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Abstract

We consider the possibility that one extra Z � Z 0 exists with arbitrary mass and fermion
couplings that do not violate (charged) lepton universality. We show that, in such a
situation, a functional relationship is generated between the deviations from the SM
values of three leptonic observables of two-fermion production at future e+e� colliders
that is completely independent of the values of the Z 0 mass and couplings. This selects
a certain region in the 3-d space of the deviations that is characteristic of the model
(Z 0 "reservation"). As a speci�c and relevant example, we show the picture that would
emerge at LEP2 under realistic experimental conditions.
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The impressive amount of data collected in the last �ve years at LEP1 and SLC have
led to the conclusion that all the theoretical predictions of the SM (with a possible still
conceivably allowed exception for the Z partial width into b�b [1]) are in spectacular agree-
ment with the experimental results, to an accuracy that has reached for some observables
the permille level. This has led to a �rst "�ltering" of candidate models of new physics,
whose e�ects have been really drastic only for a limited set of "classical" technicolour
schemes [2], but rather mild for the majority of competitor proposals (supersymmetry,
anomalous gauge couplings, extra U(1),...). Thus at the beginning of the second LEP2
phase, the hopes of either producing or detecting via virtual e�ects some evidence of
new physics are still well alive for a number of respectable models, with some useful
simpli�cation possibly achieved by taking the LEP1, SLC results into account.

For the speci�c case of one Z � Z 0 of the most general theoretical origin, the relevant
information that has been derived is that the Z � Z 0 mixing is su�ciently small to be
neglected in the theoretical analyses of two-fermion production at future e+e� colliders,
which means that only the Z 0 exchange diagram must be retained. (This statement might
be contradicted for the case of �nal WW states produced by longitudinally polarized
leptons [3], that we shall not consider in this paper).

Let us discuss in some more detail this statement. As a matter of fact, numerical
bounds for the mixing angle have been derived for a number of "canonical" cases of well
de�ned group-theoretical (E6, LR symmetry) origin [4] and, also, for a Z 0 of composite
models origin [5]. The various results [6], [7] are in substantial agreement, and suggest
a conservative bound of the order of (at most) one percent. For such a bound, it has
already been shown [8], [9] that the mixing e�ects at future e+e� colliders (for fermion
production) are completely irrelevant at the realistic expected experimental accuracies.
In fact, it was shown in ref.[8] for the speci�c case of LEP2 that values of the mixing angle
much larger than the �nal LEP1, SLC bounds (more precisely, values of a few percent or
more) would not be experimentally visible, even for extremely low (' 250 GeV) Z 0 mass,
or, otherwise stated, that Z � Z 0 mixing e�ects can be safely neglected. This conclusion
can be reformulated in a more convenient way, that allows to extend it to the case of a Z 0

with arbitrary fermion couplings, just by noticing that, in fact, the LEP1, SLC bounds
are obtained for several products of the type �Mg0V f , �Mg

0
Af , [6] where g

0
V;Af are the vector

and axial couplings of the Z 0 to a generic fermion. If the couplings are di�erent from the
"canonical" ones, the bound for the mixing angle will change, but those for the products
�Mg

0
V;Af will remain invariant. Since these products are obviously the same that appear in

the various Z �Z 0 mixing e�ects at LEP2, the conclusions of ref.[8] remain consequently
generally valid. This simpli�ed argument allows us, in particular, to conclude that we
shall be able to neglect the mixing e�ects in the purely leptonic processes that we shall
consider, for general universal values of the Z 0 couplings to charged leptons.

This introductory discussion had a precise motivation. Actually, the aim of this short
paper is that of showing that, from the combined analysis of leptonic processes at future
e+e� colliders, it would be possible to identify the virtual signals of a Z 0 of the most general
type i.e. with general (but universal) couplings with charged leptons (no universality
assumption on the contrary on the couplings with the remaining fermions). To prove this
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statement requires the discarding of the mixing e�ects, that would otherwise introduce
one extra unwanted parameter.

Considering a most general Z 0 of the type just illustrated can be explained, or jus-
ti�ed, by two main simple reasons. The �rst one is the fact that some of the strong
theoretical motivations that supported "canonical" schemes like e.g. the special group E6

have become undeniably weak in the last few years. The second one is that a number of
di�erent models with one extra U(1) have meanwhile been proposed, or have resurrected
[10]. These facts lead us to the conclusion that a totally general analysis might be more
relevant than a few speci�c ones. Obviously, one will be able to recover the "canonical"
results as special cases of our investigation.

