.17a)

Yg(y) =
X
m;n

d(�)mF (�)
g (y)m

n�v(�; g)n ; � = s; t;u (3.17b)

F (�)
g (y)m

n = �v(�; g)m[1l + 2Lab
g;1(T 1

a T 2
b ln y + T 1

a T 3
b ln(1 � y))]v(�; g)n +O(k�2) (3.17c)

(F (�)
g (y)m

n)� = F (�)
g (y�)n

m (3.17d)

where the last relation follows by unitarity, that is, hermiticity of the basic matrices in

the correlators.

We �nally note that the number Bg(�) of a�ne-Sugawara blocks in the �-channel,

Bg(�) = (dg(�))
2 (3.18)

is equal to the square of the dimension dg(�) of the g-invariants in that channel.

Crossing relations

Using completeness of the three sets of eigenvectors, one easily �nds that the three

sets of blocks are related by the crossing relations,

(F (�)
g )m

n = Xg(��)m
p(F (�)

g )p
qX�1

g (��)q
n ; �; � = s; t;u (3.19a)

Xg(��)m
n = �v(�; g)mv(�; g)

n +O(k�2) (3.19b)

X�1
g (��)m

n = Xg(��)m
n = (Xg(��)n

m)� (3.19c)

where � 6= � and Xg(��) is the crossing matrix from channel � to channel �. The last

relation (3.19c) says that the crossing matrices Xg(��)m
n are unitary Xy

g = X�1
g for each

� 6= �, and the crossing matrices explicitly satisfy the consistency relations

Xg(��)Xg(�� )Xg(��) = Xg(�� )Xg(��)Xg(��) = 1 (3.20)

which says that we return to the same blocks when we go around an s,u,t loop.
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In the special case when T 2 � T 3, the conformal weights exchanged in the u-channel

are the same as in the s-channel. In further detail, we have

Lab
g;1(T 1

a T 3
b )�

� = Lab
g;1(T 1

a T 2
b )�0

�0 (3.21)

in this case, where �0 = (�1�3�2�4) and similarly for �0. Then we may identify the

g-invariants of the u-channel in terms of those of the s-channel

v(u; g)m� = v(s; g)m�0 ; �v(u; g)�m = �v(s; g)�
0

m (3.22)

where m = (r; �; �0) is the same irrep T r in both channels. It follows from (3.13b), (3.21)

and (3.19b) that

Xg(su)
�1 = Xg(su) ; Xg(su)

2 = 1 (3.23a)

Xg(us)
�1 = Xg(us) ; Xg(us)

2 = 1 (3.23b)

F (u)
g (y)m

n = F (s)
g (1� y)m

n : (3.23c)

Then, using (3.23) in (3.19a), one �nds that the a�ne-Sugawara blocks close under s-u

crossing,

F (s)
g (1 � y)m

n = Xg(su)m
pF (s)

g (y)p
qXg(su)q

n (3.24)

as they should in this case.

In the special case when all four representations are the same, one �nds that the

unitary crossing matrices are also idempotent X(��)2 = 1 and hence X(��) = X(��) for

all � 6= �: then, the Yang-Baxter-like relation,

Xg(��)Xg(�� )Xg(��) = Xg(��)Xg(�� )Xg(��) = 1 (3.25)

follows from the consistency relations (3.20).

3.2 Non-chiral WZW correlators

To construct a set of high-level non-chiral WZW correlators from the a�ne-Sugawara

blocks (3.9c), we take the diagonal construction in the s-channel blocks,

Yg(y
�; y)�

� =
X
m;n;p

v(s; g)m�F (s)
g (y�)m

pF (s)
g (y)p

n�v(s; g)�n +O(k�2) (3.26a)

=
X
m;n;p

(F (s)
g (y)p

m)�F (s)
g (y)p

n v(s; g)m� �v(s; g)
�
n +O(k�2) (3.26b)

�
y!0

X
m

jyj2(�
g

(s)
(m)��g(T 1)��g(T 2))

v(s; g)m� �v(s; g)
�
m +O(k�2) (3.26c)

which shows trivial monodromy around y = 0. These correlators satisfy a left and right

KZ equation and g-global conditions on the left and right.
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To see that these correlators have trivial monodromy around y = 1 and y =1, one

uses the crossing relations (3.19) of the a�ne-Sugawara blocks to rewrite the correlator

(3.26) in the two alternate forms

Yg(y
�; y)�

� =
X
m;n;p

(F (u)
g (y)p

m)�F (u)
g (y)p

n v(u; g)m� �v(u; g)
�
n +O(k�2) (3.27a)

=
X
m;n;p

(F (t)
g (y)p

m)�F (t)
g (y)p

n v(t; g)m� �v(t; g)
�
n +O(k�2) : (3.27b)

The forms (3.26) and (3.27) are easily checked against the examples in Ref.[4].

Using completeness and the form (3.9c) of the a�ne-Sugawara blocks, we also �nd

the summed form of the non-chiral WZW correlators

Yg(y
�; y)�

� =
n
[1l + 2Lab

g;1(T 1
a T 2

b ln y� + T 1
a T 3

b ln(1� y�))]Ig

�[1l + 2Lab
g;1(T 1

a T 2
b ln y + T 1

a T 3
b ln(1 � y))]

o
�

� +O(k�2)
(3.28a)

= f[1l + 2Lab
g;1(T 1

a T 2
b ln jyj2 + T 1

a T 3
b ln j1� yj2)]Igg�� +O(k�2) (3.28b)

where Ig is the projector (3.5) onto the G-invariant subspace, and we have used eq.(3.6)

to obtain the second form, which explicitly shows two of the trivial monodromies.

Appendix A gives alternate expressions for the g-blocks (3.17) and correlators (3.26)

which involve the g-crossing matrices (3.19b).

4 The Coset Constructions

4.1 The coset blocks

The next simplest, and next most symmetric, set of conformal �eld theories are the g=h

coset constructions [1,2,7], whose chiral correlators are de�ned by (2.1) with

Lab
g=h;1 =

P ab
g=h

2k
; Pg=h = Pg � Ph (4.1a)

Yg=h(y)
4X

i=1

T i
a = 0 ; a = 1 : : :dimh (4.1b)

where h � g. These correlators are the high-level solutions of the general coset equations

of Refs.[14,15,13] on simple g, and the results below are the high-level form of the general

coset blocks studied in [20,14,15,13].

We begin by reorganizing the high-level coset correlators (2.1) as,

Y �
g=h(y) = f�vg [1l + 2Lab

g;1(T 1
a T 2

b ln y + T 1
a T 3

b ln(1� y))]

�[1l� 2Lab
h;1(T 1

a T 2
b ln y + T 1

a T 3
b ln(1� y))]

o�
+O(k�2)

(4.2)
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where we have used (4.1a) and moved the terms of the h theory to the right.

To de�ne the �=s, t and u-channel coset blocks, we need the g-invariant tensors

v(�; g)m, �v(�; g)m of Section 3, and also the corresponding h-invariant tensors  (�; h),

which satisfy,

2Lab
h;1T 1

a T 2
b  (s; h)

M = (�h
(s)(M)��h

M1
(T 1)��h

M2
(T 2)) (s; h)M (4.3a)

2Lab
h;1T 1

a T 3
b  (u; h)

M = (�h
(u)(M) ��h

M1
(T 1)��h

M3
(T 3)) (u; h)M (4.3b)

2Lab
h;1T 2

a T 3
b  (t; h)

M = (�h
(t)(M)��h

M2
(T 2)��h

M3
(T 3)) (t; h)M (4.3c)

Lab
h;1T i

aT i
b  (�; h)

M = �h
Mi
(T i) (�; h) ; i = 1 : : : 4 ; � = s; t;u (4.3d)

(
4X

i=1

T i
a ) (�; h)

M = 0 ; a = 1 : : :dim h ; � = s; t;u (4.3e)

where �h
(�)(M) are the broken conformal weights of h-irreps in the �-channel. The

eigenvalue problems (4.3a-c) are compatible with the diagonalization of the h confor-

mal weights in (4.3d) because the matrices Lab
h;1T i

aT j
b and Lab

h;1T i
aT i

b commute. The

h-global Ward identities (4.3e) are also compatible with the eigenvalue problems, whose

matrices are h-invariant.

These eigenvectors also satisfy completeness and orthonormality,

� (�; h)M (�; h)
N = �NM ;  (�; h)M � (�; h)M = Ih ; � = s; t;u (4.4a)

[Lab
h;1T i

aT j
b ; Ih] = 0 ; 1 � i; j � 4 (4.4b)

where Ih is the projection operator onto the h-invariant subspace of T 1 
 � � � 
 T 4.

