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Abstract

The elastic and inelastic high-energy small-angle electron{positron scattering is con-

sidered. All radiative corrections to the cross-section with the relative accuracy ��=� =

0:1% are explicitly taken into account. According to the generalized eikonal representa-

tion for the elastic amplitude, only diagrams with one exchanged photon are considered.

Single photon emission with radiative corrections as well as next-to-leading two-photon

and pair production diagrams are evaluated, together with leading three-loop correc-

tions. All contributions have been calculated analytically. We de�ne an experimentally

measurable cross-section by integrating the calculated distributions over suitable inter-

vals of angles and energies. To the leading approximation, the results are shown to be

described in terms of kernels of electron structure functions. Some numerical results are

presented.
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1 Introduction

An accurate veri�cation of the Standard Model is one of the primary aims of LEP [1]. While

electroweak radiative corrections to the s-channel annihilation process and to large-angle

Bhabha scattering allow a direct extraction of the Standard Model parameters, small an-

gle Bhabha cross-section a�ects, as an overall normalization condition, all observable cross-

sections and represents an equally unavoidable condition towards a precise determination of

the Standard Model parameters. The small-angle Bhabha scattering process is used to mea-

sure the luminosity of electron{positron colliders. At LEP an experimental accuracy on the

luminosity of

j��
�
j < 0:001 (1)

has been reached [2]. However, to obtain the total accuracy, a systematic theoretical error

must also be added. This precision calls for an equally accurate theoretical expression for the

Bhabha scattering cross-section in order to extract the Standard Model parameters from the

observed distributions. An accurate determination of the small-angle Bhabha cross-section

and of the luminosity directly a�ects the determination of absolute cross-sections such as, for

example, the determination of the invisible width and of the number of massless neutrino

species N� [3].

In recent years a considerable attention has been devoted to the Bhabha process [4, 5].

The reached accuracy, is, however, still inadequate [2]. According to these evaluations the

theoretical estimates are still incomplete; moreover, they are far from the required theoretical

and experimental accuracy [2].

The process that will be considered in this work is that of Bhabha scattering when electrons

and positrons are emitted at small angles with respect to the initial electron and positron

directions. We have examined the radiative processes inclusively accompanying the main

e+e�! e+e� reaction at high energies, when both the scattered electron and positron are

tagged within the counter aperture.

We assume that the centre-of-mass energies are within the range of the LEP collider 2� =p
s = 90 { 200 GeV and the scattering angles are within the range � ' 10 { 150 mrad. We

assume that the charged-particle detectors have the following polar angle cuts:

�1 < �� = dp1q1 � � < �3; �2 < �+ = dp2q2 < �4; 0:01 <� �i <� 0:1 rad ; (2)

where p1; q1 (p2; q2 ) are the momenta of the initial and of the scattered electron (positron)

in the centre-of-mass frame.

In this paper we present the results of our calculations of the electron{positron scatter-

ing cross-section with an accuracy of O(0:1%). The squared matrix elements of the various

exclusive processes inclusively contributing to the e+e� ! e+e� reaction are integrated in or-

der to de�ne an experimentally measurable cross-section according to suitable restrictions on

the angles and energies of the detected particles. The di�erent contributions to the electron

and positron distributions, needed for the required accuracy, are presented using analytical

expressions.

In order to de�ne the angular range of interest and the implications on the required ac-

curacy, let us �rst briey discuss, in a general way, the angle-dependent corrections to the

cross-section.
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We consider e+e� scattering at angles as de�ned in Eq. (2). Within this region, if one

expresses the cross-section by means of a series expansion in terms of angles, the main con-

tribution to the cross-section d�=d�2 comes from the diagrams for the scattering amplitudes

containing one exchanged photon in the t-channel. These diagrams, as is well known, show a

singularity of the type ��4 for �! 0, e.g.

d�

d�2
� ��4 :

Let us now estimate the correction of order �2 to this contribution. If

d�

d�2
� ��4(1 + c1�

2) ; (3)

then, after integration over �2 in the angular range of Eq. (2), we obtain:

�2maxZ
�2
min

d�

d�2
d�2 � ��2

min
(1 + c1�

2
min

ln
�2
max

�2
min

): (4)

We see that, for �min = 50 mrad and �max = 150 mrad (we have taken the case where the

�2 corrections are maximal), the relative contribution of the �2 terms is about 5 � 10�3c1:
Therefore, the terms of relative order �2 must only be kept in the Born cross-section where

the coe�cient c1 is not small. In higher orders of the perturbative expansion the coe�cient

c1 contains at least one factor �=� and therefore these terms can safely be omitted. This

implies that, within our accuracy, only radiative corrections from the scattering-type diagrams

contribute. Furthermore only diagrams with one photon exchanged in the t-channel should

be taken into account, since, according to the generalized eikonal representation, the large

logarithmic terms from the diagrams with the multi photon exchange are cancelled.

Having as a �nal goal for the experimental cross-section the relative accuracy of Eq. (1),

and taking into account that the minimal value of the squared momentum transfer Q2 =

2�2(1 � cos �) in the region de�ned in Eq. (2) is of the order of 1 GeV2, we may omit in the

following also the terms appearing in the radiative corrections of the type m2=Q2, with m

equal to the electron (me) or the muon (m�) mass.

The contents of this paper can be outlined as follows. In Section 2 we discuss the Born cross-

section d�B by taking the Z0 boson exchange into account and we compute the corrections to it

due to the virtual and real soft-photon emission. We de�ne also an experimentally measurable

cross-section �exp with the experimental cuts on angles and energies taken into account and

we discuss how to obtain it from the di�erential distributions. We present the results, as

discussed above, in the form of an expansion in terms of the scattering angle �. We introduce

the ratio � = �exp=�0 by normalizing �exp with respect to the cross-section �0 = 4��2=�2�21.

In Section 3, by using a simpli�ed version of the di�erential cross-section for the small-angle

scattering, we discuss the contribution to �exp from the single bremsstrahlung process. The
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details of the Sudakov technique we use to calculate the hard-photon emission are given in

Appendix A. In Section 4 we �nd all corrections of O(�2) to �exp caused by two virtual and

real photons as well as pair emission. In Section 5 we consider the virtual and soft-photon

emission accompanyng the single photon bremsstrahlung process. The details of this derivation

are given in Appendices B and C. In Section 6 we consider the double hard-photon emission

process in both the same-side and opposite-side cases. Details are given in Appendix D. In

Section 7 we consider the hard pair production process in both the collinear and semi-collinear

kinematical region. The details of this calculation are given in Appendix F. In Appendices D

and E are given the expressions for the leading logarithmic approximation in terms of structure

functions factorization and the details of the cancellation of the �-dependence respectively.

In Section 8 the expressions to leading logarithmic O(�3) for the e+e� and e+e� radiative

processes are obtained. In Section 9, �nally, estimates of the neglected terms together with

numerical results are presented.

A less detailed derivation of these results has been reported elsewhere [6].

2 Born cross-section and

one-loop virtual and soft corrections

The Born cross-section for Bhabha scattering within the Standard Model is well known [4]:

d�B

d

=

�2

8s
f4B1 + (1 � c)2B2 + (1 + c)2B3g; (5)

where

B1 = (
s

t
)2
���1 + (g2v � g2a)�

���2 ; B2 =
���1 + (g2v � g2a)�

���2 ;
B3 =

1

2

����1 + s

t
+ (gv + ga)

2(
s

t
� + �)

����2 + 1

2

����1 + s

t
+ (gv � ga)

2(
s

t
� + �)

����2 ;
� =

�s

s�m2
z + iMZ�Z

; � =
�t

t�M2
Z

;

� =
GFM

2
Z

2
p
2��

= (sin 2�w)
�2; ga = �1

2
; gv = �1

2
(1� 4 sin2 �w);

s = (p1 + p2)
2 = 4"2; t = �Q2 = (p1 � q1)

2 = �1

2
s (1� c);

c = cos �; � = dp1q1:
Here �w is the Weinberg angle. In the small-angle limit (c = 1��2=2+�4=24+ : : :), expanding

formula (5) leads to

d�B

�d�
=

8��2

"2�4
(1� �2

2
+

9

40
�4 + �weak); (6)
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where " =
p
s=2 is the electron or positron initial energy and the weak correction term �weak,

connected with diagrams with Z0-boson exchange, is given by the expression:

�weak = 2g2v� �
�2

4
(g2v + g2a)Re �+

�4

32
(g4v + g4a + 6g2vg

2
a)j�j2: (7)

From Eq. (7) it can be seen that the contribution cw1 of the weak correction �weak into the

coe�cient c1 introduced in Eq. (3)

cw1 <� 2g2v +
(g2v + g2a)

4

MZ

�Z
+ �2

max

(g4v + g4a + 6g2vg
2
a)

32

M2
Z

�2
Z

' 1: (8)

According to our discussion after Eq. (4) this means that the contribution connected with Z0-

boson exchange diagrams does not exceed 0:3%. We will therefore neglect such diagrams in

the calculation of radiative corrections since they could contribute at most with terms <� 10�4.
In the pure QED case one-loop radiative corrections to Bhabha cross-section were calcu-

lated a long time ago [8]. Taking into account a contribution from soft-photon emission with

energy less than a given �nite threshold �", we have in this case for the cross-section d�
(1)
QED,

in the one-loop approximation:

d�
(1)
QED

dc
=

d�BQED

dc
(1 + �virt + �soft); (9)

where d�BQED is the Born cross-section in the pure QED case (it is equal to d�B with

ga = gv = 0) and

�virt + �soft = 2
�

�

�
2

�
1� ln

4"2

m2
+ 2 ln(ctg

�

2
)

