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1. Introduction and overview

Two-dimensional random geometry is now placed at the heart of many models of

modern physics, from string theory and two-dimensional quantum gravity, attempting

to describe fundamental interactions, to membranes and interface fluctuations in various

problems of condensed matter physics. Therefore it is quite important to study in detail the

basic universal properties of random geometries, such as their fractal nature, their phase

diagram, critical phenomena and correlations of physical quantities of geometric origin. In

addition, one might hope to discover entirely new mechanisms for phase transitions.

Over the last fifteen years, considerable progress has been achieved in the under-

standing of noncritical strings, or 2D quantum gravity in the presence of matter fields

with central charge c ≤ 1. It was based on two different approaches, completing and

justifying each other.

The first one, based on the continuous treatment of 2D metric fluctuations by means

of quantum Liouville theory, was introduced by Polyakov [3].

The second one, based on a discretisation of the two-dimensional metric in terms of

random planar graphs, was first proposed in [4], [5] and [6].

With the help of powerful matrix model techniques this approach allowed for the first

time the exact calculation of critical exponents in quantum gravity; both for pure 2D

gravity without matter [4],[5], and, subsequently, for various forms of conformal matter

with c ≤ 1 (e.g. c = −2 [7] and c = 1
2 [8]). These results were successfully confirmed and

supplemented by the continuous approach in [9], and then in [10].

Following this breakthrough, numerous further developments have led to a rather full

understanding of the subject.

Still, we think that some important questions were left unclarified. In this paper, we

are addressing one of them: what will happen in the case of pure 2D gravity if we introduce

coupling constants favoring the flat configurations among the ensemble of 2D metrics? Can

we achieve a transition to a new phase of essentially flat metrics? Or shall we always find

– on sufficiently big distances – the familiar behaviour of 2D gravity, whatever these new

couplings are? If the last scenario is true, do we have some universality for intermediate

scales, when the size of the 2D universe is of the order of the flattening scale?

On first sight, this question appears to have a simple answer, at least from the point

of view of the continuous theory. The Euclidean path integral is

Z =

∫

Dgab e−
∫

d2z
√

det g (µ+αRg+ 1
β0

R2
g+...). (1.1)

Apart from the cosmological term (controlled by µ) and the (topological) Einstein term

proportional to the curvature Rg, it does not seem to be meaningful to put further terms
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into the action of 2D gravity on dimensional grounds. The simplest term one might want to

consider is 1
β0

R2
g. The bare coupling constant β0 is however dimensionful and thus should

be proportional to the cutoff squared. So it is small and in principle should be dropped,

as well as any further higher derivative terms.

On the other hand, no argument has ever been given to exclude the following alter-

native scenario: increasing the R2
g coupling (β0 → 0 in our notation), the theory might

entirely restructure nonperturbatively. In this case the Liouville approach, which is known

to correctly quantise the theory (1.1) in the absence (i.e. β0 = ∞) of higher derivative

terms, might no longer yield a good description of the theory. Some calculational at-

tempts to address this question within the framework of Liouville theory are inconclusive

precisely because they merely perturb by the R2 term in question (see e.g. [11],[12]).

In this paper, we address and resolve some of these questions in a completely non-

perturbative way. We take as a starting point the by now very familiar discrete definition

[4],[5],[6] of the path integral (1.1), known to correctly quantise the theory in the absence

of higher derivative terms. We then introduce couplings whose naive continuum limit pre-

cisely induces the higher terms indicated in (1.1). Technically, this is done by solving an

unusual matrix model that generates the dually weighted graphs proposed and studied in

our earlier papers [1] and [2].

The paper is organized in the following way:

In section 2, the discretised model of dually weighted graphs is formulated and the

main physical results, including the absence of a “flattening” phase transition, the joint

scaling function of the R2 coupling and the cosmological constant and their infrared and

ultraviolet asymptotics are presented and discussed in a non-technical fashion. We physi-

cally interpret our model as a statistical mechanics system of a “gas” of point-like curvature

defects surrounded by flat two-dimensional space. Curvature is quantised, i.e. localised on

defects whose deficit angle equals an integer times some fixed value.

In section 3, a review of the character expansion approach to the models of dually

weighted graphs (worked out in [1] and [2]) is given.

In section 4, the exact solution of the present model is derived in some detail. The

solution is rather complex but nevertheless explicit. Elliptic functions, already crucial in

[2], play a central role.

Section 5 demonstrates how to extract the physical results from the involved expres-

sions of section 4.

Section 6 is devoted to conclusions and open questions. We also discuss the important

open issue of the universality of our results and point out that fine-tuning the curvature

weights – an in principle feasible extension of the present work – might result in new phases

of 2D gravity.
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Finally, appendix 1. contains the calculation of the Schur characters of GL(N) in

the limit of a big Young tableau while some more technical details concerning the exact

solution and its verification are given in appendix 2.

2. Definition of the model and physical results

In the particular model used here the two-dimensional random geometry is described

by planar graphs (with the topology of the sphere) built from plaquettes (“quadrangula-

tions”). We are summing over all such graphs with the weights t2, t4, t6, ...., corresponding

to vertices with 2,4,6,... neighboring plaquettes, respectively. The partition function is

Z =
∑

G

∏

v2q∈G

t2q
#v2q , (2.1)

where v2q are the vertices with coordination number 2q and #v2q are the numbers of such

vertices in the given graph G. Note that one cannot sum up these graphs by the usual

one-matrix model, since we need to control both vertex and face coordination numbers.

The discrete, curved manifold is thus described by a graph made from flat squares. The

curvature appears exclusively in the vertices and corresponds to the deficit angles around

the vertices: π(2−q). Thus two neighboring plaquettes contribute positive curvature, four

correspond to zero curvature and six and more result in localised negative curvature (see

Fig 2.1).

t 2 t 8
t 6t 4

Fig. 2.1 Flat space and curvature defects.

For technical reasons, it proved useful to choose a particular parametrisation of the

above weights t2q:

t2 =
√

λ t, t4 = λ, t6 = λ
3
2

β2

t
, ... t2q = λ

q

2 (
β2

t
)(q−2). (2.2)

3



With these weights, it is easy to prove, using Euler’s theorem, that the partition sum (2.1)

becomes

Z(t, λ, β) = t4
∑

G

λA β2(#v2−4), (2.3)

where A is the number of plaquettes of the graph G and #v2 the number of positive

curvature defects. Note that the latter are balanced by a gas of negative curvature defects,

whose individual probablities are given in (2.2).

We expect this model to describe pure gravity in a sufficiently large interval of β,

after tuning the bare cosmological constant λ (controlling the number of plaquettes) to

some critical value λc(β). On the other hand, for λ fixed and β = 0 we entirely suppress

curvature defects except for the four positive defects needed to close the regular lattice

into a sphere. It is thus clear that β is the precise lattice analog of the bare curvature

coupling β0 in (1.1). The phase β = 0 of “almost flat” lattices – very different from pure

gravity – was discussed in detail in [2].