As an explicit example, we give the solution for the U(1)-invariant s-channel eigen-

vectors of the coset correlator

(T 1;T 2;T 3;T 4) = (j1; j2; j3; j4) in
SU(2)

U(1)
: (4.5)

In this case we need

Lab
U(1);1 =

�a3�
b
3

2k
; T i

3 =
q
 2
g

0
BB@
ji 0

. . .

0 �ji

1
CCA (4.6)

where  2
g is the SU(2) root length squared and we have taken the usual magnetic quantum

number basis for the matrices, with �i = Mi, jMij � ji. The solution of the eigenvalue

problem (4.3a) is then

 (s; U(1))M� = �M� �(
4X
i=1

Mi = 0) ; M = (M1;M2;M3;M4) (4.7a)

�
U(1)

(s)
(M) =

(M1 +M2)
2

x
; �

U(1)
Mi

(T i) =
M2

i

x
; i = 1 : : : 4 (4.7b)

13



where x = 2k= 2
g is the invariant level of g = SU(2). For more general coset constructions

the eigenvectors  (s; h) are squares of products of Clebsch-Gordan coe�cients times

Clebsch-Gordan coe�cients for branching of g irreps into h irreps [21].

Using completeness of v(g); �v(g) and  (h); � (h), we have [14,15,13]

�v�g =
X
m

d(�)m�v(�; g)�m (4.8a)

Y �
g=h(y) =

X
m;M

d(�)mC(�)g=h(y)m
M � (�; h)�M (4.8b)

where C(�)g=h(y) are the coset blocks. Further use of completeness gives the explicit form

of the high-level coset blocks

C(�)g=h(y)m
M = F (�)

g (y)m
ne(�; g=h)n

N(F (�)
h (y)�1)N

M ; � = s; t;u (4.9a)

F (�)
h (y)N

M = � (�; h)N [1l+ 2Lab
h;1(T 1

a T 2
b ln y+T 1

a T 3
b ln(1� y))] (�; h)M+O(k�2) (4.9b)

(F (�)
h (y)�1)N

M= � (�; h)N [1l�2Lab
h;1(T 1

a T 2
b ln y+T 1

a T 3
b ln(1�y))] (�; h)M+O(k�2) (4.9c)

e(�; g=h)n
N = �v(�; g)n (�; h)

N (4.9d)

where F (�)
g are the �-channel g-blocks (of the a�ne-Sugawara construction on g) given

in eq.(3.17), and e(�; g=h) is the embedding matrix of the g-invariants v(g) in the h-

invariants  (h). The inverse h blocks F�1
h are the inverse of the h blocks Fh. In Ref.[14],

the exact coset blocks were written as (Cg=h)mM = (Fg)m
n(F�1

h )n
M , where (F�1

h )n
M =

e(g=h)n
N(F�1

h )N
M in the present notation.

To obtain the limiting behavior of the coset blocks, we �rst need the corresponding

results for the inverse h-blocks,

(F (s)

h (y)�1)N
M �

y!0
�MN y

��h
(s)

(M)+�h
M1

(T 1)+�h
M2

(T 2)
+O(k�2) (4.10a)

(F (u)

h (y)�1)N
M �

y!1
�MN (1� y)

��h
(u)

(M)+�h
M1

(T 1)+�h
M3

(T 3)
+O(k�2) (4.10b)

(F (t)

h (y)�1)N
M �

y!1
(��1h )N

M

 
1

y

!
��h

(t)
(M)��h

M1
(T 1)+�h

M4
(T 4)

+O(k�2) (4.10c)

(��1h )N
M = (�1)��h

(t)
(M)��h

M1
(T 1)+�h

M4
(T 4) � (t; h)N (�1)2L

ab
h;1

T
1
a T

2
b  (t; h)M :

(4.10d)

The t-channel result in (4.10c,d) was obtained using

2Lab
h;1[T 1

a T 2
b + T 2

a T 3
b + T 3

a T 1
b ] (�; h)

M (4.11)

= Lab
h;1[T 4

a T 4
b � T 1

a T 1
b � T 2

a T 2
b � T 3

a T 3
b ] (�; h)

M

which follows from (4.3d) and the h-global Ward identity in (4.3e).
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Combining (4.10) with the limiting y behavior (3.11), (3.14) of the g-blocks, we then

�nd the limiting behaviour of the coset blocks

C(s)g=h(y)m
M �

y!0
e(s; g=h)m

My
�
g=h

(s)
(m;M)��

g=h

M1
(T 1)��

g=h

M2
(T 2)

+O(k�2) (4.12a)

C(u)g=h(y)m
M �

y!1
e(u; g=h)m

My
�
g=h

(u)
(m;M)��

g=h

M1
(T 1)��

g=h

M3
(T 3)

+O(k�2) (4.12b)

C(t)g=h(y)m
M �

y!1
(�g=h)m

My
�
g=h

(t)
(m;M)+�

g=h

M1
(T 1)��

g=h

M4
(T 4)

+O(k�2) (4.12c)

(�g=h)m
M = (�g)m

ne(t; g=h)n
N(��1h )N

M (4.12d)

�
g=h

(�) (m;M) = �
g
(�)(m)��h

(�)(M) (4.12e)

�
g=h
Mi

(T i) = �g(T i)��h
Mi
(T i) ; i = 1 : : : 4 (4.12f)

and integer-spaced secondaries for each block as in (3.10). The g=h conformal weights

in (4.12e) and (4.12f) are the correct conformal weights of the intermediate and external

coset-broken a�ne primary �elds.

We �nally note that the number Bg=h(�) of coset blocks in the �-channel,

Bg=h(�) = dg(�) � dh(�) (4.13)

is the product of the dimensions dg(�) and dh(�) of the g- and h-invariants in that channel.

In fact dh(�) � dg(�) because h � g, so that the inequality

Bg=h(�) � Bg(�) (4.14)

is obtained for comparison of correlators with �xed external g-irreps, where Bg(�) in

(3.18) is the number of a�ne-Sugawara blocks in the �th channel. The result (4.14) is

in accord with the intuitive expectation that the number of blocks grows with increased

symmetry breaking.

Crossing relations

Following the development of the previous section we �nd the crossing relations for

the embedding matrix and the (inverse) h-blocks,

e(�; g=h)m
M = Xg(��)m

ne(�; g=h)n
NX�1

h (��)N
M (4.15a)

(F (�)
h (y)�1)M

N = Xh(��)M
P (F (�)

h (y)�1)P
QX�1

h (��)Q
N (4.15b)

where Xg(��) are the g-crossing matrices (3.19b), and Xh(��) are the corresponding

h-crossing matrices,

Xh(��)M
N = � (�; h)M (�; h)

N +O(k�2) (4.16a)

X�1
h (��)M

N = Xh(��)M
N = (Xh(��)N

M)� (4.16b)
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which are also unitary. Using (3.19a) and (4.15) we obtain the crossing relation of the

coset blocks,

C(�)g=h(y)m
M = Xg(��)m

nC(�)g=h(y)n
NX�1

h (��)N
M (4.17)

which involve, as expected, the crossing matrices Xg and Xh of g and of h.

The h-crossing matrices satisfy the same consistency relations,

Xh(��)Xh(�� )Xh(��) = Xh(�� )Xh(��)Xh(��) = 1 (4.18)

which were seen for the g-crossing matrices in (3.20).

When the external g-irreps satisfy T 2 � T 3, we �nd that Xh(us)
2 = 1 and F (u)

h (y) =

F (s)

h (1 � y), as for the g-blocks. Together with the corresponding relations for the g-

quantities in this case, this implies

e(u; g=h) = e(s; g=h) ; C(u)g=h(y) = C(s)g=h(1� y) (4.19)

and �nally,

C(s)g=h(1� y)m
M = Xg(su)m

nC(s)g=h(y)n
NXh(su)N

M (4.20)

so that the coset blocks are closed under crossing in this case, as expected.

Fixed external h representations

The crossing relations (4.17) of the coset blocks mix the internal h irreps (M) which

arise from di�erent external irreps of h (that is, the h-irreps which arise from the h-

decomposition of the g irreps T i).