�
ln

"

�"
+

sin2(�=2)Z
cos2(�=2)

dx

x
ln(1 � x)

� 23

9
+
11

6
ln
4"2

m2

�
+

�

�

1

(3 + c2)2

�
�2

3
(2c4 � 3c3 � 15c)

+ 2 (2c4 � 3c3 + 9c2 + 3c+ 21) ln2(sin
�

2
)

� 4 (c4 + c2 � 2c) ln2 cos
�

2
� 4 (c3 + 4c2 + 5c+ 6) ln2(tg

�

2
)

+
2

3
(11c3 + 33c2 + 21c + 111) ln(sin

�

2
) + 2 (c3 � 3c2 + 7c� 5) ln(cos

�

2
)

+ 2 (c3 + 3c2 + 3c + 9) �t � 2 (c3 + 3c)(1 � c) �s

�
:

The value �t (�s) is de�ned by contributions to the photon vacuum polarization function �(t)

(�(s)) as follows:

�(t) =
�

�

�
�t +

1

3
L� 5

9

�
+
1

4
(
�

�
)2L; (10)

4



where

L = ln
Q2

m2
; Q2 = �t = 2"2(1 � c); (11)

and we took into account the leading part of the two-loop contribution in the polarization

operator. In the Standard Model, �t contains contributions of muons, tau-leptons, W-bosons

and hadrons:

�t = �
�
t + ��t + �Wt + �Ht ; �s = �t (Q

2 !�s); (12)

the �rst three contributions are theoretically calculable and can be given as:

�
�
t =

1

3
ln

Q2

m2
�

� 5

9
;

��t =
1

2
v� (1 � 1

3
v2�) ln

v� + 1

v� � 1
+
1

3
v2� �

8

9
; v� =

s
1 +

4m2
�

Q2
; (13)

�Wt =
1

4
vW (v2W � 4) ln

vW + 1

vW � 1
� 1

2
v2W +

11

6
; vW =

vuut1 +
4M2

W

Q2
:

The contribution of hadrons cannot be calculated theoretically; instead, it can be given as

integration of the experimentally measurable cross-section:

�Ht =
Q2

4��2

+1Z
4m2

�

�e
+e�!h (x)

x+Q2
dx: (14)

For numerical calculations we will use for �(t) the results of Ref. [9].

In the small scattering angle limit we can present (9) in the following form:

d�
(1)
QED

dc
=

d�BQED

dc
(1 ��(t))�2 (1 + �); (15)

� = 2
�

�

�
2(1 � L) ln

1

�
+
3

2
L� 2

�
+
�

�
�2 �� +

�

�
�2 ln�;

�� =
3

16
l2 +

7

12
l � 19

18
+
1

4
(�t � �s);

� =
�"

"
; l = ln

Q2

s
' ln

�2

4
:

This representation gives us a possibility to verify explicitly that the terms of relative order

�2 in the radiative corrections are small. Taking into account that the large contribution

proportional to ln� disappears when we add the cross-section for the hard emission, we can

verify once more that such terms can be neglected. Therefore we will omit in higher orders the
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annihilation diagrams as well as multiple-photon exchange diagrams in the scattering channel.

The second simpli�cation is justi�ed by the generalized eikonal representation for small-angle

scattering amplitudes. In particular, for the case of elastic processes we have [10]:

A(s; t) = A0(s; t) F
2
1 (t) (1��(t))�1 ei'(t)

"
1 +O

�
�

�

Q2

s

�#
; s� Q2 � m2; (16)

where A0(s; t) is the Born amplitude, F1(t) is the Dirac form factor and '(t) = �� ln(Q2=�2)

is the Coulomb phase, � is the photon mass auxiliary parameter. The eikonal representation is

violated at a three-loop level, but, fortunately, the corresponding contribution to the Bhabha

cross-section is small enough (� �5) and can be neglected for our purposes. We may consider

the eikonal representation as correct within the required accuracy4.

Let us now introduce the dimensionless quantity � = Q2
1 �exp=(4��

2), with Q2
1 = "2�21,

where �exp represents the experimentally observable cross-section:

� =
Q2

1

4��2

Z
dx1

Z
dx2 �(x1x2 � xc)

Z
d2q?1 �c

1

Z
d2q?2 �c

2

d�e
+e�!e+(q?

2
;x2) e

�(q?
1
;x1)+X

dx1d
2q?1 dx2d

2q?2
; (17)

where x1;2, q
?
1;2 are the energy fractions and the transverse components of the momenta of the

electron and positron in the �nal state, sxc is the experimental cuto� on their invariant mass

squared and the functions �c
i do take into account the angular cuts (2):

�c
1 = �(�3 � jq?1 j

x1"
) �(

jq?1 j
x1"

� �1); �c
2 = �(�4 � jq?2 j

x2"
) �(

jq?2 j
x2"

� �2): (18)

In the case of a symmetrical angular acceptance (we restrict ourselves further to this case

only) we have:

�2 = �1; �4 = �3; � =
�3

�1
> 1: (19)

We will present � as the sum of various contributions:

� = �0 + � + �2 + �e+e� + �3 + �e+e� (20)

= �00(1 + �0 + � + �2 + �e
+e� + �3 + �e

+e�);

�00 = 1� ��2;

where �0 stands for a modi�ed Born contribution, �
 for a contribution of one-photon emission

(real and virtual) and so on. The values of the �i as function of xc are given in table 1 (see

4In a recent paper by F�aldt and Osland [8] the authors claimed that the generalized eikonal representation

is violated at the two-loop level. We do not agree with their results. In particular, in QED with a massive

photon as actually considered in [8], contributions of individual diagrams in the Feynman gauge should have

four powers of logarithms at this level, contrary to the F�aldt{Osland three-power result.
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in Section 9). Being stimulated by the representation in Eq. (16), we shall slightly modify

the perturbation theory, using the full propagator for the t-channel photon, which takes into

account the growth of the electric charge at small distances. By integrating Eq. (6) with this

convention, we obtain:

�0 = �21

�2
2Z

�2
1

d�2

�4
(1 ��(t))�2 + �W + ��; (21)

where �W is the correction due to the weak interaction:

�W = �21

�2
2Z

�2
1

d�2

�4
�weak ; (22)

and the term �� comes from the expansion of the Born cross-section in powers of �2,

�� = �21

�2Z
1

dz

z
(1��(�zQ2

1))
�2
�
�1

2
+ z�21

9

40

�
: (23)

The remaining contributions to � in (20) are considered below.

3 Single hard-photon emission

In order to calculate the contribution to � due to the hard-photon emission we start from the

corresponding di�erential cross-section written in terms of energy fractions x1;2 and transverse

components q?1;2 of the �nal particle momenta [12]:

d�
e+e�!e+e�
B

dx1d
2q?1 dx2d

2q?2
=

2�3

�2

�
R(x1;q

?
1 ;q

?

2) �(1� x2)

(q?2 )
4 (1��(�(q?2 )2))2

(24)

+
R(x2;q

?
2 ;q

?
1 ) �(1� x1)

(q?1 )4 (1��(�(q?1 )2))2
�
(1 +O(�2));

where

R(x;q?1 ;q
?
2 ) =

1 + x2

1 � x

�
(q?2 )

2(1� x)2

d1d2
� 2m2(1� x)2x

1 + x2
(d1 � d2)

2

d21d
2
2

�
; (25)

d1 = m2(1� x)2 + (q?1 � q?2 )
2; d2 = m2(1 � x)2 + (q?1 � xq?2 )

2;

and we use the full photon propagator for the t-channel photon. Performing a simple azimuthal

angle integration of Eq. (24) we obtain for the hard-photon emission the contribution �H:

�H =
�

�

1��Z
xc

dx
1 + x2

1 � x
F (x;D1;D3;D2;D4); (26)
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with

F =

D3Z
D1

dz1

D4Z
D2

dz2

z2
(1��(�z2Q2

1))
�2
�

1� x

z1 � xz2
(a
� 1

2

1 � xa
� 1

2

2 )� 4x�2

1 + x2
[a
� 3

2

1 + x2a
� 3

2

2 ]

�
; (27)

where

a1 = (z1 � z2)
2 + 4z2�

2; a2 = (z1 � x2z2)
2 + 4x2z2�

2; �2 =
m2

Q2
1

(1� x)2; (28)

and the integration limits in (27) in the symmetrical case are:

D1 = x2; D2 = 1; D3 = x2�2; D4 = �2: (29)

From Eqs. (26){(29) we have that:

�H =
�

�

1��Z
xc

dx
1 + x2

1� x

�2Z
1

dz

z2
(1 ��(�zQ2

1))
�2

�
�
[1 + �(x2�2 � z)] (L� 1) + k(x; z)

�
; (30)

k(x; z) =
(1� x)2

1 + x2
[1 + �(x2�2 � z)] + L1 +�(x2�2 � z) L2 +�(z � x2�2)L3 ;

where L = ln(zQ2
1=m

2) and

L1 = ln

�����x
2(z � 1)(�2 � z)

(x� z)(x�2 � z)

����� ; L2 = ln

����� (z � x2)(x2�2 � z)

x2(x� z)(x�2 � z)

����� ; (31)

L3 = ln

�����(z � x2)(x�2 � z)

(x� z)(x2�2 � z)

����� :
It is seen from Eq. (30) that �H contains the auxiliary parameter �. This parameter disap-

pears, as it should, in the sum � = �H + �V+S , where �V+S is the contribution of virtual

and soft real photons which can be obtained using Eq. (15):

� =
�

�

�2Z
1

dz

z2

1Z
xc

dx(1 ��(�zQ2
1))

�2
�
(L� 1)P (x) (32)

� [1 + �(x2�2 � z)] +
1 + x2

1� x
k(x; z)� �(1� x)

�
;

where

P (x) =

�
1 + x2

1� x

�
+
= lim

�!0

�
1 + x2

1� x
�(1 � x��) + (

3

2
+ 2 ln �) �(1� x)

�
(33)

is the non-singlet splitting kernel (see Appendix A for details).
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4 Radiative corrections to O(�2)

We consider �rst virtual two-loop corrections d�
(2)
V V to the elastic scattering cross-section.