In this spirit, we have started by considering the theoretical expression of the scattering
amplitude of the process e+e� ! l+l� (l = e; �; � ) at squared c.m. energy q2 in the
presence of one Z 0. At tree level, this can be written as :

A
(0)

ll (q
2) = A

(0)
;Z

ll (q2) +A
(0)Z0

ll (q2) (1)

where

A
(0)


ll (q2) =
ie20
q2
�vl
�ul�ul


�vl (2)
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(0)Z
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(
g20
4c20
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(0)

Al )vl (3)

and (note the particular normalization)

A
(0)Z0
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(e0 � g0s0, c20 � 1� s20).
Following the usual approach, we shall treat the Z 0 e�ect at one loop in the SM sector

and at "e�ective" tree level for the Z 0 exchange diagram, whose interference with the
analogous photon and Z graphs will give the relevant virtual contributions. The Z 0 width
will be considered "su�ciently" small with respect to MZ0 to be safely neglected in the
Z 0 propagator, and from what previously said the Z � Z 0 mixing angle will be ignored.
If we stick ourselves to �nal charged leptonic states, we must therefore deal with only

two "e�ective" parameters, more precisely the ratios of the quantities g0V l=
q
M2

Z0 � q2 and

g0Al=
q
M2

Z0 � q2, that contain the (conventionally de�ned) "physical" Z 0 mass and two
"physical" Z 0ll couplings, whose meaningful de�nition would be related to a Z 0 discov-
ery and to measurements of its various decays, that are obviously missing. This will
not represent a problem in our case since in our approach these parameters, as well as
any intrinsic overall (scale) ambiguity related to their actual de�nition, will disappear in
practice, being replaced by model independent functional relationships between di�erent
leptonic observables.
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For what concerns the treatment of the SM sector, a prescription has been very re-
cently given [11] that corresponds to a "Z-peak subtracted" representation of two-fermion
production, in which a modi�ed Born approximation and "subtracted" one-loop correc-
tions are used. These corrections, that are "generalized" self-energies, i.e. gauge-invariant
combinations of self-energies, vertices and boxes, have been called in refs.[11], to whose
notations and conventions we shall stick, ~��(q2), R(q2) and V (q2) respectively. As it has
been shown in ref.[11], they turn out to be particularly useful whenever e�ects of new
physics must be calculated. In particular, the e�ect of a general Z 0 can be treated in this
approach as a particular modi�cation of purely "box" type to the SM values of ~��(q2),
R(q2) and V (q2) given by the following prescriptions:

~�(Z0)�(q2) = � q2

M2
Z0 � q2

(
1

4s21c
2
1

)g2V l(�V l � �Al)
2 (5)

R(Z0)(q2) = (
q2 �M2

Z

M2
Z0 � q2

)�2Al (6)

V (Z0)(q2) = �(q
2�M2

Z

M2
Z0 � q2

)(
gV l

2s1c1
)�Al(�V l � �Al) (7)

where we have used the de�nitions :

�V l � g0V l
gV l

(8)

�Al � g0Al
gAl

(9)

with gV l = �1

2
(1 � 4s21); gAl = �1

2
and s21 � 1 � c21; s

2
1c

2
1 = ��(0)=

p
2G�M

2
Z .

To understand the philosophy of our approach it is convenient to write the expressions
at one-loop of the three independent leptonic observables that will be measured at LEP2,
i.e. the muon cross section and forward-backward asymmetry and the �nal � polarization
(the latter quantity being theoretically equivalent to the �nal lepton longitudinal polar-
ization asymmetry, that might be measured at a future 500 GeV NLC). Leaving aside
speci�c QED corrections, these expressions read:

��(q
2) = �Born

� (q2) f 1 + 2

�2(q2 �M2
Z)

2 + q4
[�2(q2 �M2

Z)
2 ~��(q2)

�q4(R(q2) + 1

2
V (q2))] g (10)
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where �2 is a numerical constant (�2 � ( �

3�lMZ
)2 ' 7) and we defer to ref.[11] for a more

detailed derivation of the previous formulae.
A comparison of eqs.(10)-(12) with eqs.(5)-(7) shows that, in the three leptonic observ-

ables, only two e�ective parameters, that could be taken for instance as �V lMZ=
q
M2