To obtain blocks characterized by �xed external irreps of h, we introduce a hermitean

projection operator Ph = P (T h1; T h2; T h3; T h4) to select any four external h irreps of

interest,

 (�; h)
~M
a
� (�; h)

�
~M
= (Ph)

�
� (4.21a)

Ph (�; h)
M =  (�; h)

~M�M~M (4.21b)

[Lab
h;1T i

aT j
b ; Ph] = 0 ; 1 � i; j � 4 (4.21c)

where ~M runs over the eigenvectors associated to the �xed external set of h irreps. The

corresponding set of coset blocks is

(Cg=h)m ~M = (Fg)m
ne(g=h)n

N (F�1
h )N

~M = (Fg)m
ne(g=h)n

~N (F�1
h ) ~N

~M (4.22)

and the h-crossing matrices are block diagonal under this decomposition,

X�1
h (��)M

~N = � (�; h)M (�; h)
~N = � (�; h)MPh (�; h)

~N

= �
~M
M

� (�; h) ~M (�; h)
~N = �

~M
MX

�1
h (��) ~M

~N :
(4.23)

Then, it follows from (4.22) and (4.23) that

C(�)g=h(y)m
~M = Xg(��)m

nC(�)g=h(y)n
~NX�1

h (��) ~N
~M (4.24)
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which shows that the selected subset of coset blocks is closed under crossing

The explicit form of these projection operators can be quite complicated in the gen-

eral case, but there are some simple, highly symmetric cases, where the form is quite

simple. As an example, consider the situation when each of the four external g-irreps

branches into a single h-irrep, so that the g=h-broken conformal weights of g-irrep T i are

degenerate,

(Lab
g=h;1T i

aT i
b )�

� = �g=h(T i)��� ; i = 1 : : : 4 : (4.25)

In this case, all the coset-broken components of the g-irrep T i are on an equal footing,

and one may choose the trivial projector

Ph = 1 : (4.26)

This is the situation, e.g., in

T = (T1; 1) in
gx1 � gx2
gx1+x2

(4.27)

examples of which were studied in Ref.[14]. Examples on simple g include

T = n or �n in
SU(n)x

SO(n)2x
=

( SU(3)x
SU(2)4x

; n = 3
SU(n)x
SO(n)2x

; n � 4
(4.28a)

T = 2n in
SO(2n)x

SO(n)x � SO(n)x
(4.28b)

and the case n = 3 of (4.28a) will be considered in detail in Appendix C. In (4.28a) the

n of SU(n) is the n of SO(n) � SU(n), while in (4.28b) the 2n of SO(2n) is the (n; n)

of (SO(n)� SO(n)) � SO(2n).

4.2 Non-chiral coset correlators

To construct a set of high-level non-chiral correlators for the coset constructions, we take

the s-channel diagonal construction,

Yg=h(Phjy�; y) =
X
m; ~M

jC(s)g=h(y)m
~M j2 (4.29)

which shows trivial monodromy around y = 0. To see that (4.29) has trivial monodromy

around y = 1 and y = 1, one uses the crossing relations (4.24) of the coset blocks to

rewrite the coset correlator (4.29) in the two alternate forms,

Yg=h(Phjy�; y) =
X
m; ~M

jC(u)g=h(y)m
~M j2 = X

m; ~M

jC(t)g=h(y)m
~M j2 : (4.30)

Using completeness and the explicit form (4.9) of the coset blocks, the summed form of

these coset correlators is

Yg=h(Phjy�; y) =Tr
n
[1l + 2Lab

g=h;1(T 1
a T 2

b ln y� + T 1
a T 3

b ln(1� y�))]Ig

�[1l + 2Lab
g=h;1(T 1

a T 2
b ln y + T 1

a T 3
b ln(1� y))]Ph

o
+O(k�2)

(4.31a)
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= Tr[(1l + 2Lab
g=h;1(T 1

a T 2
b ln jyj2 + T 1

a T 3
b ln j1 � yj2))IgPh] +O(k�2)

(4.31b)

where Ig is the projector onto the G-invariant subspace and Ph is the projector onto the

desired set of external h representations. To obtain the second form, which explicitly

shows two of the trivial monodromies, we used eqs. (3.6) and (4.21c).

5 A Simple Class of Correlators in ICFT

5.1 L(g;H)-degenerate states and correlators

In this section, we use the intuition gained in our discussion of the a�ne-Sugawara and

coset constructions above to identify what we believe to be the simplest, most highly

symmetric processes in ICFT.

In the �rst place , we restrict our attention to the ICFTs with a symmetry, that is,

to the H-invariant CFTs on g, whose inverse inertia tensors LH satisfy

!(H)LH !(H)�1 = LH ; !(H) 2 H (5.1)

where H � G is any subgroup of G, including �nite groups and the Lie groups. The

matrix !(H)a
b is in the adjoint of g. For the H-invariant CFTs, the conformal weight

matrix of irrep T of g and hence the broken conformal weights �H
� (T ) are H-invariant,


(H;T )Lab
H TaTb 
�1(H;T ) = Lab

H TaTb ; 
(H;T ) 2 H (5.2a)


(H;T )��[�H
� (T )��H

� (T )] = 0 (5.2b)

where 
(H;T )�� is in irrep T and we have used (2.6) to obtain (5.2b).

In the H-invariant CFTs, we further restrict ourselves to the most symmetric broken

a�ne primary �elds, that is, to the irreps T of g whose Lab-broken conformal weights

�H
� (T ) = �H(T ), � = 1 : : : dimT are completely degenerate,

(Lab
HTaTb)�� = �H(T )��� : (5.3)

In what follows, such irreps of g are called the L(g;H)-degenerate states because, in

these cases, the irrep of g decomposes into a unique irrep of H. Finally, we restrict the

discussion to the L(g;H)-degenerate processes, which are those correlators all of whose

external states are L(g;H)-degenerate. In this sense, the L(g;H)-degenerate processes

are the most symmetric correlators in ICFT.

Although they are by no means generic, it is easy to �nd examples of L(g;H)-

degenerate states in the H-invariant CFTs. The simplest cases of L(g;H)-degenerate

states are all the a�ne primary states of all the a�ne-Sugawara constructions, which are

in fact L(g;G)-degenerate.
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Examples of L(g;h)-degenerate states in the g=h coset constructions include those

mentioned in (4.27) and (4.28). These are RCFT examples in the Lie h-invariant CFTs,

and in principle many irrational examples, beyond the coset constructions, can be found

among the Lie h-invariant CFTs.

Irrational examples in the much larger set of H-invariant CFTs, beyond the Lie h-

invariant CFTs, are already known, including the irrational cases [22]

T = n or �n in (SU(n)x)
#
M (5.4a)

T = 2n in (SO(2n)x)
#
M (5.4b)

where H is a �nite subgroup of SO(n) � SU(n) and (SO(n) � SO(n)) � SO(2n) in

(5.4a) and (5.4b) respectively. The case n = 3 in (5.4a) will be considered in detail in

Section 6.

We should also remark that the L(g;H)-degenerate conformal weights of the coset

examples in (4.28) and the irrational examples in (5.4) all obey the uni�ed conformal

weight formula,

�H
� (T ) = �H(T ) = c

2xn
(5.5)

where x is the invariant level of g and c is the central charge, which is rational for the

coset constructions and irrational for SU(n)#M and SO(2n)#M . The occurence of

a) L(g;H)-degenerate states

b) a uni�ed form of the conformal weights

for these rational and irrational families is not totally surprising, since both families

of constructions are contained in the same (maximally-symmetric) ansatz [22] of the

Virasoro master equation.

In what follows, we will �nd uniform formulae for the high-level conformal blocks and

correlators of all possible L(g;H)-degenerate processes in ICFT.

5.2 Conformal blocks in ICFT

We study only the class of L(g;H)-degenerate correlators in the H-invariant CFTs. Fig.2

shows these correlators generically, with one degenerate conformal weight �H
i � �H(T i),

i = 1 : : : 4 for each external state.

�

�

�

�

Z

Z

Z

Z �

�

�

�

Z

Z

Z

Z�H
1

�H
2 �H

3

�H
4

Fig. 2. The L(g;H)-degenerate correlators.
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In this case, we may reorganize the result (2.1) as follows,

Y �
H (y) = �v�g�H(y)�

� +O(k�2) (5.6a)

�H(y) = 1l + [Lab
H;1(T 1

a + T 2
a )(T 1

b + T 2
b )� (�H

1 +�H
2 )1l] ln y

+ [Lab
H;1(T 1

a + T 3
a )(T 1

b + T 3
b )� (�H

1 +�H
3 )1l] ln(1� y)

(5.6b)

YH
(H) = YH ; 
(H) =
4Y

i=1


(H;T i) : (5.6c)

The condition (5.6c), which enforces the H-symmetry of the system, follows from the

H-invariance of the relevant matrices

[�H;
(H)] = 0 (5.7)

and the fact that �vg, being g-invariant, is also invariant under 
(H).