Using the representation (16) and the loop expansion for the Dirac form factor F1

F1 = 1 +
�

�
F

(1)
1 + (

�

�
)
2
F

(2)
1 (34)

one obtains

d�
(2)
V V

dc
=

d�0

dc
(
�

�
)
2
(1��(t))�2[ 6(F (1)

1 )2 + 4F
(2)
1 ]: (35)

The one-loop contribution to the form factor is well known:

F
(1)
1 = (L� 1) ln

�

m
+
3

4
L� 1

4
L2 � 1 +

1

2
�2: (36)

The two-loop correction can be obtained from the results of Ref. [13]. Let us present it in the

form

F
(2)
1 = F


1 + F e+e�

1 ; (37)

where the contribution F e+e�

1 is related to the vacuum polarization by e+e� pairs:

F e+e�

1 = � 1

36
L3 +

19

72
L2 �

�
265

216
+
1

6
�2

�
L+O(1); (38)

F

1 =

1

32
L4 � 3

16
L3 +

�
17

32
� 1

8
�2

�
L2 +

�
�21

32
� 3

8
�2 +

3

2
�3

�
L (39)

+
1

2
(L� 1)2 ln2

m

�
+ (L� 1)

�
�1

4
L2 +

3

4
L � 1 +

1

2
�2

�
ln

�

m
+O(1);

�2 =
1X
1

1

n2
=

�2

6
; �3 =

1X
1

1

n3
� 1:202 :

The photon mass � entering Eqs. (36){(39) is cancelled in the expression d�(2)=dc for the

sum of the virtual and soft-photon corrections of the second order d�
(2)
V V =dc (see Eq. (35)),

d�
(2)
SS=dc and d�

(2)
SV =dc.

The cross-section d�
(2)
SS=dc for the emission of two soft photons, each of energy smaller

than �" = "�, is (�� 1):

d�
(2)
SS = d�0 (

�

�
)
2
(1��(t))�2 8

�
(L� 1) ln

m�

�
+
1

4
L2 � 1

2
�2

�2
; (40)

and the virtual correction d�
(2)
SV =dc to the cross-section of the single soft-photon emission is:

d�
(2)
SV = d�0 (

�

�
)
2
(1��(t))�216F (1)

1

�
(L � 1) ln

m�

�
+
1

4
L2 � 1

2
�2

�
: (41)
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The contribution to � of this sum, with the exception of the part coming from F e+e�

1 connected

with the vacuum polarization, contains no more than a second power of L. It has the following

form:

�

S+V = �V V + �V S + �SS = (

�

�
)
2

�2Z
1

dz

z2
(1��(�zQ2

1))
�2R

S+V : (42)

It is convenient to separate the R

S+V in the following way:

R

S+V = r


S+V + rS+V  + r


S+V  ; (43)

r

S+V = rS+V  = L2

�
2 ln2�+ 3 ln� +

9

8

�

+ L

�
�4 ln2�� 7 ln � + 3�3 � 3

2
�2 � 45

16

�
;

r

S+V  = 4[(L� 1) ln �+

3

4
L� 1]

2
:

The contribution to � coming from F e+e�

1 contains an L3 term, which is also cancelled

when we take into account the soft pair production contribution

d�e
+e�

S = (
�

�
)
2
d�0 (1 ��(t))�2Re+e�

S = (
�

�
)
2
d�0 (1 ��(t))�2

�
1

9
(L+ 2 ln �)3 (44)

� 5

9
(L+ 2 ln �)2 +

�
56

27
� 2

3
�2

�
(L+ 2 ln�) +O(1)

�
:

Thus for the contribution of the virtual and soft e+ e� pairs to � we have

�e+e�

S+V = (
�

�
)
2

�2Z
1

dz

z2
(1 ��(�zQ2

1))
�2Re+e�

S+V ; (45)

Re+e�

S+V = Re+e�

S + 4F e+e�

1 = L2

�
2

3
ln�+

1

2

�
+ L

�
�17

6
+
4

3
ln2�

� 20

9
ln�� 4

3
�2

�
+O(1):

In expressions (43){(45), � = �"=" is the energy fraction carried by the soft pair, and it is

assumed that 2m � �" � ". Here we have taken into account only e+ e� pair production.

An order of magnitude of the pair production radiative correction is less than 0:5%. A rough

estimate of the muon pair contribution gives less than 0:05% since ln(Q2=m2) � 3 ln(Q2=m2
�).

Contributions of pion and tau lepton pairs give corrections that are still smaller. Therefore,

within the 0:1% accuracy, we may omit any pair production contribution except the e+ e�

one.
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5 Virtual and soft corrections

to the hard-photon emission

By evaluating the corrections arising from the emission of virtual and real soft photons which

accompayn a single hard-photon we will consider two cases. The �rst case corresponds to the

emission of the photons by the same fermion. The second one occurs when the hard-photon

is emitted by another fermion:

d�

����
H(S+V )

= d�H(S+V ) + d�H(S+V ) + d�H(S+V ) + d�
(S+V )
H : (46)

In the case when both fermions emit, one �nds that:

�H
(S+V ) + �

(S+V )
H = 2�H (

�

�
)

�
(L� 1) ln� +

3

4
L � 1

�
; (47)

where �H is given in Eq. (30). A more complex expression arises when the radiative corrections

are applied to the same fermion line. In this case the cross-section may be expressed in terms

of the Compton tensor with a heavy photon [14], which describes the process

�(q) + e�(p1)! e�(q1) + (k) + (soft): (48)

In the limit of small-angle photon emission we have:

d�H(S+V ) =
�4dxd2q?1 d

2q?2
4x(1 � x)(q?2 )4�3

[(B11(s1; t1) + x2B11(t1; s1))�+ T ]; (49)

T = T11(s1; t1) + x2T11(t1; s1) + x(T12(s1; t1) + T12(t1; s1));

� = 2

�
L � ln

(q?2 )
2

�u1
� 1

�
(2 ln �� ln x) + 3L � ln2 x� 9

2
;

where � = (�"=")� 1, �" is the maximal energy of the soft photon, escaping the detectors,

and B11(s1; t1) = (�4(q?2 )2)=(s1t1)� 8m2=s21 is the Born Compton tensor component, and the

invariants are: s1 = 2q1k; t1 = �2p1k; u1 = (p1 � q1)
2; s1 + t1 + u1 = q2.

The �nal result (see Appendix C for details) has the form:

�H(S+V ) = �H(S+V ) =
1

2
(
�

�
)2

�2Z
1

dz

z2

1��Z
xc

dx(1 + x2)

1 � x
L

��
2 ln �� ln x+

3

2

�
(50)

� [(L� 1)(1 + �) + k(x; z)] +
1

2
ln2 x+ (1 + �)[�2 + ln x� 2 ln �]

+ (1��)

�
1

2
L ln x+ 2 ln � ln x� lnx ln(1 � x)

11



� ln2 x� Li2(1� x)� x(1� x) + 4x ln x

2(1 + x2)

�
� (1� x)2

2(1 + x2)

�
;

Li2(x) � �
xZ
0

dt

t
ln(1 � t);

where k(x; z) is given in Eq. (30) and � � �(x2�2 � z).

6 Double hard-photon bremsstrahlung

We now consider the contribution given by the process of emission of two hard photons. We

will distinguish two cases: a) the double simultaneous bremsstrahlung in opposite directions

along electron and positron momenta, and b) the double bremsstrahlung in the same direction

along electron or positron momentum. The di�erential cross-section in the �rst case can be

obtained by using the factorization property of cross-sections within the impact parameter

representation [15]. It takes the following form [12] (see Appendix A):

d�e
+e�!(e+)(e�)

dx1d
2q?1 dx2d

2q?2
=

�4

�3

Z
d2k?