Let us now summarize the main physical results following from the exact solution (for

general λ and β) of this model:

1. A long debated question was whether models of the present type undergo a “flat-

tening” phase transition at a finite, non-zero critical value of β = βc. The weak coupling

region β > βc would then correspond to the standard phase of pure gravity while a puta-

tive novel “smooth” phase of gravity might exist either at β = βc or in the entire interval

0 ≤ β ≤ βc. This would constitute an existence proof of continuum 2D R2 gravity. We

find, to the contrary, that there is no “flattening” phase transition at non-zero β. For any

given β we find the powerlike scaling of standard pure gravity on large scales. This means

that no matter how flat the system is on small scales (of the order of β− 1
2 ), it destabilizes

in the infrared into the familiar ensemble of highly fractal “baby-universes”.

2. The dependence of the partition sum (2.3) on β and the lattice cosmological

constant λ in the vicinity of the flat phase β ∼ 0 and close to λ ∼ λc is given by a simple,

(presumably) universal scaling function f(x) (defined through Z(t, λ, β) = 4t4

15β2 f(x))

reflecting the transition from flat space to pure gravity:

f(x) = x6 − 5

2
x4 +

15

8
x2 − 5

16
− x

(

x2 − 1
)

5
2 , (2.4)

where the scaling variable x is given, to leading order, by

x =

√
2

π

1 − λ

β
. (2.5)

We can distinguish the following features:
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(a) There is a degree 5
2 singularity at x = 1, correctly reproducing the universal

string susceptibility exponent γs = −1
2

of pure gravity [4],[5]. In view of eq.(2.5), the

critical value of the lattice cosmological constant λ is therefore given to leading order by

λc = 1− π√
2
β +O(β2). Therefore, in view of (2.3), the characteristic growth of the random

surfaces as a function of the lattice area A (= number of plaquettes) is given by

Z(t, A, β) ∼ t4

β
9
2

e
π√
2

β A
A− 7

2 . (2.6)

For any non-zero β we do have exponential growth of the number of surfaces, but one has

to go to larger and larger scales (i.e. use more and more plaquettes) to be able to take the

continuum limit. If β is exactly zero there is no longer any exponential growth and no pure

gravity continuum limit is possible. The prefactor β− 9
2 is found in the exact calculation

in section 5; we are not sure whether it is universal.

(b) We further see that taking β → 0 before the limit λ → λc corresponds to the

limit x → ∞. In this limit one finds f(x) ∼ 5
128

1
x2 + O( 1

x3 ), that is, the characteristic

critical behavior of 2D gravity “silently” disappears and we recover a power series in 1
x

corresponding, in view of (2.5), to a perturbative expansion in lattice defects β. In this

limit the characteristic growth of surfaces as a function of area A is

Z(t, A, β) ∼ t4 ( A + O(β2A3) ). (2.7)

The leading order corresponds precisely to the almost flat lattices (with exactly four pos-

itive defects) of [2]. The corrections are interpreted as insertions of negative defects,

balanced by further positive defects. The typical shape of the surfaces in this limit is

a generalisation of the one we found for “almost flat” graphs in [2]: Long, filamentary

cylinders growing out from every negative curvature defect.

(c) It is easy to prove that the scaling function (2.4) is the simplest possible function

with the limiting properties discussed in (a) and (b).

The above results might be interpreted in terms of a continuum model of quantised

curvature defects, in which the localised defects move around like particles in a gas on a flat

background space. The deficit angle, ∆θ, of a defect can take on the values ∆θ = π, 0 and

−π. A positive curvature defect is surrounded by a conical geometry, whereas a negative

curvature defect corresponds to a saddle-type insertion (see Fig. 2.1). The higher order

negative curvature defects (−2π and higher) would not be expected to play a role in this

limit (the entropy from moving two low order defects around would completely dominate

that from a single higher order defect). The coupling β can be interpreted as a fugacity

controlling the number of defects. The flat space limit β → 0 consists of four defects of

degree π moving around with respect to one another. Varying the fugacity, β, allows one

to smoothly interpolate between flat space, (2.7) (with four defects), and pure gravity (2.6)

(with an infinite number of defects).
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3. Review of the technique

The appropriate techniques for dealing with models of dually weighted planar graphs

were pioneered in two previous publications [1],[2]. Let us recall the key steps of the method

and collect the crucial formulas allowing the exact solution of the model. The method is in

fact applicable to a situation more general than the one written in eq.(2.1), to be analysed

in the present work. The partition function of general dually weighted planar graphs G is

defined to be

Z(t∗, t) =
∑

G

∏

v∗
q ,vq∈G

t∗q
#v∗

q tq
#vq , (3.1)

where v∗
q , vq are the vertices with q neighbours on the original and dual graph, respectively,

and #v∗
q , #vq are the numbers of such vertices in the given graph G. This expansion is

generated by the following matrix model:

Z(t∗, t) =

∫

DM e−
N
2 Tr M2 + Tr VB(MA), (3.2)

with

VB(MA) =

∞
∑

k=1

1

k
TrBk (MA)k. (3.3)

The matrices A and B are fixed, external matrices encoding the coupling constants through

t∗q =
1

q

1

N
Tr Bq and tq =

1

q

1

N
Tr Aq. (3.4)

The model generalises, for A 6= 1, the standard one matrix model first solved by Brézin,

Itzykson, Parisi and Zuber [14]. It may no longer be successfully treated by changing to

eigenvalue variables; a reduction to N variables is nevertheless possible: One expands the

potential in terms of the characters on the group:

eΣ∞
k=1

1
k
TrBk Tr(MA)k

=

N
∏

i,j=1

1

(1 − Bi(MA)j)
=

1

NN

∑

R

χR(B) χR(MA). (3.5)

Here Bi and (MA)j are the eigenvalues of the matrices B and MA. The first step involves

rewriting the sum over k as a double sum over all the eigenvalues of the matrices B and MA

of − ln(1 − Bi(MA)j). Exponentiating the log then gives the product in the numerator.

The second step uses a group theoretic result to write the product in terms of a sum over

characters. The character is defined by the Weyl formula:

χ{h}(A) =
det

(k,l)
(ahl

k )

∆(a)
, (3.6)
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where the set of {h} are a set of ordered, increasing, non-negative integers, ∆(a) is the

Vandermonde determinant, and the sum over R is the sum over all such sets. The R’s

label representations of the group U(N) and the sets of integers {h} are the usual Young

tableau weights defined by hi = i − 1 + #boxes in row i (the index i labels the rows in

the Young tableau, i = 1 corresponding to the first row). Note that the restriction on the

allowed Young tableaux that any row must have at least as many boxes as the row below

implies that the {hi} are a set of increasing integers:

hi+1 > hi. (3.7)

Substituting equation (3.5) into the integral in equation (3.2), we can now do the angular

integration using the key identity

∫

(DΩ)H χR(ΩMΩ†A) = d−1
R χR(M) χR(A), (3.8)

where dR is the dimension of the representation given by dR = ∆(h)/
∏N−1

i=1 i!), and

arrive, after performing a Gaussian integral over the eigenvalue degrees of freedom, at the

expression

Z(t, t∗) = c
∑

{he,ho}

∏

i(h
e
i − 1)!!ho

i !!
∏

i,j(h
e
i − ho

j )
χ{h}(A) χ{h}(B). (3.9)

The sum is taken over a subclass of so-called even representations. These are defined as

possessing an equal number of even weights he
i and odd weights ho

i (since the mentioned

Gaussian integration vanishes if the latter condition is not satisfied). The formula [15] was

originally discovered by Itzykson and Di Francesco [15] by summing up “fatgraphs”, using

purely combinatoric and group theoretic arguments.