To �nd � = s, t and u-channel block bases for the conformal blocks, we introduce the

H-invariant eigenvectors  (�;H) of the �-channel,

Lab
H;1(T 1

a + T 2
a )(T 1

b + T 2
b ) (s;H)M = �H

(s)(M) (s;H)M (5.8a)

Lab
H;1(T 1

a + T 3
a )(T 1

b + T 3
b ) (u;H)M = �H

(u)(M) (u;H)M (5.8b)

Lab
H;1(T 2

a + T 3
a )(T 2

b + T 3
b ) (t;H)M = �H

(t)(M) (t;H)M (5.8c)

� (�;H)M (�;H)N = �NM ;  (�;H)M�
� (�;H)�M = (IH)

�
� (5.8d)


�1(H) (�;H)M =  (�;H)M ; � (�;H)M
(H) = � (�;H)M (5.8e)

where (IH)
�
� is the projector onto the H-invariant subspace of T 1 
 � � � 
 T 4. The

eigenvalues �H
(�)(M) are the Lab-broken conformal weights of the states in the �-channel.

We remind the reader that the correlators (5.6) include all the correlators in H-

invariant CFTs with L(g;H)-degenerate external states. This includes in particular all

the correlators of all the a�ne-Sugawara constructions, in which case the eigenfunctions

 (�;H) may be taken as the g-invariants v(�; g) of Section 3, and all the coset correlators

whose external states are L(g;h)-degenerate, in which case the eigenfunctions  (�;H)

may be identi�ed as the h-invariants  (�; h) of Section 4.

The � = s, t and u-channel conformal blocks B(�)
H are then obtained by inserting

completeness sums in (5.6), according to

�H = �HIH = �H (�;H)M � (�;H)M ; 8 � : (5.9)

In this way, we obtain the three expansions,

Y �
H (y) =

X
m;M

d(s)mB(s)

H (y)m
M � (s;H)�M (5.10a)

=
X
m;M

d(u)mB(u)

H (y)m
M � (u;H)�M (5.10b)

20



=
X
m;M

d(t)mB(t)

H (y)m
M � (t;H)�M (5.10c)

where the �-channel blocks B(�)
H (y) are

B(�)
H (y)m

M = �v(�; g)m�H(y) (�;H)M +O(k�2) ; � = s; t;u (5.11a)

= e(�;H)m
N � (�;H)N�H(y) (�;H)M +O(k�2) (5.11b)

�H(y) = 1l + [Lab
H;1(T 1

a + T 2
a )(T 1

b + T 2
b ) � (�H

1 +�H
2 )1l] ln y

+ [Lab
H;1(T 1

a + T 3
a )(T 1

b + T 3
b ) � (�H

1 +�H
3 )1l] ln(1 � y)

(5.11c)

e(�;H)m
M = �v(�; g)m (�;H)M : (5.11d)

Here e(�;H) is the embedding matrix of the g-invariants in the H-invariants. These

expressions for the high-level conformal blocks of the L(g;H)-degenerate correlators in

ICFT are among the central results of the paper.

Using (5.8) and (5.11), we �nd the limiting behavior of the conformal blocks,

B(s)

H (y)m
M �

y!0
e(s;H)m

My
�H

(s)
(M)��H

1 ��
H
2 +O(k�2) (5.12a)

B(u)

H (y)m
M �

y!1
e(u;H)m

M (1� y)
�H

(u)
(M)��H

1 ��
H
3 +O(k�2) (5.12b)

B(t)

H (y)m
M �

y!1
e(t;H)m

N (�H)N
M

 
1

y

!�H
(t)

(M)+�H
1 ��

H
4

+O(k�2) (5.12c)

(�H)N
M = (�1)�H

(t)
(M)+�H

1 ��
H
4 � (t;H)N (�1)�2LabH;1T 1

a T
2
b  (t;H)M (5.12d)

and integer-spaced secondaries as in (3.10). These blocks show the correct broken a�ne-

primary �elds in each of the three channels.

As an aid to the reader, we note that the t-channel singularities (5.12c) were obtained

using the g-global Ward identity on the g-invariants �v(�; g)m,

�v(�; g)mL
ab[(T 1

a + T 2
a )(T 1

b + T 2
b ) + (T 2

a + T 3
a )(T 2

b + T 3
b ) + (T 3

a + T 1
a )(T 3

b + T 1
b )] (5.13)

= �v(�; g)mL
ab[T 1

a T 1
b + T 2

a T 2
b + T 3

a T 3
b + T 4

a T 4
b ] :

This gives the equivalent form of �v(�; g)m�H,

�v(�; g)m�H(y) = �v(�; g)m[1l�(Lab
H;1(T 1

a + T 2
a )(T 1

b + T 2
b )� (�H

1 +�H
2 )1l) ln(

1

y
� 1)

�(Lab
H;1(T 2

a + T 3
a )(T 2

b + T 3
b ) + (�H

1 ��H
4 )1l) ln(1� y)]

(5.14)

which gives (5.12c,d) directly.
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Number of blocks

We �nally note that, for an L(g;H)-degenerate process, the number BH(�) of blocks

in the �-channel

BH(�) = dg(�) � dH(�) (5.15)

is the product of the dimension dg(�) of g-invariants and the dimension dH(�) of H-

invariants in that channel. We know that dH(�) � dh(�) � dg(�) when H is a �nite

subgroup of the Lie group generated by h � g, and hence we obtain the double inequality

BH(�) � Bg=h(�) � Bg(�) (5.16)

for comparison of correlators with �xed external g-irreps, where Bg=h(�) and Bg(�) in

(4.13) and (3.18) are the number of coset and a�ne-Sugawara blocks respectively in

the �th channel. This double inequality summarizes the symmetry hierarchy within the

L(g;H)-degenerate processes, and is in accord with the expectation that the number of

blocks increases with increased symmetry breakdown in ICFT.

In Section 6 and Appendix C, we study the L(g;H)-degenerate correlator 3�3�33 under

the three constructions,

� the a�ne-Sugawara construction on SU(3)

� the coset construction SU(3)=SU(2)irr

� the irrational construction SU(3)
#
M

to illustrate the double inequality (5.16). As discussed below, the symmetry hierarchy

for these three constructions is SU(3) � SU(2)irr � O, where SU(2)irr is the irregular

embedding of SU(2) in SU(3) and O is the octohedral group symmetry of the irrational

construction.

5.3 Crossing relations

Using the completeness relations (3.17a) and (5.8d) of the g-invariant and H-invariant

eigenfunctions respectively, we verify the crossing relations among the blocks,

B(�)
H (y)m

M = Xg(��)m
nB(�)

H (y)n
NX�1

H (��)N
M (5.17a)

XH(��)M
N = � (�;H)M (�;H)N +O(k�2) (5.17b)

X�1
H (��)M

N = XH (��)M
N = (XH(��)N

M )� (5.17c)

where Xg(��) is the a�ne-Sugawara crossing matrix de�ned in (3.19) and XH(��) in

(5.17b) is another set of unitary crossing matrices, called the H-crossing matrices, from

the �-channel to the �-channel.
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The H-crossing matrices also satisfy the consistency relations

XH(��)XH(�� )XH(��) = XH(�� )XH(��)XH(��) = 1 (5.18)

in analogy to those found for g and h in (3.20) and (4.18).

When the external g-irreps satisfy T 2 � T 3, we may take

 (u;H)M� =  (s;H)M�0 ; � (u;H)�M = � (s;H)�
0

M (5.19)

and then one �nds that,

�H(y)�0
�0 = �H(1 � y)�

� (5.20a)

B(u)

H (y) = B(s)

H (1 � y) (5.20b)

XH(su) = X�1
H (su) = XH(us) (5.20c)

where �0 = (�1�3�2�4). It follows that the set of s-channel blocks is closed under crossing

B(s)

H (1 � y)m
M = Xg(us)m

nB(s)

H (y)n
NXH(us)N

M (5.21)

as it should be in this case. Similar relations hold when any two external states are the

same.

We have checked for the special case of the g=h coset constructions that the general

high-level blocks (5.11) reduce precisely to the high-level coset blocks computed in (4.9).

In further detail, when Lg=h = Lg � Lh in �, one may factorize

�jL=Lg=h = �g�
�1
h (5.22a)

�g � �jL=Lg ; ��1h � (�jL=Lh)�1 (5.22b)

and take  (H) =  (h). Then one follows the steps of Section 4 to see that the blocks,

B(�)
H (y)m

M jL=Lg=h
= �v(�; g)m�g(y)v(�; g)

n�v(�; g)n (�; h)
N � (�; h)N�h(y)

�1 (�; h)M

= F (�)
g (y)m

ne(�; g=h)n
N (F (�)

h (y)�1)N
M

= C(�)g=h(y)m
M

(5.23)

are identical to the coset blocks in (4.9). In the same way, the H-crossing matrices XH

reduce in this case to the h-crossing matrices Xh de�ned in (4.16).