�(k?)4
(1 ��(�(k?)2))�2R(x1;q?1 ;k?)R(x2;q?2 ;�k?); (51)

where R(x;q?;k?) is given by Eq. (25). The calculation of the corresponding contribution

�H
H to � is analogous to the case of the single hard-photon emission and the result has the

form:

�H
H =

1

4
(
�

�
)
2

1Z
0

dz

z2
(1 ��(�zQ2

1))
�2

1��Z
xc

dx1

1��Z
xc=x1

dx2
1 + x21
1 � x1

1 + x22
1� x2

�(x1; z)�(x2; z); (52)

where (see Eq. (31)):

�(x; z) = (L� 1)[�(z � 1)�(�2 � z) + �(z � x2)�(�2x2 � z)] (53)

+ L3[��(x2 � z) + �(z � x2�2)] +

�
L2 +

(1� x)2

1 + x2

�
�(z � x2)�(x2�2 � z)

+

�
L1 +

(1� x)2

1 + x2

�
�(z � 1)�(�2 � z)

+ (�(1� z)��(z � �2)) ln

����� (z � x)(�2 � z)

(x�2 � z)(z � 1)

����� :
Let us now turn to the double hard-photon emission in the same direction and the hard

e+ e� pair production. Here we use the method developed by one of us [16, 17]. We will

distinguish the collinear and semi-collinear kinematics of �nal particles. In the �rst case all

produced particles move in the cones within the polar angles �i < �0 � 1 centred along

12



the charged-particle momenta (�nal or initial). In the semi-collinear region only one of the

produced particles moves inside those cones, while the other moves outside them. In the totally

inclusive cross-section, such a distinction no longer has physical meaning and the dependence

on the auxiliary parameter �0 disappears.

The contribution of both collinear and semi-collinear regions (we consider for de�niteness

the emission of both hard photons along the electron, since the contribution of the emission

along the positron is the same) has the form (see Appendix B for details):

�HH = �HH =
1

4
(
�

�
)
2

�2Z
1

dz

z2
(1��(�zQ2

1))
�2 (54)

�
1�2�Z
xc

dx

1�x��Z
�

dx1
IHHL

x1(1� x� x1)(1 � x1)2
;

IHH = A; �(x2�2 � z) +B + C �((1� x1)
2�2 � z);

where

A = �

�
L

2
+ ln

(�2x2 � z)2

x2(�2x(1� x1)� z)2

�
+ (x2 + (1 � x1)

4) ln
(1� x1)

2(1 � x� x1)

xx1
+ A;

B = �

 
L

2
+ ln

�����x
2(z � 1)(�2 � z)(z � x2)(z � (1� x1)

2)2(�2x(1� x1)� z)2

(�2x2 � z)(z � (1� x1))2(�2(1 � x1)2 � z)2(z � x(1� x1))2

�����
!

+ (x2 + (1� x1)
4) ln

(1� x1)
2x1

x(1� x� x1)
+ �B;

C = �

 
L+ 2 ln

����� x(�2(1 � x1)
2 � z)2

(1 � x1)2(�2x(1� x1)� z)(�2(1� x1)� z)

�����
!

� 2(1 � x1)� � 2x(1 � x1);

where

 = 1 + (1� x1)
2; � = x2 + (1 � x1)

2;

A = xx1(1� x� x1)� x21(1 � x� x1)
2 � 2(1 � x1)�;

�B = xx1(1� x� x1)� x21(1 � x� x1)
2 � 2x(1 � x1):

One may see that the combinations

r + �H(S+V ) + �HH; r + �H
S+V + �S+V

H + �H
H (55)

with r and r normalized (see Eqs. (42,43)) to

r ! (
�

�
)2

�2Z
1

dz

z2
(1 ��(�zQ2

1))
�2rS+V ;
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and

r ! (
�

�
)2

�2Z
1

dz

z2
(1 ��(�zQ2

1))
�2rS+V ;

respectively, do not depend on � for �! 0 (see Appendix E).

The total expression �2, which describes the contribution to (20) from the two-photon

(real and virtual) emission processes is determined by expressions (43), (47), (49), (51) , (53)

and (55). Furthermore it does not depend on the auxiliary parameter � and has the form:

�2 = �

S+V + 2�H(V+S) + 2�H

S+V + �H
H + 2�HH (56)

= � + �
 + (

�

�
)2L� ; L = ln

"2�21
m2

:

The leading contributions �;�
 have the following forms (see Appendix D):

� =
1

2
(
�

�
)
2

�2Z
1

dz

z2
L2(1��(�Q2

1z))
�2

1Z
xc

dx

�
1

2
P (2)(x) [ �(x2�2 � z) + 1]

+

1Z
x

dt

t
P (t) P (

x

t
) �(t2�2 � z)

�
; (57)

P (2)(x) =

1Z
x

dt

t
P (t) P (

x

t
) = lim

�!0

� ��
2 ln� +

3

2

�2
� 4�2

�
�(1� x) (58)

+ 2

�
1 + x2

1 � x

�
2 ln(1 � x)� ln x+

3

2

�
+
1

2
(1 + x) ln x� 1 + x

�
�(1 � x��)

�
;

�
 =

1

4
(
�

�
)
2

1Z
0

dz

z2
L2(1��(�Q2

1z))
�2

1Z
xc

dx1

1Z
xc=x1

dx2P (x1)P (x2) (59)

� [�(z � 1)�(�2 � z) + �(z � x21)�(x
2
1�

2 � z)]

� [�(z � 1)�(�2 � z) + �(z � x22)�(x
2
2�

2 � z)]:

We see that the leading contributions to �2 may be expressed in terms of kernels for the

evolution equation for structure functions.

The function � in expression Eq. (56) collects the next-to-leading contributions which

cannot be obtained by the structure functions method [18]. It has a form that can be obtained

from comparison of the results in the leading logarithmic approximation and the logarithmic

one given above.
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7 Pair production

Pair production process in high-energy e+ e� collisions was considerd about 60 years ago (see

[12] and references therein). In particular it was found that the total cross-section contains

cubic terms in large logarithm L. These terms come from the kinematics when the scattered

electron and positron move in narrow (with opening angles � m=�) cones and the created

pair have the invariant mass of the order of m and moves preferably along either the electron

beam direction or the positron one. According to the conditions of the LEP detectors, such a

kinematics can be excluded. In the relevant kinematical region a parton-like description could

be used giving L2 and L-enhanced terms.

We accept the LEP 1 conventions whereby an event of the Bhabha process is de�ned as

one in which the angles of the simultaneously registered particles hitting opposite detectors

(see Eq. (91)).

The method, developed by one of us (N.P.M.) [16, 17], of calculating the real hard pair

production cross-section within logarithmic accuracy consists in separating the contributions

of the collinear and semi-collinear kinematical regions. In the �rst one (CK) we suggest that

both electron and positron from the created pair go in the narrow cone around the direction

of one of the charged particles [the projectile (scattered) electron p1 (q1) or the projectile

(scattered) positron p2 (q2)]:

dp+p� � dp�pi � dp+pi < �0 � 1; "�0=m� 1; pi = p1; p2; q1; q2 : (60)

The contribution of the CK contains terms of order (�L=�)2, (�=�)2L ln(�0=�) and (�=�)2L,

where � = dp�q1 is the scattering angle. In the semi{collinear region only one of conditions

(60) on the angles is ful�lled:

dp+p� < �0; dp�pi > �0 ; or dp�pi < �0; dp+pi > �0 ; (61)

or dp�pi > �0; dp+pi < �0 :

The contribution of the SCK contains terms of the form:

�
�

�

�2
L ln

�0

�
;

�
�

�

�2
L: (62)

The auxiliary parameter �0 drops out in the total sum of the CK and SCK contributions.

All possible mechanisms for pair creation (singlet and non-singlet) as well as the identity

of the particles in the �nal state are taken into account [22]. In the case of small-angle

Bhabha scattering only a part of the total 36 tree-type Feynman diagrams are relevant, i.e.

the scattering diagrams5.

5We have veri�ed that the interference between the amplitudes describing the production of pairs moving

in the electron direction and the positron one cancels. This is known as up{down (interference) cancellation

[22].
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The sum of the contributions due to virtual pair emission (due to the vacuum polarization

insertions in the virtual photon Green's function) and of those due to the real soft pair emission

does not contain cubic (� L3) terms but depends on the auxiliary parameter � = �"="

(me � �" � ", where �" is the sum of the energies of the soft pair components). The �-

dependence disappears in the total sum after the contributions due to real hard pair production

are added. Before summing one has to integrate the hard pair contributions over the energy

fractions of the pair components, as well as over those of the scattered electron and positron:

� =
�"

"
< x1 + x2; xc < x = 1� x1 � x2 < 1 ��; (63)

x1 =
"+

"
; x2 =

"�
"
; x =

q01
"
;

where "� are the energies of the positron and electron from the created pair. We consider for

de�niteness the case when the created hard pair moves close to the direction of the initial (or

scattered) electron.

Consider �rst the collinear kinematics. There are four di�erent CK regions, when the

created pair goes in the direction of the incident (scattered) electron or positron. We will

consider only two of them, corresponding to the initial and the �nal electron directions. For

the case of pair emission parallel to the initial electron, it is useful to decompose the particle

momenta into longitudinal and transverse components:

p+ = x1p1 + p?+; p� = x2p1 + p?�; q1 = xp1 + q?1 ; (64)

x = 1 � x1 � x2; q2 � p2; p?+ + p?� + q?1 = 0;

where p?i are the two-dimensional momenta of the �nal particles, which are transverse with

respect to the initial electron beam direction. It is convenient to introduce dimensionless

quantities for the relevant kinematical invariants:

zi =

 
"�i

m

!2

; 0 < zi <

 
"�0

m

!2

� 1; (65)

A =
(p+ + p�)2

m2
= (x1x2)

�1[(1� x)2 + x21x
2
2(z1 + z2 � 2

p
z1z2 cos�)];

A1 =
2p1p�
m2

= x�12 [1 + x22 + x22z2]; A2 =
2p1p+

m2
= x�11 [1 + x21 + x21z1];

C =
(p1 � p�)2

m2
= 2 �A1; D =

(p1 � q1)
2

m2
� 1 = A�A1 �A2;

where � is the azimuthal angle between the (p1p
?
+) and (p1p

?
�) planes.