In our first paper [1] we demonstrated how to take the large N limit of this expansion.

In this limit the weights 1
N hi condense to give a smooth, stationary distribution dh ρ(h),

where ρ(h) is a probability density normalized to one. For simplicity we restrict our

attention to models in which the matrices A and B are such that traces of all odd powers

of A and B are zero. This means that the our random surfaces are made from vertices

and faces with even coordination number. As was discussed in [1], this ensures that the

support of the density ρ(h) lies entirely on the real axis and thus simplifies the solution of

the problem. The matrix A will satisfy this condition if we introduce a N
2 × N

2 matrix
√

a

in terms of which A and the character χ{h}(A) are given by

A =

[√
a 0

0 −√
a

]

and χ{h}(A) = χ{ he

2 }(a)χ{ho−1
2 }(a) sgn

[

∏

i,j

(he
i − ho

j)
]

. (3.10)
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In order to study the transition from flat to random graphs we choose the potential to be

VA(MA4) =

∞
∑

k=1

1

2k
Tr[A2k] (MA4)

2k. (3.11)

Here A4 is defined to satisfy Tr[(A4)
k] = Nδk,4 and A is as defined in (3.10). We are

thus studying surfaces made up entirely from squares. A weight t2k = Tr[A2k] is assigned

whenever 2k squares meet at a vertex (see Fig. 2.1). We are therefore precisely considering

the situation defined in eq.(2.1). In order to investigate (3.9) in the large N limit, one

attempts to locate the stationary point. This leads to the saddlepoint equation

2F (h) + −
∫ a

0

dh′ ρ(h′)

h − h′ = − lnh. (3.12)

As has been discussed in detail in [1], this equation actually does not hold on the entire

interval [0, a], but only on an interval [b, a] with 0 ≤ b ≤ 1 ≤ a: Assuming the equation to

hold on [0, a] would violate the implicit constraint ρ(h) ≤ 1 following from the restriction

(3.7). The density is in fact exactly saturated at its maximum value ρ(h) = 1 on the

interval [0, a]. The solution of (3.12) requires the knowledge of the large N limit of the

variation of the characters in eq.(3.10):

F (hk) = 2
∂

∂he
k

ln
χ{he

2 }(a)

∆(he)
. (3.13)

A rather general method for its determination has been one of the main technical achieve-

ments of our previous work. In fact, we found the following simple result: Introduce the

character function F (h) and the resolvent H(h) as, respectively, the large N limit of (3.13)

and

H(h) =

∫ a

0

dh′ ρ(h′)

h − h′ . (3.14)

We found the weight resolvent H(h) to be very closely related to the standard matrix

model eigenvalue resolvent. It provides a direct link between the statistical distribution of

Young weights and the correlators of the model:

1

N
TrM2q =

λq

q

∮

dh

2πi
hq eqH(h). (3.15)

Here the contour encircles the cut of H(h). Further introduce the function G(h) as

G(h) = eH(h)+F (h). (3.16)
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Its importance stems from the fact that it relates in a simple way the introduced functions

F (h),H(h) and the coupling constants t2q [1]:

t2q =
1

q

∮

dh

2πi
G(h)q. (3.17)

Using this equation as well as an alternative representation of the Weyl character (3.6)

χ{h}(A) = det
(k,l)

(

Phk+1−l(θ)
)

(3.18)

as a determinant of Schur polynomials Pn(θ) defined through

eΣ∞
i=1ziθi =

∞
∑

n=0

znPn(θ) with θi =
1

i
Tr[Ai], (3.19)

one derives [2] from the “equation of motion”

∂

∂θq
Pn(θ) = Pn−q(θ) with θq =

N

2q
t2q (3.20)

the equation

h − 1 =

Q
∑

q=1

t2q

Gq
+

∞
∑

q=1

2q

N

∂

∂t2q
ln

(

χ{he

2 }(a)
)

Gq, (3.21)

where the coefficients of the positive powers of G in (3.21) are directly related to the

correlators of the matrix model dual to (3.11), i.e. the model with potential VA4
(M̃A) =

1
4 (M̃A)4:

2q

N

∂

∂t2q
ln

(

χ{he

2 }(a)
)

= 〈 1

N
Tr (M̃A)2q〉. (3.22)

Here the negative powers of G are fixed by eq.(3.17) while the positive powers are deter-

mined through eq.(3.20). If we write formula (3.21) in the form ĥ χh(t) = (
∑

q≥0 G−q t2q+
∑

q>0 Gq 2q
N

∂
∂t2q

) χh(t) we see that the operator ĥ acts on the character like an operator

of the derivative of the bosonic field d
dG

φ(G) since the commutation relations of φ(G)

for different G’s are those of a bosonic field1. This fact suggests that the models of du-

ally weighted planar graphs might have a description in terms of integrable hierarchies of

differential equations, just as for the (much simpler) case of ordinary matrix models.

We have also assumed for the moment that only a finite number Q of couplings are

non-zero (i.e. t2q = 0 for q > Q). Furthermore, we were able to show in our second work

[2] that (3.21) implies the functional equation

eH(h) =
(−1)(Q−1)h

tQ

Q
∏

q=1

Gq(h), (3.23)

1 We acknowledge several conversations with I. Kostov concerning this point.
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where the Gq(h) are the first Q branches of the multivalued function G(h) defined through

(3.21) which map the point h = ∞ to G = 0. The saddlepoint equation (3.12), together

with (3.23), defines a well-posed Riemann-Hilbert problem. It was solved exactly and in

explicit detail in [2] for the case Q = 2, where the Riemann-Hilbert problem is succinctly

written in the form

2 /F (h) + H(h) = − ln(− h

t4
)

2F (h) + /H(h) = − lnh,

(3.24)

where /H(h) denotes the real part of H(h) on the cut [b, a] and /F (h) denotes the real part

of F (h) on a cut [−∞, c] with c < b. This case corresponds, in view of the potential (3.11),

to an ensemble of squares being able to meet in groups of four (i.e. flat points) or two

(i.e. positive curvature points). We termed the resulting surfaces “almost flat”. It turned

out that all the introduced functions could be found explicitly in terms of elliptic functions.