5.4 Non-chiral correlators in ICFT

For the general L(g;H)-degenerate process, we construct a set of high-level non-chiral

correlators from the conformal blocks B(�)
H (y) in (5.11) via the diagonal construction,

YH(y
�; y) =

X
m;M

jB(s)

H (y)m
M j2 (5.24)
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which shows trivial monodromy around y = 0. Using the crossing relations (5.17) we can

also rewrite this correlator in terms of u or t-channel blocks

YH(y
�; y) =

X
m;M

jB(u)

H (y)m
M j2 = X

m;M

jB(t)
H (y)m

M j2 (5.25)

which show trivial monodromy around y = 0 and y =1 respectively.

Using completeness and the explicit form (5.11) of the conformal blocks, we also

obtain the summed form of the non-chiral correlators

YH(y
�; y) =Trf[1l + 2Lab

H;1(T 1
a T 2

b ln y� + T 1
a T 3

b ln(1� y�))]Ig

� [1l + 2Lab
H;1(T 1

a T 2
b ln y + T 1

a T 3
b ln(1� y))]g+O(k�2)

(5.26a)

= Tr[(1l+2Lab
H;1(T 1

a T 2
b ln jyj2+T 1

a T 3
b ln j1�yj2))Ig]+O(k�2) (5.26b)

where the last form shows two of the trivial monodromies. One also sees the expected

crossing symmetry

YH(1� y�; 1 � y) = YH(y
�; y) (5.27)

when T 2 � T 3. We �nally note that the general L(g;H)-degenerate correlators (5.26)

correctly include the L(g;h)-degenerate coset correlators obtained from (4.31) when

Ph = 1.

Using the embedding matrices (5.11d) and theH-crossing matrices (5.17b), Appendix

A gives alternate expressions for the blocks and correlators of the L(g;H)-degenerate

processes in ICFT.

6 Blocks and Correlators in SU(3)
#
M

As an explicit example in irrational conformal �eld theory, we work out here the high-level

conformal blocks and non-chiral correlators for a particular L(g;H)-degenerate process

in the unitary irrational level-family [22]

(SU(3)x)
#
M (6.1)

where x is the invariant level of SU(3). For simplicity below, this construction is often

called SU(3)
#
M . The construction is included in the larger maximally-symmetric ansatz

for all simply-laced g, which was in fact the �rst set of ICFTs found in the Virasoro

master equation. The closely related coset construction SU(3)x=SU(2)4x, which also

resides in the maximally-symmetric ansatz, is studied in Appendix C.

The exact forms of the central charge and the conformal weights of the 3 and �3

representations under (SU(3)x)
#
M are

c[(SU(3)x)
#
M ] =

2x

x+ 3

"
2� x2 � 8x + 17p

4x4 � 28x3 + 17x2 + 160x � 128

#
(6.2a)
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�(T(3)) = �(T(�3)) =
c

6x
(6.2b)

where the 3-fold degenerate conformal weights in (6.2b) strongly suggest that the 3 and
�3 are L(g;H)-degenerate representations.

As discussed further in Appendix B, the level-family (SU(3)x)
#
M has a �nite group

symmetry

H(SU(3)
#
M ) = O � SU(2)irr (6.3)

whereO is the octohedral group and SU(2)irr is the irregularly embedded SU(2) � SU(3).

The degeneracy of the 3 and �3 is due to the octohedral symmetry of the construc-

tion, which mixes all three components of each representation. Thus the 3 and �3 are

L(SU(3);O)-degenerate representations in (SU(3)x)
#
M , as desired.

For the high-level computations in (SU(3)x)
#
M below, we need only the high-level

forms of the inverse inertia tensor (in the Gell-Mann basis) and the degenerate conformal

weights,

Lab
O;1 =

1

x 2
g

�a�ab ; �a =

(
1 a = 1; 4; 6

0 a = 3; 8; 2; 5; 7
(6.4a)

c = 3 +O(x�1) (6.4b)

�O(T(3)) = �O(T(�3)) =
1

2x
+O(x�2) (6.4c)

which identi�es P ab = �a�ab as the high-level projector of SU(3)#M . Moreover, we will

consider only the L(SU(3);O)-degenerate process 3�3�33 in SU(3)
#
M ,

T 1 = T 4 = T(3) ; T 2 = T 3 = T(�3) (6.5)

shown schematically in Fig.3. The matrix irrep of the 3 and �3 in the Gell-Mann basis

are given by,

T(3) =
q
 2
g

2
�a ; T(�3) =

q
 2
g

2
��a (6.6a)

��a = ��Ta =

(��a a = 3; 8; 1; 4; 6

�a a = 2; 5; 7
(6.6b)

where �a are the Gell-Mann matrices.

�

�

�

�
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Z

Z

Z �

�

�

�

Z

Z

Z

Z3

�3 �3

3

Fig. 3. An L(SU(3);O)-degenerate correlator in SU(3)
#
M .
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To compute the high-level blocks in the s-channel, we need to solve the eigenvalue

problem (5.8a) for the s-channel O-invariant eigenvectors  (s; O), which reads in this

case,

[� 1

2x

X
a=1;4;6

�1a�
2
a +

1

x
1l]�

�  (s; O)M� = �O
(s)(M) (s; O)M� (6.7a)

4Y
i=1

(!il)�i
�i (s; O)� =  (s; O)� ; l = 1; 2 (6.7b)

!1 = exp(i��2=2) =

0
BB@

0 1 0

�1 0 0

0 0 1

1
CCA (6.7c)

!2 = exp(i��5=2) exp(i��7=2) =

0
BB@

0 �1 0

0 0 1

�1 0 0

1
CCA : (6.7d)

The matrices !1 and !2 which appear in the O-invariance condition (6.7b) may be taken

as the generators of O.

After some algebra, one �nds the following orthonormal set of s-channel eigenvectors

 (s; O)M and their eigenvalues �O
(s)(M),

 (s; O)1� =
1

3
��1�2

��3�4
; �O

(s)(1) = 0 (6.8a)

 (s; O)2� =
1

2
p
3
[��1�3

��2�4
+ ��1�4

��2�3
� 2��1�2

��3�4
��1�3

] ; �O
(s)(2) =

1

2x
(6.8b)

 (s; O)3� =
1

2
p
3
[��1�3

��2�4
� ��1�4

��2�3
] ; �O

(s)(3) =
3

2x
(6.8c)

 (s; O)4� =
1

3
p
2
[��1�2

��3�4
� 3��1�2

��3�4
��1�3

] ; �O
(s)(4) =

3

2x
(6.8d)

� (s; O)�M = ( (s; O)M� )���� =  (s; O)M� (6.8e)

where the last relation says that the left and right eigenvectors coincide in this case.

In ICFT, the high-level fusion rules [15] of the broken a�ne primaries follow the

Clebsch-Gordan coe�cients of their corresponding matrix irreps, so the s-channel should

show the exchange of broken a�ne primary states corresponding to the vacuum and the

adjoint representation,

3
 �3 = 1 � 8 : (6.9)

Indeed, the �rst conformal weight in (6.8a) is the conformal weight of the vacuum, and

the other three high-level conformal weights in (6.8b-d) are precisely the high-level form

of the three degenerate subsets of broken conformal weights of the adjoint (see Appendix

B).

Similarly, we can solve for the u and t-channel eigenvectors, which are given by

 (u; O)M =  (s; O)M j2$3 ; �O
(u)(M) = �O

(s)(M) (6.10a)
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 (t; O)M =  (s; O)M j2$4 ; �O
(t)(M) =

2

x
��O

(s)(M) (6.10b)

where 2 $ 3 and 2 $ 4 mean respectively �2 $ �3 and �2 $ �4 in the explicit

expressions of the s-channel eigenvectors (6.8). The result in (6.10a) is in accord with

(5.19) since T 2 � T 3, so that the u-channel conformal weights are identical to the ones

in the s-channel. The conformal weights found in the t-channel,

�O
(t)(M) = (

2

x
;
3

2x
;
1

2x
;
1

2x
) (6.11)

are also in agreement with the Lab-broken conformal weights in the known high-level

fusion rule

3
 3 = �3 � 6 : (6.12)

In particular, the last value in (6.11) is the completely degenerate conformal weight of

the �3 and the �rst three coincide with the three degenerate subsets (B.11b) of the 6,

according to the high-level form (B.13a).

Using eq.(5.17b), the high-level s-u and s-t O-crossing matrices are computed from

the eigenvectors as

XO(us)M
N =  (u; O)M (s; O)N =

1

6

0
BBBB@

2 2
p
3 2

p
3 �2p2

2
p
3 3 �3 p

6

2
p
3 �3 3

p
6

�2p2 p
6

p
6 4

1
CCCCA (6.13a)

XO(ts)M
N =  (t; O)M (s; O)N =

1

6

0
BBBB@

2 2
p
3 �2p3 �2p2

2
p
3 3 3

p
6

�2p3 3 3 �p6
�2p2 p

6 �p6 4

1
CCCCA (6.13b)

which are orthogonal and idempotent matrices in this case. The third O-crossing matrix

XO(ut) = XO(us)XO(ts) (6.14)

follows from the consistency relation (5.18).