Keeping only the terms from the sum over spin states of the square of the absolute value of

the matrix element, which give non-zero contributions to the cross-section in the limit �0 ! 0,

we �nd that only 8 from the total 36 Feynman diagrams are essential [22].
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The result has the factorized form:

X
spins

jM j2
���
p+;p�kp1

=
X
spins

jM0j2 27�2�2 I

m4
; (66)

where one of the multipliers corresponds to the matrix element in the Born approximation

(without pair production):

X
spins

jM0j2 = 27�2�2

 
s4 + t4 + u4

s2t2

!
; (67)

s = 2p1p2; t = �Q2x; u = �s� t;

and the quantity I, which stands for the collinear factor, coincides with the expression for Ia
obtained in [17]. We write it here in terms of our kinematical variables:

I = (1 � x2)
�2
 
A(1� x2) +Dx2

DC

!2

+ (1 � x)�2
 
C(1� x)�Dx2

AD

!2

(68)

+
1

2xAD

"
2(1 � x2)

2 � (1� x)2

1� x
+
x1x� x2

1� x2
+ 3(x2 � x)

#

+
1

2xCD

�
(1� x2)

2 � 2(1 � x)2

1 � x2
+
x� x1x2

1 � x
+ 3(x2 � x)

�

+
x2(x

2 + x22)

2x(1 � x2)(1� x)AC
+

3x

D2
+

2C

AD2
+

2A

CD2
+
2(1 � x2)

xA2D

� 4C

xA2D2
� 4A

D2C2
+

1

DC2

"
(x1 � x)(1 + x2)

x(1� x2)
� 2

1 � x

x

#
:

We rewrite the phase volume of the �nal particles as

d� =
d3q1d

3q2

(2�)62q012q
0
2

(2�)4�4(p1x+ p2 � q1 � q2) (69)

� m42�8��4x1x2dx1dx2dz1dz2
d�

2�
:

Using the table of integrals given in Appendix F we further integrate over the variables of the

created pair. Following a similar procedure in the case when the pair moves in the direction

of the scattered electron, integrating the resulting sum over the energy fractions of the pair

components, and �nally adding the contribution of the two remaining CK regions (when the

pair goes in the positron directions), we obtain6:

6Some misprints, which occur in the expressions for f(x) and f1(x) in [17, 22], are corrected here.
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d�coll =
�4dx

�Q2
1

�2Z
1

dz

z2
L

�
R0(x)

 
L+ 2 ln

�2

z

!
(1 + �) (70)

+ 4R0(x) ln x+ 2�f(x) + 2f1(x)

�
; � =

�0

�min

;

� � �(x2�2 � z) =

(
1; x2�2 > z;

0; x2�2 � z;

R0(x) =
2

3

1 + x2

1� x
+
(1 � x)

3x
(4 + 7x+ 4x2) + 2(1 + x) ln x;

f(x) = �107

9
+
136

9
x� 2

3
x2 � 4

3x
� 20

9(1 � x)
+
2

3
[�4x2 � 5x+ 1

+
4

x(1� x)
] ln(1� x) +

1

3
[8x2 + 5x� 7� 13

1� x
] ln x� 2

1 � x
ln2 x

+ 4(1 + x) lnx ln(1 � x)� 2(3x2 � 1)

1 � x
Li2(1� x);

f1(x) = �x Ree f(
1

x
) = �116

9
+
127

9
x+

4

3
x2 +

2

3x
� 20

9(1 � x)
+
2

3
[�4x2

� 5x+ 1 +
4

x(1� x)
] ln(1 � x) +

1

3
[8x2 � 10x � 10 +

5

1 � x
] ln x

� (1 + x) ln2 x+ 4(1 + x) ln x ln(1� x)� 2(x2 � 3)

1� x
Li2(1� x);

Li2(x) � �
xZ
0

dy

y
ln(1� y); Q1 = "�min; L = ln

zQ2

m2
;

Consider now semi-collinear kinematical regions. We will restrict ourselves again to the

case in which the created pair goes close to the electron momentum (initial or �nal). A

similar treatment applies in the CM system in the case in which the pair follows the positron

momentum. There are three di�erent semi-collinear regions, which contribute to the cross-

section within the required accuracy. The �rst region includes the events for which the created

pair has very small invariant mass:

4m2 � (p+ + p�)
2 � jq2j;

and the pair escapes the narrow cones (de�ned by �0) in both the incident and scattered

electron momentum directions. We will refer to this SCK region as p+ k p�. The reason

is the smallness (in comparison with s) of the square of the four-momentum of the virtual

photon converting to the pair [22].

The second SCK region includes the events for which the invariant mass of the created

positron and the scattered electron is small, 4m2 � (p+ + q1)
2 � jq2j, with the restriction
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that the positron should escape the narrow cone in the initial electron momentum direction.

We refer to it as p+ k q1 [22].
The third SCK region includes the events in which the created electron goes inside the

narrow cone in the initial electron momentum direction, but the created positron does not.

We refer to it as p� k p1 [22].
The di�erential cross-section takes the following form:

d� =
�4

8�4s2
jM j2
q4

dx1dx2dx

x1x2x
d2p?+d

2p?�d
2q?1 d

2q?2 �(1� x1 � x2 � x) (71)

� �(2)(p?+ + p?� + q?1 + q?2 ) ;

where x1 (x2), x and p?+ (p?�), q
?
1 are the energy fractions and the perpendicular momenta of

the created positron (electron) and the scattered electron (positron) respectively; s = (p1+p2)
2

and q2 = �Q2 = (p2�q2)
2 = �"2�2 are the centre-of-mass energy squared and the momentum

transferred squared; the matrix element squared jM j2 takes di�erent forms according to the

di�erent SCK regions.

For the di�erential cross-section in the p+ k p� region we have (see, for details, [20]):

d�p+kp� =
�4

�
L dx dx2

d(q?2 )
2

(q?2 )2
d(q?1 )

2

(q?1 + q?2 )2
(72)

� d�

2�

1

(q?1 + xq?2 )
2

�
(1� x1)

2 + (1� x2)
2 � 4xx1x2

(1 � x)2

�
;

where � is the angle between the two-dimensional vectors q?1 and q?2 , q
?
1;2 are the transverse

momentum components of the �nal electrons, x1;2 are their energy fractions (x = 1�x1�x2).

At this stage it is necessary to use the restrictions on the two-dimensional momenta q?1 and

q?2 . They appear when the contribution of the CK region (which in this case represents the

narrow cones with opening angle �0 in the momentum directions of both incident and scattered

electrons) is excluded: �����p
?
+

"+

����� > �0;
���r?��� =

�����p
?
+

"+
� q?1

"2

����� > �0 ; (73)

where "+ and "2 are the energies of the created positron and the scattered electron respectively.

In order to exclude p?+ from the above equation we use the conservation of the perpendicular

momentum, in this case:

q?1 + q?2 +
1� x

x1
p?+ = 0:

In the semi{collinear region p+ k q1 we obtain:

d�p
+
kq

1
=

�4

�
L dx dx2

d(q?2 )
2

(q?2 )2
d(q?1 )

2

(q?1 )2
(74)

� d�

2�

1

(q?1 + xq?2 )2
x2

(1� x2)2

�
(1� x)2 + (1� x1)

2 � 4xx1x2

(1� x2)2

�
;
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with the restrictions �����p
?
�
"�

� q?1
"2

����� > �0; p?� + q?2 +
1� x2

x
q?1 = 0: (75)

Finally for the p� k p1 semi{collinear region we get:

d�p
�
kp

1
=

�

4�
L dx dx2

d(q?2 )
2

(q?2 )2
d(q?1 )

2

(q?1 )2
(76)

� d�

2�

1

(q?1 + q?2 )2

�
(1� x)2 + (1 � x1)

2

(1� x2)2
� 4xx1x2

(1� x2)4

�
:

The restriction due to the exclusion of the collinear region when the created pair moves

inside a narrow cone in the direction of the initial electron has the form

jp?+j
"1

> �0; p?+ + q?1 + q?2 = 0: (77)

In order to obtain the �nite expression for the cross-section we have to add d�p
+
kp
�
+

d�p+kq1
+d�p

�
kp1

to the contribution of the collinear kinematics region (70) and those due to

the production of virtual and soft pairs. Taking into account the leading and next-to-leading

terms we can write the full hard pair contribution including also the pair emission along the

positron direction, after the integration over x2 as

�hard = 2
�4

�Q2
1

�2Z
1

dz

z2

1��Z
xc

dx

�
L2(1 + �)R(x) + L[�F1(x) + F2(x)]

�
; (78)

F1(x) = d(x) + C1(x); F2(x) = d(x) + C2(x);

d(x) =
1

1 � x

�
8

3
ln(1� x)� 20

9

�
;

C1(x) = �113

9
+
142

9
x� 2

3
x2 � 4

3x
� 4

3
(1 + x) ln(1� x)

+
2

3

1 + x2

1� x

�
ln
(x2�2 � z)2

(x�2 � z)2
� 3Li2(1� x)

�
+ (8x2 + 3x� 9� 8

x

� 7

1 � x
) ln x+

2(5x2 � 6)

1 � x
ln2 x+ �(x) ln

(x2�2 � z)2

�4
;

C2(x) = �122

9
+
133

9
x+

4

3
x2 +

2

3x
� 4

3
(1 + x) ln(1 � x)

+
2

3

1 + x2

1� x

�
ln

�����(z � x2)(�2 � z)(z � 1)

(x2�2 � z)(z � x)2

�����+ 3Li2(1� x)

�

+
1

3
(�8x2 � 32x� 20 +

13

1 � x
+

8

x
) ln x+ 3(1 + x) ln2 x
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+ �(x) ln

�����(z � x2)(�2 � z)(z � 1)

x2�2 � z

����� ; � = 2R(x) � 2

3

1 + x2

1� x
;

R(x) =
1

3

1 + x2

1� x
+
1 � x

6x
(4 + 7x+ 4x2) + (1 + x) ln x: (79)

Eq. (78) describes the small-angle high-energy cross-section for the pair production pro-

cess, provided that the created hard pair moves in the direction of the initial electron three-

momentum. The factor 2 takes into account the production of a hard pair moving in the

direction of the initial positron beam.