Z0 � q2,

(�V l � �Al)MZ=
q
M2

Z0 � q2 (to have dimensionless quantities, other similar de�nitions
would do equally well), enter. This leads to the conclusion that it must be possible to �nd

a relationship between the relative Z 0 shifts
��Z

0

�

��
,
�AZ0

FB;�

AFB;�
and �AZ0

�

A�
(de�ning the shift, for

each observable � O, through O � OSM + �OZ0

) that is completely independent of the
values of these e�ective parameters. This will correspond to a region in the 3-d space of
the previous shifts that will be fully characteristic of a model with the most general type
of Z 0 that we have considered. We shall call this region "Z 0 reservation"1

To draw this reservation would be rather easy if one relied on a calculation in which
the Z 0 e�ects are treated in �rst approximation, i.e. only retaining the leading e�ects, and
not taking into account the QED (initial-state) radiation. After a rather straightforward
calculation one would then be led to the following approximate expressions that we only
give for indicative purposes:

[
�A(Z0)

�

A�

]2' f1f3(
8c21s

2
1

v21
)
��(Z

0)
�

��
[
�A

(Z0)
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1

2
f2
��(Z
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] (13)

where

f1 =
�2(q2 �M2

Z)
2 + q4

�2(q2 �M2
Z)

2
(14)

f2 =
�2(q2 �M2

Z)
2 � q4

�2(q2 �M2
Z)

2
(15)

1Reservation : "Tract of land reserved for exclusive occupation by native tribe", Oxford Dictionary,

1950.
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f3 =
�2(q2 �M2

Z)
2 + q4

�2(q2 �M2
Z)

2 � q4
(16)

Eq.(13) is only an approximate one. A more realistic description can only be obtained
if the potentially dangerous QED e�ects are fully accounted for. In order to accomplish
this task, the QED structure function formalism [12] has been employed as a reliable
tool for the treatment of large undetected initial-state photonic radiation. Using the
structure function method amounts to writing, in analogy with QCD factorization, the
QED corrected cross section [13] as a convolution of the form 2

�(q2) =
Z
dx1 dx2D(x1; q

2)D(x2; q
2)�0

�
(1� x1x2)q

2
�
f1 + �fsg�(cuts); (17)

where �0 is the lowest-order kernel cross section, taken at the energy scale reduced by
photon emission, and D(x; q2) is the electron (positron) structure function. Its expression,
as obtained by solving the Lipatov{Altarelli{Parisi evolution equation in the non-singlet
approximation, is given by [12]:

D(x; q2) = �
0 �

2
(1� x)

�

2
�1 � �

4
(1 + x) (18)

+
1

32
�2

"
�4(1 + x) ln(1� x) + 3(1 + x) ln x� 4

ln x

1 � x
� 5 � x

#
;

with

� = 2
�

�
(L� 1) (19)

where L = ln (q2=m2) is the collinear logarithm. The �rst exponentiated term is associated
to soft multiphoton emission, the second and third ones describe single and double hard
bremsstrahlung in the collinear approximation. The K-factor �

0

is of the form

�
0

= 1 +
�
�

�

�
�1 +

�
�

�

�2
�2 (20)

where �1 and �2 contain respectively O(�) and O(�2) non-leading QED corrections
known from explicit perturbative calculations. The actual expression used for these non-
leading corrections is the one valid in the soft-photon approximation, which is justi�ed
by the fact that, in order to avoid the Z radiative return, a cut on the hard-photon tail
is imposed. In eq. (17) �(cuts) represents the rejection algorithm to implement possible
experimental cuts, �fs is the correction factor to account for QED �nal-state radiation.
Since only a cut on the invariant mass s

0

= x1x2q
2 of the event after initial-state radi-

ation is imposed in our numerical analysis (see below), the simple formula �fs = 3�=4�

2The actual implementation of QED corrections is performed, in the Monte Carlo code, at the level

of the di�erential cross section, taking into account all the relevant kinematical e�ects according to [13];

in the present paper only a simpli�ed formula is described, for the sake of simplicity.
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holds. In order to proceed with the numerical simulation of the Z
0

e�ects under realistic
experimental conditions, the master formula (17) has been implemented in a Monte Carlo
event generator which has been �rst checked against currently used LEP1 software [14],
found to be in very good agreement and then used to produce our numerical results. The
Z