For the crossing of the blocks one also needs the high-level a�ne-Sugawara crossing

matrices (3.19b) for g = SU(3). The �-channel SU(3)-invariant eigenvectors and the

corresponding crossing matrices are

v(s; SU(3))V� =
1

3
��1�2

�a3�4
(6.15a)

v(s; SU(3))A� =
1

2
p
2
[��1�3

�a2�4
� 1

3
��1�2

�a3�4
] (6.15b)

v(u; SU(3)) = v(s; SU(3))j2$3 (6.15c)

v(t; SU(3))6� =
1

2
p
6
[��1�2

�a3�4
+ ��1�3

�a2�4
] (6.15d)
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v(t; SU(3))
�3
� =

1

2
p
3
[��1�2

�a3�4
� ��1�3

�a2�4
] (6.15e)

XSU(3)(us)m
n = v(u; SU(3))mv(s; SU(3))n =

1

3

 
1 2

p
2

2
p
2 �1

!
(6.15f)

XSU(3)(ts)m
n = v(t; SU(3))mv(s; SU(3))n =

1

3

 p
6

p
3p

3 �p6

!
(6.15g)

where the labels V;A stand for vacuum and adjoint irrep, and 6; �3 for symmetric and

antisymmetric irrep. The third g-crossing matrix is given by XSU(3)(ut) = XSU(3)(us)

X�1
SU(3)(ts).

Finally, we write down the high-level s-channel conformal blocks (5.11) of SU(3)#M ,

B(s)

O (y)m
M = e(s; O)m

N [1l+ (�O
(s)�

1

x
1l) ln y+(QO

(su)�
1

x
1l) ln(1� y)]NM +O(x�2) (6.16)

where

e(s; O)m
M = v(s; SU(3))m (s; O)M =

 
1 0 0 0

0 1

4

p
6 1

4

p
6 �1

2

!
(6.17a)

(�O
(s))N

M = �O
(s)(M)�MN (6.17b)

(QO
(su))N

M =
X
L

XO(us)N
L�O

(u)(L)XO(us)L
M (6.17c)

�O
(s)(M) = �O

(u)(M) = (0;
1

2x
;
3

2x
;
3

2x
) : (6.17d)

Here we have used the alternate expression (A.9) for the L(g;H)-degenerate blocks in

Appendix A. The u and t-channel blocks can be computed from the s-channel blocks

above using the crossing relation (5.17) and the explicit forms of the crossing matrices

XSU(3)(us);XSU(3)(ts) in (6.15), and XO(us);XO(ts) in (6.13).

In agreement with (5.15), the number of blocks for this L(SU(3);O)-invariant process

is

BO(�) = 2 � 4 = 8 : (6.18)

Because of the increasing symmetry breakdown,

O � SU(2)irr � SU(3) (6.19)

the number (6.18) is larger than the number of blocks

BSU(3)(�) = 2 � 2 = 4 ; BSU(3)=SU(2) = 2 � 3 = 6 (6.20)

for the same correlator under the a�ne-Sugawara construction and the closely related

coset construction studied in Appendix C. Taken together, (6.18) and (6.20) are an

illustration of the double inequality (5.16).
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Using eqs.(A.13), (A.14) we also �nd the following expression for the high-level non-

chiral correlators of SU(3)#M ,

YO(y
�; y)=

X
M;N

E(s; O)M
N [1l + (�O

(s) �
1

x
1l) ln jyj2 + (�O

(s) �
1

x
1l) ln j1� yj2]NM +O(x�2)

(6.21a)

E(s; O)M
N =

X
m

(e(s; O)m
M )�e(s; O)m

N =

0
BBBB@
1 0 0 0

0 3

8

3

8
�1

8

p
6

0 3

8

3

8
�1

8

p
6

0 �1

8

p
6 �1

8

p
6 1

4

1
CCCCA (6.21b)

where we have used XO(us)E(s; O)XO(us) = E(s; O) and the diagonal s-channel con-

formal weight matrix �O
(s) is given in (6.17b). This result explicitly shows the crossing

symmetry (5.27), as it should since T 2 � T 3 in this case.

We �nally remark that the high-level blocks and correlators of the K-conjugate theory

SU(3)=SU(3)#M ; ~L = LSU(3) � L (6.22)

can be easily obtained from the results above, by substituting everywhere the K-conjugate

conformal weights ~�(T ) = �g(T ) � �(T ) for the conformal weights �(T ). Moreover,

the results above can easily be extended to the L(g;H)-degenerate correlators n�n�nn in

the larger family of ICFTs called SU(n)#M [22]; in this case, the number of H-invariant

tensors stays the same, with closely analogous forms for all the more general results.

7 Conclusions

The generalized KZ equations of ICFT provide a uniform description of the chiral corre-

lators of rational and irrational conformal �eld theory, and the solution of these equations

is known at high level on simple g. The apparent simplicity of this result is deceptive,

however, because the solution describes a vast variety of generically irrational conformal

�eld theories ranging from the most symmetric (the RCFTs) to totally asymmetric (the

generic ICFT).

In this paper, we have begun the resolution of the high-level chiral correlators into

high-level conformal blocks and non-chiral correlators, beginning with the simplest and

most symmetric classes.

In particular, we began by working out the high-level blocks and correlators of all the

� a�ne-Sugawara constructions on simple g

� coset constructions on simple g.

Both results are new, and the results for the cosets are apparently inaccessible by other

methods.
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Based on this analysis, we then identi�ed what we believe to be the simplest and

most symmetric class of correlators in ICFT. These are the

� L(g;H)-degenerate processes in H-invariant CFTs on simple g

which are those correlators whose external states have entirely degenerate conformal

weights �� = �. This class of correlators includes all the a�ne-Sugawara correlators,

a highly-symmetric subset of coset correlators and a presumably large set of irrational

correlators, examples of which are known.

For this simple class of correlators we were able to �nd the general expression for the

high-level blocks and non-chiral correlators, and we worked out an irrational example

with octohedral symmetry on SU(3).

Further information is needed to go beyond the leading order of the L(g;H)-degenerate

processes in ICFT. The central question here is whether the number of conformal blocks

remains �nite, as we found in the semi-classical limit, or increases with the order of

k�1, as expected generically in ICFT. At �nite values of the level, one will also need to

consider the roles of the a�ne cuto� [4,13] and �xed-point resolution [23].

The more immediate open direction is to �nd the high-level conformal blocks of

irrational correlators beyond the set of L(g;H)-degenerate processes. Here one also

expects an ever-increasing number of blocks as one confronts the progressively larger

symmetry breakdown of ICFT, signalled by the Lab-broken conformal weights ��.

In this direction, we remind the reader of the known singularities of the invariant at

connections W which govern the exact (�nite level) correlators of ICFT. For example, it

is known that [8]

W (~u; u)�
� =

~u;u!0

�
u

~u

���1 (T
1)+��2 (T

2)���1
(T 1)���2

(T 2) (2LabT 1
a T 2

b )�
�

u
(7:1a)

=

( (2Lab
1
T

1
a T

2
b
)�

�

u
+O(k�2) (high k) (7:1b)

(2LabT 1
a T

2
b
)�

�

u
(L(g;H)-degenerate) (7:1c)

where u and ~u are the variables of the theory and its K-conjugate theory respectively.

The result (7.1a) shows the apparently non-Fuchsian �; � dependent shielding factor,

which is hidden in the high-level limit (7.1b), and which simpli�es to unity at all levels,

shown in (7.1c), for the L(g;H)-degenerate processes. We believe that this phenomenon

underlies the simplicity of the class of L(g;H)-degenerate processes in ICFT, and it

may be necessary to consider this factor in the physical interpretation of the high-level

logarithmic singularities of correlators beyond the simple class we have considered here.
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Appendix A: Alternate expressions for blocks and correlators

In this appendix, we use the relevant crossing matrices to give alternate expressions for

the conformal blocks and correlators of any set of external states in the a�ne-Sugawara

constructions (see Section 3) and of any L(g;H)-degenerate process in the more general

H-invariant CFTs (see Section 5).