The contribution to the cross-section of the small-angle Bhabha scattering connected with

the real soft (with energy lower than �") and virtual pair production can be de�ned [22] by

the formula:

�soft+virt =
4�4

�Q2
1

�2Z
1

dz

z2

�
L2
�
2

3
ln�+

1

2

�
+ L

�
�17

6
+
4

3
ln2� (80)

� 20

9
ln�� 4

3
�2

��
:

Using eqs. (78) and (80) it is easy to verify that the auxiliary parameter � is cancelled in the

sum �pair = �hard + �soft+virt. We can, therefore, write the total contribution �pair as

�pair =
2�4

�Q2
1

�2Z
1

dz

z2

�
L2(1 +

4

3
ln(1� xc)� 2

3

1Z
xc

dx

1� x
��) + L

�
�17

3
(81)

�8

3
�2 � 40

9
ln(1� xc) +

8

3
ln2(1 � xc) +

1Z
xc

dx

1 � x
�� � (20

9
� 8

3
ln(1 � x))

�

+

1Z
xc

dx[L2(1 + �) �R(x) + L(�C1(x) + C2(x))]

�
; �R(x) = R(x)� 2

3(1 � x)
;

�� = 1��:

The right-hand side of Eq. (81) gives the contribution to the small-angle Bhabha scattering

cross-section for pair production. It is �nite and can be used for numerical estimations. The

leading term can be described by the electron structure function D�e
e(x) [19].

8 Terms of O(�L)3

In order to evaluate the leading logarithmic contribution represented by terms of the type

(�L)3, we use the iteration up to �3 of the master equation obtained in Ref. [18]. To simplify
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the analytical expressions we adopt here a realistic assumption about the smallness of the

threshold for the detection of the hard subprocess energy and neglect terms of the order of:

xnc (
�

�
L)3 � 10�4; n = 1; 2; 3 : (82)

We may, therefore, limit ourselves to consider the emission by the initial electron and positron.

Three photons (virtual and real) contribution to � have the form:

�3 =
1

4
(
�

�
L)3

�2Z
1

dz

z2

1Z
xc

dx1

1Z
xc

dx2 �(x1x2 � xc)

�
1

6
�(1� x2) P

(3)(x1) (83)

� �(x21�
2 � z) +

1

2
P (2)(x1)P (x2)�1�2

�
(1 +O(x3c));

where P (x) and P (2)(x) are given by eqs. (33) and (57) correspondingly:

�1�2 = �(z � x22
x21
) �(�2

x22
x21
� z);

P (3)(x) = �(1� x) �t +�(1� x��) �t;

�t = 48

�
1

2
�3 � 1

2
�2

�
ln� +

3

2

�
+
1

6

�
ln�+

3

2

�3�
; (84)

�t = 48

�
1

2

1 + x2

1� x

�
9

32
� 1

2
�2 +

3

4
ln(1 � x)� 3

8
ln x+

1

12
ln2(1� x)

+
1

12
ln2 x� 1

2
ln x ln(1� x)

�
+
1

8
(1 + x) ln x ln(1 � x)� 1

4
(1 � x) ln(1 � x)

+
1

32
(5� 3x) ln x� 1

16
(1� x)� 1

32
(1 + x) ln2 x+

1

8
(1 + x)Li2(1 � x)

�
:

The contribution to � of the process of pair production accompanied by photon emission when

both, pair and photons, may be real and virtual has the form (with respect to Ref. [16] we

include also the non-singlet mechanism of pair production):

�e+e� =
1

4
(
�

�
L)3

�2Z
1

dz z�2
1Z

xc

dx1

1Z
xc

dx2 �(x1x2 � xc)

f1
3
[RP (x1)� 1

3
Rs(x1)] �(1� x2)�(x

2
1�

2 � z) +
1

2
P (x2)R(x1) �1�2g;

where

R(x) = Rs(x) +
2

3
P (x); Rs(x) =

1 � x

3x
(4 + 7x+ 4x2) + 2(1 + x) ln x; (85)

RP (x) = Rs(x)(
3

2
+ 2 ln(1� x)) + (1 + x)(� ln2 x� 4

1�xZ
0

dy
ln(1� y)

y
)

+
1

3
(�9� 3x+ 8x2) ln x+

2

3
(�3

x
� 8 + 8x+ 3x2):
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The total expression for � in Eq. (20) is the sum of the contributions in eqs. (21), (32), (56),

(60), (66) and (68). The quantity � is a function of the parameters xc; � and Q2
1.

9 Estimates of neglected terms and numerical results

Let us now estimate the terms that were not taken into account here according to the required

accuracy:

a) Weak radiative corrections:

�w.r.c. � �Q2
1

�M2
z

<� 10�5 : (86)

b) Electromagnetic corrections to weak contributions, including interference terms :

�h.o.

W � �weakj�=�1
�

�
L <� 10�4 : (87)

Here �weak is given by Eq. (7).

c) Radiative corrections to the annihilation mechanism, including its interference with the

scattering mechanism

�r.c.

st
� �21

�

�
L <� 10�4 : (88)

Our explicit expressions for �, without annihilation terms, coincide numerically with the

results obtained at the same order in Ref. [19] by using exact matrix elements.

d) The interference between photon emissions by electron and positron

�int � �21
�

�
<� 10�5 : (89)

This contribution is connected with terms violating the eikonal form [10] in the expression:

A(s; t) = A0(s; t)e
i�(t) +O(

�t

�s
) : (90)

e) Creation of heavy pairs (��; ��; ��; :::) is at least one order of magnitude smaller than the

corresponding contribution due to the light particle production and is therefore not essential.

23



f) Higher-order corrections, including soft and collinear multi photon contributions, can

be neglected since they only give contributions of the type (� L=�)n for n � 4.

Let us de�ne �0
0 to be equal to �0j�=0 (see Eq. (21)), which corresponds to the Born

cross-section obtained by switching o� the vacuum polarization contribution �(t). For the

experimentally observable cross-section we obtain:

� =
4��2

Q2
1

�0
0 (1 + �0 + � + �2 + �e

+e� + �3 + �e
+e�); (91)

where

�0
0 = �0j�=0 = 1� ��2 + �W + ��j�=0 (92)

and

�0 =
�0 � �0

0

�0
0

; � =
�

�0
0

; �2 =
�2

�0
0

; � � � : (93)

The numerical results are presented below in table 1.

Table 1: The values of �i in per cent for
p
s = 91:161 GeV, �1 = 1:61�, �2 = 2:8�,

sin2�W = 0:2283, �Z = 2:4857 GeV.

xc �0 � �
2
leading �

2
non-leading �e

+e� �e
+e� �3

P
�i

0.1 4.120 -8.918 0.657 0.162 -0.016 0.012 -0.067 -4.050

0.2 4.120 -9.226 0.636 0.156 -0.027 0.009 -0.056 -4.386

0.3 4.120 -9.626 0.615 0.148 -0.033 0.008 -0.051 -4.820

0.4 4.120 -10.147 0.586 0.139 -0.039 0.007 -0.048 -5.382

0.5 4.120 -10.850 0.539 0.129 -0.044 0.006 -0.045 -6.145

0.6 4.120 -11.866 0.437 0.132 -0.049 0.005 -0.041 -7.262

0.7 4.120 -13.770 0.379 0.130 -0.057 0.005 -0.035 -9.228

0.8 4.120 -17.423 0.608 0.089 -0.069 0.004 -0.025 -12.694

0.9 4.120 -25.269 1.952 -0.085 -0.085 0.007 -0.014 -19.374

Each of these contributions to � has a sign that can change as a result of the interplay

between real and virtual corrections. The cross-section corresponding to the Born diagrams

for producing a real particle is always positive, whereas the sign of the radiative corrections

depends on the order of perturbation theory. For the virtual corrections at odd orders it is

negative, and at even orders it is positive. When the aperture of the counters is small the

compensation between real and virtual corrections is not complete. In the limiting case of

zero aperture only the virtual contributions remain, giving a negative result.
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Appendix A

In�nite momentum frame kinematics

In this appendix we will consider the kinematics we use to obtain the electron{positron

and photon distributions. Due to the peculiar range of momenta and angles of the reaction,

it is particularly convenient to use the Sudakov parametrization or in�nite momentum frame

kinematics. For the reaction

e+(p2) + e�(p1)! e+(q2) + e�(q1) + (k) (A.1)

let us introduce the Sudakov decomposition:

q1 = �1~p2 + �1~p1 + q?1 ; q2 = �2~p2 + �2~p1 + q?2
k = �~p2 + �~p1 + k?; (A.2)

where ~p1;2 are almost light-like four-vectors:

q?i p1 = q?i p2 = 0; q2i = �(q?i )2 < 0; (A.3)

~p1 = p1 � m2

s
p2 ; ~p2 = p2 � m2

s
p2;

p21 = p22 = q1 = q2 = m2; k2 = 0; ~p21 = ~p22 =
m6

s2
;

s = 2p1p2 = 2~p1~p2 = 2~p1p2 = 2~p2p1 � m2; (A.4)

where q?i are Euclidean two-dimensional vectors in the centre-of-mass reference frame.