We also wrote down the Riemann-Hilbert problem for the more complicated case Q = 3.

Allowing in addition a non-zero negative curvature coupling t6, it already captures the

transition from flat to random surfaces. The explicit equations are

2F (h) + /H(h) = − lnh

F1(h) + F2(h) + F3(h) + 2H(h) = − ln(
h

t6
).

(3.25)

Its exact solution can, in principle, be obtained as well. Some of the steps of the solution of

(3.25) as well as for the general case of an arbitrary number of couplings will be presented

in appendix 1. Unfortunately it involves already functions more general than elliptic,

making the solution much less explicit and transparent. Luckily, however, we are not

forced to solve the system (3.25) in order to analyse the problem of the transition from

flat to random lattices. Indeed, we merely need to perturb our almost flat lattices by any

operator containing negative curvature. This physical observation will be used in the next

section to achieve the long-sought solution to our problem.

4. Exact solution of discrete two-dimensional R2 gravity

In the review of the method of the previous section we recalled that the analytic

structure of the multivalued function G(h) (3.16) is in part determined by the weights t2q.

Specifically, the structure of the physical sheet and of all the sheets attached to it by the

cut of eF (h) is the same as that given by (i) dropping the positive powers of G in (3.21) and

10



(ii) inverting this truncated equation to obtain G as a function of h. In [2] this observation

permitted us to solve the flat space limit. There the equation (3.21) reads:

h − 1 =
t2
G

+
t4
G2

+ positive powers of G. (4.1)

Dropping the positive powers of G leaves us with a quadratic equation for G. We thus

deduced that the physical sheet and all the sheets attached to it by the cut of eF (h) have a

quadratic structure. In other words, there is only one sheet attached by the cut of eF (h).

This simple structure allowed us to solve the flat space limit directly.

The key observation that allows us to solve the full problem is that we can choose a

more general set of weights, including those needed to introduce negative curvature defects,

whilst still preserving this simple two sheet structure. Labeling the first two weights as

in [2] : t2, t4, we now include all the even t2q with q ≥ 3, assigning them the following

weights: t2q = t4ǫ
q−2. Equation (3.21) can then be written compactly as:

h − 1 =
t2
G

+
t4

G (G − ǫ)
+ positive powers of G. (4.2)

Dropping the positive powers of G and inverting this equation, we see that there

are two sheets connected together by a square root cut running between two finite cut

points, d and c (see Fig. 4.1). On the physical sheet a further cut (running from b to a),

corresponding to eH(h), connects to further sheets.

G 1

G 2

cut of e F(h)

H(h)cut of e

physical sheet
ab

cd

Fig. 4.1 Sheet and cut structure of G(h)

To proceed with the solution we relate the function G(h) to the resolvent H(h) by the

formula:

eH(h) =
h

ǫt2 − t4
G1(h) G2(h), (4.3)
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where G1(h) and G2(h) are the physical sheet and the only other sheet attached to it by

the cut of eF (h) (see Fig. 4.1). Note that this differs slightly from the form (3.23) derived

in [2] since there are now an infinite number of inverse powers of G in (3.21). It can be

derived by the methods used in [2].

We now proceed exactly as in [2] . Equation (4.3) can be written as

F1(h) + F2(h) + H(h) = ln(
h

ǫt2 − t4
), (4.4)

where ln Gi(h) = Fi(h) + H(h). The two sheets G1(h) and G2(h) are glued together by

the square root cut coming from F (h). The combination F1(h) + F2(h), evaluated on the

cut of F (h), is twice the constant part of F (h) on the cut (the discontinuous part of F (h)

is of opposite sign on F1(h) and F2(h) and is therefore canceled). We thus have the two

equations

2 /F (h) + H(h) = − ln(
h

ǫt2 − t4
)

2F (h) + /H(h) = − lnh,

(4.5)

the first coming from the large N limit of the character (4.3)and the second, in view

of (3.14), being the saddlepoint equation (3.12). These two equations tell us about the

behaviour of the function 2F (h) + H(h) on the cuts of F (h) and H(h), respectively. We

have introduced the notation /F (h) to denote the real part on the cut of F (h), and similarly

for /H(h). The principal part integral in (3.12) is thus denoted in (4.5) by /H(h).

Our object is to now reconstruct the analytic function 2F (h)+H(h) = 2 lnG(h)−H(h)

from its behaviour on its cuts. To do this we first need to understand the complete structure

of cuts. We already know the structure of cuts of H(h); it has a logarithmic cut running

from h = 0 to h = b, corresponding to the portion of the density which is saturated at its

maximal value of one, and a cut from b to a corresponding to the “excited” part of the

density, where the density is less than one. It thus remains for us to understand the cut

structure of lnG(h).

The function G(h) has two cuts on the physical sheet. The first cut, running from b to

a, corresponds to the cut of eH(h), the second cut, running from cut point c to cut point d,

corresponds to the cut of eF (h) (see Fig. 4.1). To see whether lnG(h) has any logarithmic

cuts, we first notice from (4.2) that G(h) is non zero everywhere in the complex h plane

except possibly at infinity. Thus for lnG(h) the only finite logarithmic cut points are at

h = b, defined to be the end of the flat part of the density (this corresponds to the end of

the cut of eH(h)), and possibly the cut point c, defined to be at the end of the cut of eF (h).

The only remaining question is whether this logarithmic cut starting at h = b goes off to

12



infinity or terminates at c. For large h we see from (4.2) that lnG(h) = ln ǫ + O( 1
h ), i.e.

there is no logarithmic cut at infinity. We conclude that the cut structure of the function

lnG(h) consists of the cuts corresponding to eF (h) and eH(h) connected together by a

logarithmic cut, whose cut points are b and c (see Fig. 4.1).

We now introduce two functions F̃ (h) and H̃(h) defined by

F (h) = F̃ (h) − ln
h

(h − c)
and H(h) = H̃(h) + ln

h

h − b
. (4.6)

They are defined such that they have no logarithmic cuts. The equation (4.5) now reads

2 /̃F (h) + H̃(h) = ln(t4 − ǫt2) + ln
(

− (h − b)

(h − c)2
)

2F̃ (h) + /̃H(h) = ln
( (h − b)

(h − c)2
)

.