A�ne-Sugawara constructions

We begin with the �-channel a�ne-Sugawara blocks in (3.17),

F (�)
g (y)m

n = �v(�; g)m[1l + 2Lab
g;1(T 1

a T 2
b ln y+ T 1

a T 3
b ln(1� y))]v(�; g)n+O(k�2) : (A.1)

Using the de�nitions (3.2), (3.12) of the g-invariant �-channel eigenvectors v(�; g) and

the g-crossing matrices Xg in (3.19b), we have the g-crossing relations,

�v(�; g)m = Xg(��)m
n�v(�; g)n ; v(�; g)m = v(�; g)nXg(��)n

m : (A.2)

Using these relations, we obtain the alternate form of the a�ne-Sugawara blocks,

F (�)
g (y)m

n = [1l + (Qg
(�s) � (�g(T 1) + �g(T 2))1l) ln y

+ (Q
g
(�u) � (�g(T 1) + �g(T 3))1l) ln(1� y)]m

n +O(k�2)
(A.3)

where

(Q
g
(��))m

n =

(
(�

g
(�))m

n = �
g
(�)(m)�nm ; � = �P

lXg(��)m
l�g

(�)(l)Xg(��)l
n ; � 6= �

: (A.4)

and �
g
(�) are the �-channel a�ne-Sugawara conformal weights.

In this form, one immediately sees the correct s and u-channel singularities as given in

(3.11) and (3.14a) respectively. To obtain a form which shows the t-channel singularities
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(3.14b) more explicitly, one again uses the g-global Ward identity (3.15) on �vg to rewrite

the t-channel blocks as

F (t)
g (y)m

n = [1l � (Qg
(ts)

� (�g(T 1) + �g(T 2))1l) ln(
1

y
� 1)

� (Qg
(tt)

+ (�g(T 1)��g(T 4))1l) ln(1� y)]m
n +O(k�2)

(A.5)

where Qg
(t�), � = s; t is given in (A.4). The equivalence of the two forms (A.3) and (A.5)

of the t-channel blocks can be veri�ed directly, using the �=t form of the conformal

weight sum rule,

�
g
(�) +Xg(��)�

g
(�)Xg(��) +Xg(�� )�

g
(�)Xg(��) =

4X
i=1

�g(T i) ; � 6= � 6= � 6= � (A.6)

which is itself a direct consequence of the g-global Ward identity (3.15).

Substitution of the alternate forms (A.3) of the a�ne-Sugawara blocks in the ex-

pression (3.26) for the a�ne-Sugawara correlators then gives the corresponding alternate

form for the non-chiral correlators,

Yg(y
�; y)�

� =
X
m;n

[1l + (Q
g
(�s) � (�g(T 1) + �g(T 2))1l) ln jyj2

+ (Q
g
(�u)� (�g(T 1) + �g(T 3))1l) ln j1� yj2]mn v(�; g)m� �v(�; g)

�
n +O(k�2)

(A.7)

which explicitly shows trivial monodromy around y = 0 and 1.

L(g;H)-degenerate processes

Following the development for the a�ne-Sugawara constructions above, we may �nd

similar alternate forms for the blocks and correlators of the general L(g;H)-degenerate

process.

Using the de�nitions (5.8) of the H-invariant eigenvectors  (�;H) and the H-crossing

matrices XH in (5.17), we have the H-crossing relations,

� (�;H)M = XH(��)M
N � (�;H)N ;  (�;H)M =  (�;H)NXH(��)N

M : (A.8)

Using these relations in the form (5.11b), we obtain the following alternate form of the

L(g;H)-degenerate blocks,

B(�)
H (y)m

M = e(�;H)m
N [1l + (QH

(�s) � (�H
1 +�H

2 )1l) ln y

+ (QH
(�u) � (�H

1 +�H
3 )1l) ln(1� y)]N

M +O(k�2)
(A.9)

where e(�;H) are the �-channel embedding matrices (5.11d) and

(QH
(��))M

N =

(
(�H

(�))M
N = �H

(�)(M)�NM ; � = �P
LXH(��)M

L�H
(�)(L)XH(��)L

N ; � 6= �
: (A.10)
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with �H
(�) the �-channel conformal weights. These results include all the correlators of the

a�ne-Sugawara constructions and all the L(g;h)-degenerate processes of the g=h coset

constructions.

These forms explicitly show the correct s and u-channel singularities (5.12a) and

(5.12b). To obtain a form which shows the t-channel singularities (5.12c,d) more ex-

plicitly, one uses again the g-global Ward identity (5.13) to rewrite the t-channel blocks

as

B(t)

H (y)m
n = e(t;H)m

N [1l � (QH
(ts) � (�H

1 +�H
2 )1l) ln(

1

y
� 1)

� (QH
(tt) + (�H

1 ��H
4 )1l) ln(1 � y)]N

M +O(k�2)
(A.11)

where QH
(t�), � = s; t is given in (A.10). This equivalent form of the t-channel blocks fol-

lows directly from the � =t form of the conformal weight sum rule in L(g;H)-degenerate

processes,

e(�;H)[�H
(�)+XH(��)�

H
(�)XH (��) +XH(�� )�

H
(�)XH(��)]

= e(�;H)
4X

i=1

�H
i ; � 6= � 6= � 6= �

(A.12)

which is itself a direct consequence of the g-global Ward identity (5.13).

Finally, we give the corresponding alternate form of the non-chiral correlators (5.24),

using the expression (A.9) for the blocks,

Y (y�; y) =
X
M;N

E(�;H)M
N [1l + (QH

(�s) � (�H
1 +�H

2 )1l) ln jyj2

+ (QH
(�u)� (�H

1 +�H
3 )1l) ln j1� yj2]NM +O(k�2)

(A.13)

where

E(�;H)M
N =

X
m

(e(�;H)m
M )�e(�;H)m

N : (A.14)

This form of the correlator explicitly shows the two trivial monodromies around y = 0

and 1.

Appendix B: The level-families SU(3)
#
M and SU(3)=SU(2)irr

In this appendix we review [22,16] various results for the unitary irrational level-family

(SU(3)x)
#
M (B.1)

and the closely-related level-family of the coset construction

SU(3)

SU(2)irr
=

SU(3)x

SU(2)4x
(B.2)
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both of which occur in the maximally-symmetric ansatz on SU(3). SU(2)irr denotes the

irregularly embedded SU(2) subgroup of SU(3) generated by J2;5;7. The results given

here are used in Section 6 and Appendix C.

In the (Cartesian) Gell-Mann basis (6.6), the maximally-symmetric construction

(SU(3)x)
#
M has the form [22]

Lab =
1

 2
g

`a�
ab ; `a =

8>><
>>:
`c a = 3; 8

`h a = 2; 5; 7

`r a = 1; 4; 6

(B.3a)

T =
1

 2
g

�

�
[`c(J

2
3 + J2

8 ) + `h(J
2
2 + J2

5 + J2
7 ) + `r(J

2
1 + J2

4 + J2
6 )]

�

�
(B.3b)

c = x(2`c + 3`h + 3`r) (B.3c)

where T is the stress tensor,  g is the highest root of SU(3), x is the a�ne level and

c is the central charge. The exact form of c is given in (6.2a), but we refer to [22] for

the exactb forms of the coe�cients `c;h;r. The construction above includes the coset

construction SU(3)=SU(2)irr as a special case when the further symmetry relation

`c = `r � `g=h (B.4)

is obeyed.

SU(3)
#
M is an H-invariant CFT with symmetry group [16]

H(SU(3)#M ) = O = octohedral group � SU(2)irr (B.5)

where O is the octohedral group (rotational symmetry group of the cube, with order

24) and SU(2)irr is the irregular embedding of SU(2) in SU(3). The octohedral group

includes the elements


(2) = exp(i
�q
 2
g

J2(0)) ; 
(5) = exp(i
�q
 2
g

J5(0)) ; 
(7) = exp(i
�q
 2
g

J7(0)) (B.6)

where Ja(0) are the zero modes of the currents Ja, and in particular we may take the two

elements !1 and !2,

!1 = 
(2) ; !2 = 
(5)
(7) (B.7)

which satisfy

!4
1 = 1 ; !3

2 = 1 (B.8a)

!1!
2
2!1 = !2 ; !1!2!1 = !2!

2
1!2 (B.8b)

as the generators of the octohedral group.

The coset construction SU(3)=SU(2)irr has the larger Lie group symmetry

H(SU(3)=SU(2)irr) = SU(2)irr (B.9)

bThe relation to the notation of Ref.[22] is `c = 3�, `h = (L� � L+)=2 and `r = (L� + L+)=2.
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because of the symmetry relation (B.4).

The 3 and �3 are L(g;H)-degenerate irreps of SU(3)
#
M and SU(3)=SU(2)irr with com-

pletely degenerate conformal weights,

�(T(3)) = �(T(�3)) =
c

6x
(3) (B.10)

where the number in parentheses denotes the degeneracy.