We consider the kinematical con�guration when the photon is emitted in the direction

close to the initial electron. We have the mass-shell conditions:

q21 = s�1�1 � (q?1 )
2 = m2; �1 =

(q?1 )
2 +m2

�1
; (A.5)

(q02)
2 = s�2�2 � (q?2 )

2 = m2; �2 =
(q?2 )

2 +m2

s�2

;

k2 = s�� � (k?)2 = 0; s� =
(k?)2

�
;

�2 = 1; j�2j � j�1j � j�j � 1; �1 � � � 1:

The components along ~p1 of the jets containing e
�(q1) and (k) have a value of O(1). The

phase volume decomposition with d4q1 =
s
2
d�1d�1d

2q?1 is:

d� =
d3q1d

3q2d
3k

2q012q
0
22!

�(4)(p1 + p2 � q1 � q2 � k) (A.6)

=
1

4s��1
d�d�1�(1� � � �1)d

2k?d2q?1 d
2q?2 �

(2)(q?1 + q?2 + k?):
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The conservation law reads (we introduce a new four-momentum q of the exchanged pho-

ton):

p1 + q = q1 + k; p2 = q2 + q: (A.7)

The inverse propagators are (here and further we use �1 = x):

(p1 � k)2 �m2 =
�1
1 � x

d1 ; (p1 + q)2 �m2 =
1

x(1� x)
d; (A.8)

q2 = �(q?2 )2; d = m2(1 � x)2 + (q?1 + q?x)2; d1 = m2(1� x)2 + (q?1 + q?)2:

The matrix element reads

M =
g��

q2
�v(p2)�v(q2)�u(q1)O�u(p1)

O� = �
p̂1 � k̂ +m

(p1 � k)2 �m2
ê+ ê

p̂1 + q̂ +m

(p1 + q)2 �m2
�: (A.9)

The following decomposition of the metric tensor g�� is used:

g�� = g?�� +
p�1p

�
2 + p�1p

�
2

p1p2
' 2p�1p

�
2

s

�
1 +O(q

?2

s
)

�
: (A.10)

We use also the identity

p�2�u(q1)O�u(p1) � �u(q1)v̂�u(p1)e�(k): (A.11)

The generalized vertex v� has the form [12]:

v� = s�x(1� x)

�
1

d
� 1

d1

�
� �k̂p̂2

d
x(1� x)� p̂2k̂�

d1
(1 � x): (A.12)

The evaluation of the spin sum of the squared matrix element gives

X
spin

j�v(q2)p̂1v(p2)j2 = Tr p̂2p̂1p̂2p̂1 = 2s2; (A.13)

The squared matrix element for the single photon radiation is given by

R = � 1

4s2
Tr (p̂1 +m)v̂�(p̂1 + k̂ � q̂ +m)v̂� (A.14)

= x[�2xm2(d� d1)
2 + (q?2 )

2(1 + x2)dd1]
1

d2d21
:
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Finally we obtain that

d�e
+e�!e+(e�) = 2�3d

2q?1 dq
?
2 dx(1� x)

�2((q?2 )2)2(dd1)2
[�2xm2(d� d1)

2 + (q?2 )
2(1 + x2)dd1]: (A.15)

In the same way wemay obtain the cross-section for the process of the double bremsstrahlung

in the opposite directions:

d�e
+e�!e+e�

d2q?1 d
2q?2 dx1dx2

=
�4(1 + x21)(1 + x22)

�4(1� x1)(1 � x2)

Z
d2q?

((q?)2)2
(A.16)

�
�
(q?)2(1 � x1)

2

d1d2
� 2x1

1 + x21

m2(1� x1)
2(d1 � d2)

2

d21d
2
2

�

�
�
(q?)2(1 � x2)

2

~d1 ~d2
� 2x2

1 + x22

m2(1� x2)
2( ~d2 � ~d1)

2

~d21
~d22

�
;

where x1, q
?
1 and x2, q

?
2 are the energy fractions and the components transverse to the beam

axis of the scattered electron and positron, respectively; q? is the transverse two-dimensional

momentum of the exchanged photon;

d1 = (1 � x1)
2m2 + (q?1 � q?x1)

2; d2 = (1 � x1)
2m2 + (q?1 � q?)2; (A.17)

~d1 = (1 � x2)
2m2 + (q?2 + q?x2)

2; ~d2 = (1 � x2)
2m2 + (q?2 + q?)2:

Let us now discuss the restrictions on the d2q?1 , d
2q?2 integration imposed by experimental

conditions of the electron and positron tagging. We consider the emission of a hard photon

along the electron direction. We will consider the symmetric case:

�1 < �e =
jq?1 j
x"

< �2 ; �e = ^p1q1; (A.18)

�1 < ��e =
jq?2 j
"

< �2 ; ��e = ^p2q2:

Here �1 and �2 are the minimal and maximal angles of aperture for the counters. It is

convenient to introduce dimensionless quantities � = �2=�1, z1;2 = (q1;2)
2=Q2

1 (Q1 = "�1).

The region in the z1; z2 plane that gives the largest contribution to � is made by two

narrow strips along the lines z1 = z2 and z1 = x2z2. Therefore the leading logarithmic

contribution will appear only in the cases where these lines cross the rectangle de�ned by

x2 < z1 < �2x2 ; 1 < z2 < �2. Note that the line z1 = x2z2, which corresponds to the

emission of one hard photon along the momentum of the scattered electron, is the diagonal of

the rectangle de�ned above. As for the line z1 = z2, which corresponds to the emission along

the initial electron momentum, it crosses the rectangle only if x2�2 > z2 ; x� > 1. This last

condition de�nes the appearance of leading contributions to �H .
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For the contribution from the photon emission by the initial electron we have:

F1 = �(1� �x)

�2Z
1

dz2

z22

x2�2Z
x2

dz1 z2(1 � x)

(z1 � xz2)(z2 � z1)

+ �(x�� 1)

�2Z
x2�2

dz2

z22

x2�2Z
x2

dz1 z2(1 � x)

(z1 � xz2)(z2 � z1)

+ �(x�� 1)

x2�2Z
1

dz2

z22

� z2��Z
x2

dz1 z2(1� x)

(z1 � xz2)(z2 � z1)
+

x2�2Z
z2+�

dz1 z2(1� x)

(z1 � xz2)(z1 � z2)

+

z2+�Z
z2��

dz1p
R
� 2x�2

1 + x2

z2+�Z
z2��

2dz1 z2p
R3

�
; R = (z2 � z1)

2 + 4�2z2; (A.19)

where we introduced the auxiliary parameter �, �2 � � � 1. Neglecting the terms of order

� we obtain:

F1 =

�2Z
1

dz

z2

�
�(�x� 1)�(x2�2 � z)

�
L� 2x

1 + x2

�
(A.20)

+ �(x2�2 � z)L2 +�(z � x2�2)L3

�
;

where Li are given in eq. (31) and we used the identity �(1� �x) + �(�x� 1)�(z � x2�2) =

�(z � x2�2).

In the same way we obtain for the �nal electron emission:

F2 =

�2Z
1

dz

z2

�
L � 2x

1 + x2
+ L1

�
: (A.21)

The total contribution due to one hard photon emission in small-angle Bhabha scattering

therefore reads:

�H =
�

�

1��Z
xc

dx
1 + x2

1 � x
(F1 + F2): (A.22)
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Appendix B

The contribution to � from the semi-collinear region of emission

of two hard photons in the same direction

An alternative way to use the quasi-real electron approximation is to compute the cross-

section directly. To logarithmic accuracy we may restrict ourselves to considering only two

regions i) the one with photon with momentum k1 emitted along the momentum direction of

the initial electron inside a narrow cone with opening angle �0 � 1, and ii) the region with

the photon emitted along the scattered electron. Taking into account the identity of photons

with the statistical factor 1
2!
we obtain the cross-section:

d�HH
SC =

�4

2�

Z
d2q?2

�((q?2 )2)2

Z
d2q?1
�

1�2�Z
xc

dx (B.1)

�
1�x��Z
�

dx1dx2

x1x2x
�(1� x1 � x2 � x)

Z
R
d2k?1
�

;

where

Z
R
d2k?1
�

= 2(q?2 )
2Q4

1

Z
d2k?1
�

�
[1 + (1 � x1)

2][x2 + (1 � x1)
2]

x1(1 � x1)2(2p1k1)(2p1k2)(2q1k2)

����
k1kp1

(B.2)