(4.7)

These two equations define the behaviour of 2F̃ (h) + H̃(h) on all of its cuts. By standard

methods we now generate the full analytic function 2F̃ (h) + H̃(h). There are four cut

points, a and b defining the cut of H̃(h), and c and d defining the cut of F̃ (h). Their

values will be fixed later by boundary conditions. Note that this differs from the flat space

limit solved in [2] in that F̃ (h) now has two finite cut points whereas previously it had a

semi-infinite cut (i.e. d → −∞). We generate the full analytic function by performing the

contour integral

2F̃ (h) + H̃(h) = r(h)

[
∮

CH

ds

2πi

ln
( (s−b)

(s−c)2

)

(h − s) r(s)
+

∮

CF

ds

2πi

ln(t4 − ǫt2) + ln
(

− (s−b)
(s−c)2

)

(h − s) r(s)

]

, (4.8)

where for compactness we have defined

r(h) =
√

(h − a)(h − b)(h − c)(h − d). (4.9)

The contour CH encircles the cut [b, a], whilst CF encircles the cut between c and d. They

are illustrated in Fig. 4.2(a).

d c b ad c b a

C H
C F

+i
-i

-i
+i

+ve
-ve

+ve

Fig. 4.2 (a)Contours CH and CF . (b)Sign convention for square roots of r(h).
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The zigzag line between c and b corresponds to the cut of ln
( (h−b)

(h−c)

)

, The remaining zig-

zag line starting at c corresponds to the remaining logarithmic cut, − ln(h−c). Expanding

the contours, catching poles on the way and using the fact that logarithmic cuts have a

discontinuity of ±iπ, we arrive at

2F (h) + H(h) = ln
t4 − ǫt2

h

+ r(h)

[
∫ b

c

ds

(h − s) r(s)
+

∫ a

b

ds 1
πi ln(t4 − ǫt2)

(h − s) r(s)
−

∫ d

−∞

ds

(h − s) r(s)

]

.

(4.10)

Fig. 5(b) clarifies the sign convention for the square root r(h) on the real axis above

and below the cuts. Note that, for the cuts of 1/r(h) the signs on the cuts are inverted

compared to Fig. 5(b), i.e. +i ↔ −i. The integrals in (4.10) are defined to be along the

upper side.

To fix the constants a, b, c and d, we expand (4.10) for large h and compare the

resulting power series expansion to that obtained from inverting (3.21):

2F (h) + H(h) = 2 ln ǫ +
(2t4

ǫ2
− 1

) 1

h
+ O

( 1

h2
). (4.11)

The terms of O
(

1
h2 ) depend on the as yet unknown positive powers of G in (4.2). Expanding

(4.10) for large h and comparing to (4.11) we find the three boundary conditions:

ln (t4 − ǫ t2) = − π

K
(K ′ + v), (4.12)

ǫ2 =
4Kq

iπξ

θ1

(

iπv
K

, q
)

θ′1
(

0, q
) , (4.13)

2t4
ǫ2

− 1 = −1

4
ζ + ξ

[ 1

4 sn(v, k′)
Υ + Ξ

]

, (4.14)

where we have defined

ξ =
√

(a − c)(b − d), ζ = a + b + c + d,

Υ =3 cn(v, k′) dn(v, k′) − dn(v, k′)

cn(v, k′)
− cn(v, k′)

dn(v, k′)
and

Ξ =
π

2K
+ E(v, k′) +

( E

K
− 1

)

v.

(4.15)

K and K ′ are the complete elliptic integrals of the first kind with respective moduli k

and k′ =
√

1 − k2. E is the complete elliptic integral of the second kind with modulus k,
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E(v, k′) is the incomplete elliptic integral of the second kind with argument v and modulus

k′ and sn, cn and dn are the Jacobi Elliptic functions. The nome q is defined by

q = e−π K′

K . (4.16)

Finally k and v are defined in terms of the cut points by

k2 =
(a − b)(c − d)

(a − c)(b − d)
, v = sn−1

(

√

a − c

a − d
, k′). (4.17)

The final boundary condition will come from the normalisation of the density.

The density ρ(h) can be obtained from 2F (h)+H(h) by using the saddle point equation

2F (h) + /H(h) = − lnh and the fact that the resolvent (3.14) for the Young tableau can

be written as H(h) = /H(h) ∓ iπρ(h). We thus perform the integrals in (4.10) and, after

using the first boundary condition and an identity between elliptic functions2, we obtain

ρ(h) =
u

K
− i

π
ln

[

θ4

(

π
2K

(u − iv), q
)

θ4

(

π
2K (u + iv), q

)

]

, (4.18)

where v is defined in (4.17) and u is defined by

u = sn−1
(

√

(a − h)(b − d)

(a − b)(h− d)
, k

)

. (4.19)

Integrating ρ(h) from b to a and equating the answer to 1 − b to ensure that the density

is normalized to 1 (the flat portion from 0 to b gives a contribution b), leads to the final

boundary condition:

t4 =
−2Kiq

π2

θ1

(

iπv
K , q

)

θ′1
(

0, q
)

[

−E + K
(

k′2sn2(v, k′) +
ΥΞ

sn(v, k′)
+ 2 Ξ2

)]

. (4.20)

The elliptic modulus k and the parameter v are fixed in terms of the coupling constants t2,

t4 and ǫ, by equations (4.12) and (4.20) . It is natural to use the parameter β defined by

β2 = ǫt2
t4

so that the elliptic parameters k and v are determined through the two parameters

t4 and β. Through (4.17) k and v fix the two independent ratios of differences between

cut points. The scale and position of the cut points are then fixed by equations (4.13) and

(4.14) .

2 For this and many other relations between Jacobi’s elliptic functions and theta functions

useful for performing the calculations of this section see e.g. [16],[17].
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We now concentrate on the free energy. We choose the definitions for t2, t4 and ǫ

introduced in section 2:

t2 =
√

λt, t4 = λ, ǫ =
√

λ
β2

t
, (4.21)

which implies that

t2q = λ
q

2

(β2

t

)(q−2)

for q ≥ 2. (4.22)

This choice is motivated by several reasons. Firstly we want to have a way of measuring

the area of the surfaces. The factors of λ in the coupling constants have thus been chosen

in order that the power of λ counts the number of squares A making up the surface (see

eq.(2.3)). Each corner of a vertex corresponds to one of the four corners of a square and

and so is weighted by λ
1
4 . A vertex of 2q legs (where 2q squares meet) is thus weighted with

λ
q

2 . The definition of ǫ is such that t2ǫ
t4

= β2 as before, so that the elliptic parameters k and

v are defined in terms of λ and β. Finally, for surfaces of spherical topology, each negative

curvature defect is compensated for by a precise number of positive curvature defects. In

particular a negative curvature defect t2q is compensated by q−2 positive curvature defects

t2 giving an overall factor of β2(q−2). The power of t will thus correspond to the number of

excess positive curvature defects. For a surface of spherical topology which takes precisely

four extra t2 defects to close the surface we would therefore expect a factor t4 (see (2.3)).