0

contribution has been included in the kernel cross section �0 computing the s�channel
Feynman diagrams associated to the production of a l�l pair in a e+e� annihilation me-
diated by the exchange of a photon, a standard model Z and an additional Z

0

boson.
In the calculation, which has been carried out within the helicity amplitude formalism
for massless fermions and with the help of the program for the algebraic manipulations
SCHOONSCHIP [15], the coupling of the Z

0

boson to the leptons has been parametrized, as
already pointed out, as:


�
�
g

0(0)

V l � g
0(0)

Al 
5
�

(21)

and the Z
0

propagator has been included in the zero-width approximation (see above).
Moreover, the bulk of non-QED corrections has been included in the form of Improved
Born Approximation, choosing ��(q2);MZ; GF , together with �Z , as input parameters. The
values used for the numerical simulation are [16]: MZ = 91:1887 GeV, �Z = 2:4979 GeV;
the center of mass energy has been �xed at a typical LEP2 value

p
q2 = 175 GeV and the

cut s
0

=q2 > 0:35 has been imposed in order to remove the events due to Z radiative return
and hence disentangle the interesting virtual Z

0

e�ects. These have been investigated
allowing the previously de�ned ratios �V and �A to vary within the ranges �2 � �A � 2
and �10 � �V � 10. Higher values might be also taken into account; the reason why we
chose the previous ranges was that, to our knowledge, they already include all the most
popular existing models.

The results of our calculation are shown in Fig. 1. The central box corresponds to
the "dead" area where a signal would not be distinguishable corresponds to an assumed
(relative) experimental error of 1.5% for �� and to 1% (absolute) errors on the two asym-
metries. The region that remains outside the dead area represents the Z 0 reservation at
LEP2, to which the e�ect of the most general Z 0 must belong.

One might be interested in knowing how di�erent the realistic Fig. 1 is from the
approximate "Born" one, corresponding in particular to the simplest version given by
eq. (13). This can be seen in Fig. 2, where we showed the two surfaces (the points
correspond to the realistic situation, Fig. 1). One sees that the simplest Born calculation
is, qualitatively, a good approximation to a realistic estimate, which could be very useful
if one �rst wanted to look for sizeable e�ects.

The next relevant question that should be now answered is whether the correspondence
between Z 0 and reservation is of the one to one type, which would lead to a unique
identi�cation of the e�ect. We have tried to answer this question for one speci�c and
relevant case, that of virtual e�ects produced by anomalous gauge couplings (AGC). In
particular, we have considered the case of the most general, dimension six, SU(2)
U(1)
invariant e�ective Lagrangian recently proposed [17]. This has been fully discussed in a
separate paper [18], where the previously mentioned "Z-peak subtracted" approach has
been used. The resulting AGC reservation in the (��, AFB;�, A�) plane is a certain region,
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drawn, for simplicity, in Born approximation as suggested by the previous remarks. In
Fig. 3 we have plotted this region and it can be compared to the general Z 0 one plotted in
Fig.2. As one sees, the two reservations do not overlap in the meaningful region. Although
we cannot prove this property in general, we can at least conclude that, should a clear
virtual e�ect show up at LEP2, it would be possible to decide unambiguously to which
among two very popular proposed models it does belong.

If the signal belonged to the Z 0 reservation, the immediate request would be to identify
its origin. Clearly, this would imply a knowledge of the Z 0 mass, that could only be
achieved by future direct production, but this discussion is clearly beyond the purposes
of this paper. The point that we wanted to raise here is that LEP2 might already provide
convincing indications of the existence of a Z 0 before it is actually discovered. This would
generalize to the New Physics sector the previous remarkable prediction of LEP1 for the
top quark.
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Figure Captions

Fig. 1 �A�

A� versus ���

��
and

�A
�

FB

A
�

FB

. The central "dead" area where a signal would not be

distinguishable corresponds to an assumed (relative) experimental error of 1.5% for ��
and to 1% (absolute) errors on the two asymmetries. The region that remains outside the
dead area represents the Z 0 reservation at LEP2, to which the e�ect of the most general
Z 0 must belong.

Fig. 2 The same as Fig. 1, comparing the realistic results obtained via Monte Carlo
simulation with the approximate ones according to eq. (13).

Fig. 3 The same as Fig. 2, showing the region corresponding to AGC.
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