For (SU(3)x)
#
M one also �nds the Lab-broken conformal weights of the 8 (adjoint) and

6 (symmetric),

�(T(8)) =

8>><
>>:

3

2
(`h + `r) (2)

`c +
1
2
(`h + 3`r) (3)

`c +
1

2
(3`h + `r) (3)

(B.11a)

�(T(6)) = �(T(�6)) =

8>><
>>:

2

3
(2`c + 3`r) (1)

4
3
`c +

1
2
(3`h + `r) (2)

1

3
`c +

3

2
(`h + `r) (3)

: (B.11b)

These forms show that the 8 and the 6 each split into three subsets of degenerate weights,

in agreement with the block analysis of Section 6.

For SU(3)x=SU(2)4x the splitting is reduced to two subsets,

�g=h(T(8)) =
(

3

2
(`h + `g=h) (5)

1

2
(`h + 5`g=h) (3)

(B.12a)

�g=h(T(6)) = �g=h(T(�6)) =
(

10
3
`g=h (1)

3

2
`h +

11

6
`g=h (5)

(B.12b)

according to (B.4) and (B.11). These forms are in agreement with the coset block analysis

of Appendix C.

For the computations of Section 6 and Appendix C, we need the high-level forms of

the two constructions,

(SU(3)x)
#
M : `r =

1

x
+O(x�2) ; `c = `h = O(x�2) ; c = 3 +O(x�1) (B.13a)

SU(3)x

SU(2)4x
: `g=h =

1

x
+O(x�2) ; `h = O(x�2) ; c = 5 +O(x�1) (B.13b)

which can be used with (B.10), (B.11) and (B.12) to obtain the high-level forms of all

the quantities discussed in this appendix.

Appendix C: Blocks and correlators in SU(3)=SU(2)irr

As an explicit example in rational conformal �eld theory, we work out in this appendix

the high-level conformal blocks and correlators of a particular L(g;h)-degenerate process

35



in the level-family of the coset construction

g

h
=

SU(3)x

SU(2)4x
=

SU(3)

SU(2)irr
(C.1)

which is included in the family of coset examples (4.28a).

This level-family has the Lie symmetry SU(2)irr, and the 3 and �3 representations are

L(SU(3);SU(2)irr)-degenerate.

For the high-level computations in SU(3)=SU(2)irr below, we need the high-level

form of the inverse inertia tensor (in the Gell-Mann basis) and the degenerate conformal

weights,

Lab
g=h;1 =

1

x 2
g

�a�ab ; �a =

(
1 a = 3; 8; 1; 4; 6

0 a = 2; 5; 7
(C.2a)

�g=h(T(3)) = �g=h(T(�3)) =
5

6x
+O(x�2) (C.2b)

and we will consider here the same process, that is 3�3�33, which we studied for SU(3)#M
in Section 6.

To compute the high-level blocks in the s-channel, we need to determine the s-channel

eigenvectors  (s; SU(2)) from the eigenvalue problem (5.8), which reads in this case,

[� 1

2x

X
a=

3;8

1;4;6

�1a�
2
a +

5

3x
1l]�

�  (s; SU(2))M� = �
g=h

(s) (M) (s; SU(2))M� (C.3a)

4X
i=1

(�ia)�
� (s; SU(2))� = 0 ; a = 2; 5; 7 : (C.3b)

Here we have used the properties (6.6b) of the Gell-Mann matrices, and the global con-

dition (C.3b) enforces the SU(2)irr-invariance of the coset construction.

After some algebra, the following orthonormal set of s-channel eigenvectors is found

 (s; SU(2))1� =
1

3
��1�2

��3�4
; �

g=h

(s)
(1) = 0 (C.4a)

 (s; SU(2))2� =
1

2
p
5
[��1�3

��2�4
+ ��1�4

��2�3
� 2

3
��1�2

��3�4
] ; �

g=h

(s) (2) =
3

2x
(C.4b)

 (s; SU(2))3� =
1

2
p
3
[��1�3

��2�4
� ��1�4

��2�3
] ; �

g=h

(s)
(3) =

5

2x
(C.4c)

� (s; SU(2))�M = ( (s; SU(2))M� )���� =  (s; SU(2))M� (C.4d)

where the last relation says that the left and right eigenvectors coincide.

The results (C.4) are in agreement with the high-level fusion rule (6.9); in particular,

the conformal weight in (C.4a) corresponds to the vacuum, while the remaining two

weights in (C.4b,c) are the high-level form of the two degenerate subsets of the coset-

broken conformal weights of the adjoint (see eqs.(B.12a) and (B.13b)).
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Similarly, we can solve for the u and t-channel eigenvectors, which are given by

 (u; SU(2))M =  (s; SU(2))M j2$3 ; �
g=h

(u)
(M) = �

g=h

(s)
(M) (C.5a)

 (t; SU(2))M =  (s; SU(2))M j2$4 ; �
g=h

(t) (M) =
10

3x
��

g=h

(s) (M) (C.5b)

where 2 $ 3 and 2 $ 4 mean �2 $ �3 and �2 $ �4 in the explicit expressions (C.4)

for the s-channel eigenvectors. Since T 2 � T 3, the result in (C.5a) is a special case of

(5.19) and the u-channel conformal weights are identical to those in the s-channel. The

conformal weights of the t-channel,

�
g=h

(t) (M) = (
11

6x
;
10

3x
;
5

6x
) (C.6)

are also in agreement with the coset-broken conformal weights of the high-level fusion

rule (6.12). In particular, the last value is the completely degenerate conformal weight

of the �3 and the �rst two coincide with the two degenerate subsets (B.12b) of the 6,

according to the high-level form (B.13b).

Using (5.17b), the SU(2)-crossing matrices are computed from the eigenvectors as

XSU(2)(us)M
N =  (u; SU(2))M (s; SU(2))N =

1

6

0
BB@

2 2
p
5 2

p
3

2
p
5 1 �p15

2
p
3 �p15 3

1
CCA (C.7a)

XSU(2)(ts)M
N =  (t; SU(2))M (s; SU(2))N =

1

6

0
BB@

2 2
p
5 �2p3

2
p
5 1

p
15

�2p3 p
15 3

1
CCA (C.7b)

which are orthogonal and idempotent matrices in this case. The third crossing matrix

XSU(2)(ut) = XSU(2)(us)XSU(2)(ts) follows from the consistency relations (5.18).

Finally, we use the SU(3) eigenvectors (6.15) and the alternate expression (A.9)

for the general L(g;H)-degenerate blocks to write down the s-channel coset blocks of

SU(3)=SU(2)irr,

C(s)g=h(y)m
M = e(s; g=h)m

N [1l + (�
g=h

(s) �
5

3x
1l) ln(y) + (Q

g=h

(su)�
5

3x
1l) ln(1� y))]NM +O(x�2)

(C.8)

where

e(s; g=h)m
M = v(s; SU(3))m (s; SU(2))M =

 
1 0 0

0 1

4

p
10 1

4

p
6

!
(C.9a)

(�
g=h

(s) )N
M = �

g=h

(s) (M)�MN (C.9b)

(Q
g=h

(su))N
M =

X
L

XSU(2)(us)N
L�

g=h

(u) (L)XSU(2)(us)L
M (C.9c)

�
g=h

(s)
(M) = �

g=h

(u)
(M) = (0;

3

2x
;
5

2x
) : (C.9d)
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The u and t-channel blocks can be computed from the s-channel blocks above using

the crossing relation (5.17a) and the explicit forms of the crossing matrices XSU(3)(us),

XSU(3)(ts) in (6.15) and XSU(2)(us);XSU(2)(ts) in (C.7).

In accord with (4.13), the number of blocks in this process is

BSU(3)=SU(2)(�) = 2 � 3 = 6 (C.10)

while the same process under the a�ne-Sugawara construction on SU(3) and the irra-

tional construction SU(3)#M showed 4 and 8 blocks respectively. This is in accord with the

double inequality (5.16) and the increasing symmetry breakdown O � SU(2)irr � SU(3)

of the three constructions.

Using eqs.(A.13), (A.14), we also �nd the following expression for the high-level non-

chiral correlators of SU(3)=SU(2)irr,

Yg=h(y
�; y)=

X
M;N

E(s; g=h)M
N [1l+(�

g=h

(s) �
5

3x
1l) ln jyj2+(�g=h

(s) �
5

3x
1l) ln j1�yj2]NM+O(x�2)

(C.11a)

E(s; g=h)M
N =

X
m

(e(s; g=h)m
M )�e(s; g=h)m

N =

0
BB@
1 0 0

0 5

8

1

8

p
15

0 1

8

p
15 3

8

1
CCA (C.11b)

where we have used XSU(2)(us)E(s; g=h)XSU(2)(us) = E(s; g=h) and where the diagonal

s-channel conformal weight matrix �
g=h

(s)
is given in (C.9b). This result explicitly shows

the crossing symmetry (5.27), as it should since T 2 � T 3 in this case.
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