We now use a standard formula from matrix models. Denoting the free energy by

Z(t, λ, β), Z = e−N2Z , we have

∂

∂λ
Z(t, λ, β) =

1

4λ
(〈 1

N
TrM2〉 − 1). (4.23)

This identity corresponds to grabbing hold of one of the propagators of a free energy

diagram. From equation (3.15) we see that

〈 1

N
TrM2〉 =

1

2
+ 〈h〉. (4.24)

where 〈h〉 =
∫

dh ρ(h) h. Using the density (4.18) to calculate 〈h〉 we obtain, after a long

calculation,

∂

∂λ
Z =

ξ2

4λ

[

Kk′2sn2

8π cn dn
(1 − k′2sn4) − k′2sn2

4
− 1

2π
(K Ξ − π

2
)(dn2 + k′2cn2)

+
3 ΥΦ

8π sn2
− Φ2

2π2sn2
− K Υ

4π sn
(1 − dn2) +

Φ Ξ

2π sn
+

Ω Φ

π sn
− Ω2

2

]

,

(4.25)
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where

Ω =
K

π
(1 − dn2 + 2 Ξ2) − Ξ and Φ = snE − Υ

(

K Ξ − π

2

)

, (4.26)

and for compactness we have denoted sn(v, k′) by sn and similarly for cn and dn. Every-

thing inside the square brackets of this expression is a function of the two elliptic parameters

k and v, in other words a function of λ and β. The ξ outside the square bracket can be

expressed from (4.13) and (4.21) by

ξ =
4t2Kq

iπβ4λ

θ1

(

iπv
K , q

)

θ′1
(

0, q
) . (4.27)

We thus see that the free energy is written as a function of λ and β times a factor t4 (see

(2.3)). As discussed above, the factor of t4 corresponds to the four extra t2 defects needed

to close the surface into the topology of a sphere.

Since the solution is somewhat complicated, it is essential to check it carefully. As

a first check we investigate two limiting cases. By setting t2 = ǫ =
√

λ and t4 = λ (or

equivalently t = β = 1) we correctly recover the solution found in [1] for the model with the

external matrices A = B = λ
1
4J where 1

N Tr[J q] equals one for q even and zero otherwise

(see equations (5.8)→(5.11) of [1] ). Taking the other limit and setting ǫ = 0 we correctly

recover the solution for the flat space limit found in [2]. Both these limits are somewhat

subtle to extract since they correspond to singular points in the boundary conditions, and

thus have to be derived by a careful taking of limits. We elaborate on this in appendix

2. where further nontrivial checks are also discussed.

5. Extraction of physical results

We are now in a position to derive the physical results announced in section 2. The

boundary conditions contain sufficient information to find the critical values of the cou-

plings λ and β corresponding to the continuum limit (the elliptic parameters k and v do

not depend on the coupling t which is therefore not fixed by the continuum limit). The

most direct way of finding the continuum limit, however, is from the expression for the

density (4.18). The first term of the density, u
K

, is always positive on the interval (b, a).

However, for a certain range of values of v, the second term in (4.18) can be negative. The

continuum limit corresponds to the point in (q, v) parameter space where the density is no

longer positive. Specifically3 we need to find the point in (q, v) space where the density

3 This is very similar to ordinary matrix models. There the point in coupling constant space

at which the density of eigenvalues becomes flat at its end point corresponds to the continuum

limit.
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becomes exactly flat at the end point a. Taking the derivative w.r.t. h of the density at

the end point a and setting it equal to 0 gives

1 =
cn(v, k′)

sn(v, k′) dn(v, k′)
Ξ, (5.1)

where Ξ is defined in (4.15) . This equation defines a line in (q, v) space. Substituting

(5.1) into (4.20) , a point on this line can be related to λ by

λ = −2Kiq

π2

θ1(
iπv
K , q)

θ′1(0, q)

[

K
dn2(v, k′)

cn2(v, k′)
− E

]

, (5.2)

and β by

β2 = 1 − 1

λ
e−

π
K

(K′+v). (5.3)

Equations (5.1), (5.2) and (5.3) define the continuum line in the parameter space (β, λ).

A plot of this line is shown in Fig. 4.3.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β

λ

Fig. 4.3 The critical line in the β, λ plane

The point β = 1 (λ = 2
9 ) corresponds to the model A = B = λ

1
4J mentioned above and

solved in [1]. The point β = 0 (λ = 1) corresponds to the flat space limit studied in [2]. The

continuum line corresponds to a singularity in the mapping between the coupling constants

β and λ and the parameters q and v through which physical quantities are expressed. The

type of singularity determines the physical regime of the continuum limit. It is easiest

to investigate the behaviour of the singularity about the limiting points discussed above.

The limit β = 1 was discussed in [1] , where a standard square root singularity was found,
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corresponding to the pure gravity regime. We thus concentrate on the limit β → 0 and

λ → 1.

This limit corresponds to q → 1. We can study it most simply by expressing all the

dependence on the nome q through the dual parameter q′, defined through

q′ = e−π K

K′ = e−
π2

ln q . (5.4)

We then discard all exponentially suppressed terms, i.e. all powers of q′. This is not the

same as setting q′ = 0 since we keep terms of order ln q′, in particular K = − π2

2 ln q′ (1 +

O(q′)). For q close to one this is a good approximation4. In this limit the boundary

conditions fixing v and the nome q are given by

1

1 − β2
=e

2zv
π

[

(

1 +
2v

π

)

cos 2v +
1

π

(

z +
2vz

π
− 1

)

sin 2v
]

,

q =
[

λ(1 − β2)
]

(

1+ 2v
π

)

,

(5.5)

where we have defined z = − ln(λ(1 − β2)). Setting the derivative (w.r.t. v) of the first

of the above equations to zero gives the critical line about the limiting point where the

surface flattens:

tan vc =
z

π
. (5.6)

This could also have been obtained by discarding all powers of q′ in (5.1) . To investigate

the type of singularity on the critical line we expand the r.h.s. of the first equation in (5.5)

about the critical value of v:

1

1 − β2
= a0 + a2(v − vc)

2 + O
(

(v − vc)
3
)

. (5.7)

The coefficient a0 is given by evaluating (5.5) at vc. The coefficient a2 is the second deriva-

tive (w.r.t v) of the first equation of (5.5), also evaluated at vc. It is easy to demonstrate

that a2 cannot be zero for positive, real coupling coefficients. We thus find that the singu-

larity on the critical line is a square root corresponding to pure, two dimensional gravity.

A more rigorous study would analyse the singularity of boundary conditions (4.12) and

(4.20) at a generic point along the critical line. We have examined this numerically and

find a square root singularity for the full length of the critical line. We can thus conclude

that for all finite β we are in the regime of pure, two dimensional gravity.

4 Numerically the computation of elliptic functions is performed by writing them as a power

series in either q or q
′, whichever is smaller. The power series converge so rapidly that, even for

a generic point, the first few terms are sufficient to give a high degree of accuracy.
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We now proceed to extract the physical mechanism of flattening which requires the

limit β → 0 (corresponding to v → 0). Expanding out (5.5) to lowest order in v, z and β2

we find

v =
β√
2

(

x −
√

x2 − 1
)

and q = λ. (5.8)

where we have introduced a scaling parameter x defined by

x = 1 +

√
2

π

µ

β
with µ = λc − λ and λc = 1 − πβ√

2
+ O(β2). (5.9)

Note that this is a very natural, dimensionless scaling parameter; µ is the continuum cos-

mological constant with dimension of inverse area and β controls the number of curvature

defects per unit area (and thus also has dimension of inverse area).

Expressing the elliptic functions in (4.25) in terms of the dual nome q′, dropping all

powers of q′ and keeping only the leading order contribution in powers of v, we arrive at

the free energy about the flattening transition point:

Z(t, λ, β) =
4t4

15β2

[

x6 − 5

2
x4 +

15

8
x2 − 5

16
− x(x2 − 1)5/2

]

. (5.10)

This is the continuum scaling function corresponding to the flattening transition. For x

close to 1, in other words for cosmological constant µ much less than β, there is the standard

µ
5
2 singularity characteristic of pure gravity. For x very large, corresponding to very small

β the free energy has the singularity µ−2. From (5.10) we can also Laplace-transform to

the free energy for fixed area

Z(t, A, β) =
8t4

π2β4A3

[

−
(48

y3
+

8

y

)

I1(y) +
(24

y2
+ 1

)

I0(y)

]

with y =
π√
2
βA,

∼
{

t4β− 9
2 e

π√
2
βA

A− 7
2 , for A → ∞

t4A, for A → 0

(5.11)

where I0 and I1 are modified Bessel functions. The limiting behaviours for large and small

areas are also shown. For surfaces whose area, A, is large compared to β the exponent

−7
2 signals that we are in the regime of pure 2D gravity. For surfaces of very small area

A there is a linear dependence on the area. The function Z(A, β, t) smoothly interpolates

between these two limiting behaviours. There is no phase transition separating flat space

from pure gravity.
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6. Conclusions and open issues

In conclusion, our result strongly suggests that R2 gravity (1.1) does not seem to exist

as a continuum theory. The discretisation of the term 1
β0

R2 by the same principle that

consistently defines the path integral (1.1) for β0 = ∞ (i.e. ordinary 2D gravity) does not

lead to any new fixpoints, indicating the non-perturbative irrelevance of the dimensionful

higher derivative terms of (1.1). Of course one might object that our particular (but

generic!) discretisation is too naive. Indeed, it would be gratifying to prove the universality

of our result by choosing different weights (2.2) for the curvature terms in our model. In

principle, as we hope we have convinced the reader, this can be checked with the help of

our formalism. It is not entirely excluded that fine-tuning the weights (2.2) in a subtle

way might result in a smooth phase of gravity (for some (non-rigorous, as we believe)

arguments in favor of this hypothesis see [18]). However, it is equally evident that any

further calculations will be very tedious unless it proves possible to simplify our method

in a significant fashion. We should also point out that the fact that the curvature in

the present type of discrete models is always necessarily “quantised” in units of π could

be an a priori stumbling block for reaching a smooth phase of gravity. Could one find

discrete models of gravity that allow for soft, slowly varying curvature fluctuations over

many lattice spacings?

The present work presents the first rigorous step towards a full understanding of these

issues. It would be very interesting to gain deeper insights by simplifying and extending

our novel discrete approach.

One might also attempt to describe a model like ours directly in the continuum. One

could start with the conformal metric of a flat surface with localised curvature defects. It

can be represented locally as gab = δab eϕ(z) with

ϕ(z) =

M
∑

j=1

Rj ln(z − zj)
2, (6.1)

where Rj = −1, 1. Symbolically, the partition function might be written as

Z(µ, β) =
∑

M

βM

∫

d[z1, ..., zM ] e−µ
∫

d2z
√

det g(z). (6.2)

Here we introduced the fugacity of curvature defects β instead of the explicit R2-term in

the action. It serves the same purpose: for β → 0 we arrive at the completely flat metric,

whereas for β ∼ 1 the system should show the behaviour of pure quantum gravity, at least

in the infrared domain. We retained the notation β to denote the parameter playing a role

similar to the R2 coupling in the above discrete model.
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This formulation resembles a little bit the two-dimensional Coulomb gas problem.

However, the measure of integration d[z1, ..., zM ] of the positions of the curvature defects

is a complicated object: it should take into account the topology of the surface and the

existence of zero modes (the action does not depend on some directions in the space of the

zi). It would be very interesting to make this direct continuum formulation more precise.

Another interesting issue is the role of exponential corrections appearing due to the

structure of elliptic functions. In fact all physical quantities, such as Z(t, λ, β) (see (2.3))),

contain exponentially small terms in the limit λ → λc and β → 0, thus leading to an

essential singularity at β = 0, λ = 1. These terms are precisely the powers of q′ that we

discarded to arrive at the scaling function (5.10) of section 5. One can obtain the first

correction of this type in e.g. the free energy f̄(β) per unit area in the thermodynamical

limit λ = λc:

Z(t, A, β) ∼ t4

β
9
2

ef̄(β)A A− 7
2 with f̄(β) =

π√
2
β
[

(1 + . . .) + e−
π
√

2
β (4 + . . .)

]

(6.3)

where f̄(β) = limA→∞
1
A lnZ(t, A, β) = λc and the dots denote terms of order β3 and

higher.

These exponential terms are likely to be lattice artifacts. They emerge even in the

simplest calculation for the flat closed quadrangulation with four positive curvature defects,

where they appear as discrete corrections to the approximation of elliptic sums by integrals

close to the continuum limit.

On the other hand, formula (6.3) corresponds to the critical free energy as a function

of the curvature fugacity β (i.e. we have already taken the continuum limit). It is possible

that the exponential terms might be corrections relevant for the statistical mechanics of

random lattices at long distances (of order 1
β ) rather than for continuous 2D-gravity.

However, the most interesting and rewarding extension of our methods and ideas would

be their generalisation to allow for the coupling of matter to discrete two-dimensional R2

gravity. It would lead to an entirely novel approach to two-dimensional physics, unifying

theories in the absence and presence of two-dimensional quantum gravity.
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Appendix 1. General case: Large N limit of Schur characters

The two equations, (3.25) , in which there are three non-zero couplings, t2, t4 and t6,

can be reduced to a single integral equation for the density. The derivation we present below

can be generalised in an obvious manner to an arbitrary finite set of non-zero couplings.

Other models with different saddlepoint equations can also be treated with only minor

modifications.

The initial steps are very similar to the start of section 4, to which we refer the reader

for more details. We start from the equation

h − 1 =
t2
G

+
t4
G2

+
t6
G3

+ positive powers of G. (1.1)

and deduce (by identical reasoning to section 4) that the physical sheet of the function G(h)

and all the sheets attached to it by the cut of eF (h) have a cubic structure. We further

deduce that the function lnG(h) has a logarithmic singularity starting on the physical

sheet at the point h = b, and, by looking at the large h limit of (1.1) (inverting (1.1) to

lowest order in 1
h

gives lnG(h) = 1
3

ln( t6
h

)+O(h− 1
3 ) ) deduce that the logarithmic cut goes

off to infinity. We now study the combination 2 lnG(h) − H̃(h) where H̃(h) is defined in

(4.6) . We find it has the analytic structure shown in Fig. A1

physical sheet

+iπρ
−iπρ

−iπρ

−iπρ

+iπρ

+iπρ

b a

Fig. A1 2 lnG(h) − H̃(h) in the complex h plane

where the zig-zag line, starting at h = b on the physical sheet, represents the logarithmic

cut. It also has a saddlepoint equation (trivially derived from (3.25) and (4.6) ) of

ℜ[2 lnG(h) − H̃(h)] = − ln(h − b). (1.2)
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We now unwind the three sheets of Fig. A1 by parametrising h as a cubic polynomial of a

new parameter z

h = z3 − αz + γ. (1.3)

The coefficients α and γ are such that the cut points of h as a function of z are identical

to the cubic cut points of Fig. A1. The three sheets of Fig. A1 (defined in the complex h

plane) then unwind to become a single sheet with three cuts (plus a logarithmic cut) in

the complex z plane (see Fig. A2).

+iπρ
+iπρ +iπρ−iπρ
−iπρ −iπρ

+2iπ
−2iπ

a1
a3 a2 b2

b1b 3

Fig. A2 2 lnG(h(z)) − H̃(h(z)) in the complex z plane

Defining

F(z) = 2 lnG(h(z)) − H̃(h(z)) − 2 ln(
t

1
3
6

z − b1
), (1.4)

we see that F(z) is an analytic function in the complex z plane with three cuts corre-

sponding to the images of the cut of the density. Furthermore, we see from the large h

limits of lnG(h) and H̃(h), given by lnG(h) = 1
3 ln( t6

h ) +O(h− 1
3 ) and H̃(h) = O( 1

h ), that

the function F(z) behaves as O( 1
z
) for large z. The function F(z) can thus be generated

entirely from the discontinuities of its cuts:

F(z) =

∫ a1

b1

ds
ρ(h(s))

z − s
−

∫ a2

b2

ds
ρ(h(s))

z − s
−

∫ a3

b3

ds
ρ(h(s))

z − s
. (1.5)

We now use the identity (z1 − z′1)(z1 − z′2)(z1 − z′3) = h− h′ = (z1 − z′1)(z2 − z′1)(z3 − z′1),

where the zi are the three roots of (1.3) and the z′i are the three roots of (1.3) with h set

to h′. Along with equation (1.4) , this leads to a saddle point equation in the complex z

plane:

−
∫ a1

b1

ds ρ(h(s))
[ 1

z − s
− 1

z2(z) − s
− 1

z3(z) − s

]

= ln
[ (z − b1)

(z − b2)(z − b3)

]

− 2

3
ln t6, (1.6)
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where z, z2 and z3 are the three roots of (1.3) . z2 and z3 are thus functions of the first

root z. With the parametrisation of (1.3) they would be given by z2(3)(z) = z
2 ±

√

α − 3z2

4 .

The generalisation to more than three weights is obvious. However, the functions ρ

that satisfy such an equation, even for the case of just three weights, involve functions

more general than elliptic and probably more general even than hyperelliptic.

As a final comment, notice that by unwinding the analytic structure of the function

lnG(h) using the mapping (1.3) as in the discussion above we arrive at a closed expression

for the function lnG(h) = F (h) + H(h):

lnG(h) =

∫ a1

b1

ds ρ(h(s))

z − s
+ ln

( t
1
3
6

z − b1

)

, (1.7)

where z is related to h by (1.3). Given a representation, specified in the large N limit

by the density ρ(h) (which then defines H(h) through (3.14)), we thus have a closed

expression for the logarithmic derivative of the character, F (h), (3.13). The coupling t6,

is incorporated directly into the expression (1.7), the two remaining couplings, t2 and t4,

determine, through (3.21), the coefficients α and γ of the mapping (1.3). It is again trivial

to generalize this result to more than three weights.

Appendix 2. Verification of the solution

2.1. Limit β → 1

This corresponds to the model with A = B = λ
1
4J studied in [1] . Setting t2 = ǫ =

√
λ

and t4 = λ (or equivalently t = β = 1) the first boundary condition, (4.12), implies

immediately that K ′ → ∞ ⇒ k = 0 ⇒ c = d. The values of E, K, E(v, k′), sn(v, k′), Ξ

and Υ are then given by

E = K =
π

2
, E(v, k′) = sn(v, k′) = 1, Ξ = 2 and Υ = −

√

a − c

a − b
−

√

a − b

a − c
,. (2.1)

where we have used the definition of v in terms of the cut points, (4.17), along with

standard identities cn2 = 1 − sn2 and dn2 = 1 − k′2sn2 to find Υ. After using (4.13) to

eliminate the theta functions in (4.20), and also using (4.14), we find that c = d = 0. In

other words the cut of F(h) disappears. We also find the first condition fixing a and b:

σ − 3ϕ − 1 = 0 where σ =
(

√
a +

√
b

2

)2

and ϕ =
(

√
a −

√
b

2

)2

. (2.2)
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The limit of the third boundary condition, (4.13), is more subtle. We shift the argument

of the theta function using the identity: θ1(z, q) = qe−2izθ1(
iπK′

K − z, q) and carefully take

the limit π
2K (K ′ − v) → sinh−1

√

b
a−b to find the final boundary condition

3λ2σ3 − σ + 1 = 0. (2.3)

These were the conditions found in [1] leading to λc = 2
9 . The density (4.18) can likewise

be reduced down to that found in [1].

2.2. Limit β → 0 i.e. ǫ → 0

This limit recovers the flatspace solution found in [2]. In this limit d → −∞ and the

density (4.18) trivially reduces to that found in [2]. To see that the boundary conditions

give the correct limit and also to check perturbatively that the next few powers in β

correctly correspond to negative curvature insertions we expanded the results in powers

of v. Expansions of elliptic functions can be found in most mathematical tables. A

comprehensive list is found in [16]. Below we give the expansion formula for the theta

function which is less common

θ1

(

iπv
K

, q
)

θ′1
(

0, q
) =

iπ

K
v − 2iπ

3K

(

1 + k′2 − 3
E

K

)

v3 + O(v5). (2.4)

Expanding out (4.12) and (4.20) leads to

v =
K

2π
β2 + O(β4) and q = t4 −

t4β
2

2
+ O(β4). (2.5)

For β = 0 we recover the first boundary condition of [2] . Using the identities (a − c) =
sn dn

cn
ξ and ǫ = β2t4

t2
along with (2.5) and (4.13) and working to lowest order we find the

second boundary condition of [2]:

t2√
t4

=
π

K

√
a − c. (2.6)

A careful expansion of (4.14) then leads to the final boundary condition found in [2]:

a = 1 +
t22

π2t4
(K2 − EK). (2.7)

A final check of the solution can be performed by expanding out the expression for the

free energy (4.25) in powers of v and hence in powers of β. To lowest order we correctly

recovered the free energy found in [2]. Expanding out to the first non-zero order in β we

retrieved the order β2 contribution. The result matched exactly with the calculation of a

single negative curvature insertion of t6, calculated in [2].
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