+
x[1 + (1 � x2)

2][x2+ (1 � x2)
2]

x1(1� x2)2(2q1k1)(2p1k2)(2q1k2)

����
k1kq1

�
:

It is convenient to specify the kinematics: in the case of the emission of the collinear photon

with momentum k1 parallel to p1 we have

2p1k1 =
Q2

1

x1
[(k?1 )

2 + �2x21]; 2p1k2 =
Q2

1

x2
(k?2 )

2; (B.3)

2q1k2 =
Q2

1

x2x
[xq?2 � (1� x1)q

?
1 ]

2; k?2 = �q?2 � q?1 ;

in the case when the photon is emitted along q1 we have

2k1q1 =
Q2

1

x1x
[�2x21 + (xk?1 � q?1 )

2]; 2p1k2 =
Q2

1

x2
(k?2 )

2; (B.4)

2q1k2 =
Q2

1

x2x
(q?1 � xq?2 )

2; k?2 = k?2 � q?1
1 � x2

x
;

where Q2
1 = �2�21, �

2 = m2=Q2
1, and we introduced two-dimensional vectors k?2 , q

?
1 and q?2 so

that (q?1 )
2 = z1, (q

?
2 )

2 = z2 and
d

q?1 q
?
2 = �.
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The integration over d2k?1 can be done with single logarithmic accuracy:

Q2
1

Z
d2k?1

�(2p1k1)

����
k1kp1

= x1L; Q2
1

Z
d2k?1

�(2q1k1)

����
k1kq1

=
x1

x
L: (B.5)

It is also necessary, here, to consider the kinematical restrictions on the integration variables

� and z1. When the photon is emitted within an angle �0 along the direction of the momentum

of the initial electron, �0 represents the angular range to be �lled by collinear kinematics events.

We assign to the semi-collinear kinematics the events characterized by

i)

�����k
?
2

x2

����� > �0 ; ii)

����q
?
1

x
� k?2

x2

���� > �0; (B.6)

where the region i) the photon with four-momentum k2 escapes the narrow cone with opening

angle �0 along the momentum direction of the initial electron. In the region ii) the same

happens for the �nal electron.

We can rewrite the conditions above in terms of the variables z1 and � as follows:

i) 1 > cos � > �1 + �2 � (
p
z1 �pz2)2

2
p
z1z2

; jpz1 �pz2j < �;

ii) 1 > cos � > �1; jz1 � z2j > 2
p
z2�;

iii) 1 > cos � > �1 +
x2

(1�x1)2�
2 � (

p
z1 � x

1�x1
p
z2)

2

2
p
z1z2

x
1�x1

;

jpz1 � x
p
z2

1� x1
j < �

x

1 � x1
;

iv) 1 > cos � > �1; jz1 � x2

(1 � x1)2
z2j > 2�

p
z2

x2

(1� x1)2
;

where � = x2�0=�1. In our calculation we take the parameter �� 1. Indeed, the resctrictions

on �0 for collinear kinematics calculations are "�0 � m or �0 � 10�5 at LEP energies. On the

other hand the experimental conditions on �1 are �1 > 10�2. Therefore we can take � � 1

within our accuracy.

Analogous considerations can be made for the case when a photon with momentum k1
is emitted along the direction of the �nal electron. In regions ii) and iv) we may do the

integration over the azimuthal angle:

2�Z
0

d�

2�(2p1k2)(2q1k2)

����
k1kq1

=
x2xQ

�4
1

(1� x1)z1 � xz2

�
1

jz2 � z1j �
x(1� x1)

jx2z2 � (1 � x1)2z1j
�
;(B.7)

Z 2�

0

d�

2�(2p1k2)(2q1k2)

����
k1kp1

=
x2x

3(1� x2)
�2Q�4

1

z1 � z2x2=(1 � x2)

�
1

jz1 � z2
x2

(1�x2)2 j
� 1 � x2

jz1 � x2z2j
�
:(B.8)
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The integration of regions i), iii) has the form

I =

Z
dz1

Z
d�

2�(z1 + z2 + 2
p
z1z2 cos �)

����
jpz1�pz2j<�

(B.9)

=
2

�

Z
dz

jz1 � z2jarctg
�
(
p
z1 �pz2)2
jz1 � z2j tg

�0

2

�
;

where

�0 = arccos

�
�1 + �2 � (

p
z1 �pz2)2

2
p
z1z2

�
: (B.10)

The result reads

I = 2 ln 2: (B.11)

We give here the complete contribution of the semi-collinear region:

d�HH
s-coll

=
�2L
4�2

1�2�Z
xc

dx

1�x��Z
�

dx1dx2�(1� x� x1 � x2)

x1x2(1� x1)2
[1 + (1� x1)

2][x2 + (1� x1)
2]

�
�2Z
1

dz

z2

�
ln
z�21
�20

[1 + �(�2x2 � z) + 2�(�2(1 � x1)
2 � z)]

+ �(�2x2 � z) ln
(z � x2)(�2x2 � z)

x2(z � x(1� x1))(�2x(1� x1)� z)

+ �(z � �2(1� x1)
2)

�
ln
(z � �2(1� x1)x)(z � (1� x1)

2)

(�2(1� x1)2 � z)(z � x(1� x1))

+ ln
(�2(1 � x1)� z)(z � (1 � x1)

2)

(�2(1 � x1)2 � z)(z � (1� x1))

�
+�(z � �2x2) ln

z � �2x(1 � x1)(z � x2)

(�2x2 � z)(z � x(1� x1))

+ �(�2(1 � x1)
2 � z)

�
ln

(z � (1� x1)
2)(�2(1 � x1)

2 � z)

(�2x(1� x1)� z)(z � x(1� x1))(1 � x1)2

+ ln
(z � (1� x1)

2)(�2(1� x1)
2 � z)

(�2(1 � x1)� z)(z � (1 � x1))(1� x1)2

�
+ ln

(z � 1)(�2 � z)

(z � (1� x1))(�2(1 � x1)� z)

�
:

To see the cancellation of the auxiliary parameter �0=�1 we give here the relevant part of the

contribution for the collinear region :

�HH
coll

=
�2

4�2

1�2�Z
xc

dx

1�x��Z
�

dx1 dx2�(1� x� x1 � x2)

x1x2(1 � x1)2
[1 + (1� x1)

2][x2 + (1� x1)
2]

�
�2Z
1

dz

z2

�
L+ 2L ln

�20
z�21

��
1

2
+
1

2
�(�2x2 � z) + �(�2(1� x1)

2 � z)

�
+ : : : :
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We see from the above expression that the dependence on �0=�1 disappears in the sum of the

contributions for the collinear and semi-collinear regions. The total sum is given by Eq. (54).
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Appendix C

Virtual corrections to single photon emission cross-section

The cross-section for single hard photon bremsstrahlung containing virtual and real soft

photon corrections may be written as follows:

d�H(S+V ) =
�3dxd2q?2 d

2q?1
2�2x(1� x)(q?2 )4

R; R = lim
(2p1p2)!1

4p2�p2�k��

(2p1p2)2
: (C.1)

The tensor k�� entering in R is connected with a matrix element ��M� of the Compton

scattering process (see the de�nition of invariants in Section 5). Taking �� as the polarization

of the heavy photon, this reads

k�� =
X
spin

M�M
�
� = ~g��kg + ~p1�~p1�k11 + ~q1�~q1�k22 + ~q1�~p1�k21 + ~p1�~q1�k12 (C.2)

� B�� +
�

�
T�� ;

where

~g�� = g�� � q�q�

q2
; ~p1� = p1� � p1q

q2
q� ; ~q1� = q1� � q1q

q2
q� (C.3)

are explicitly gauge-invariant combinations of momenta k��q� = k��q� = 0.

In the case under consideration, R has the form:

R = (1 +
�

2�
�)(B11(s1; t1) + x2B11(t1; s1)) +

�

2�
T; (C.4)

T = T11 + x2T22 + x(T12+ T21):

The exact expressions for Tik are given in [14]. We need only limited values of Tik in the

cases of s1 � jt1j and jt1j � s1 at �xed q2 and u1 = �2p1q1.
In the case of small s1 we have s1 � s = [m2(1 � x)2 + (q?2 x+ q?1 )

2]=[x(1 � x)] (we omit

in the remaining part of this Appendix the subscript 1 in the notation of invariants of the

Compton subprocess).

Taking into account that, at small s, q2 = �(q?2 )2, t = �(1 � x)(q?2 )
2 and u = �(q?2 )2x,

we derive the following expressions for � and T in this limit:

�s�jtj = 2(L � 1 + ln x)(2 ln�� ln x) + 3L � ln2 x� 9

2
; (C.5)

Ts�jtj =
2

s(1� x)

�
4(1 + x2)

�
ln x ln

(q?2 )
2

s
� Li2(1� x)

�

� 1 + 2x + x2
�
� 16m2

s2
lnxL:
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In the case of small jtj we have:

�jtj�s = 2(L � 1� ln x)(2 ln�� ln x) + 3L� ln2 x� 9

2
; (C.6)

Tjtj�s =
2x

t(1� x)

�
4(1 + x2)

�
ln x ln

(q?2 )
2

�t � 1

2
ln2 x� Li2(1 � x)

�

� 1 � 2x+ x2
�
+
16m2x2

t2
ln xL:

The further integration is straightforward. We show here the most important moments.

The contribution of the � containing terms gives (in close analogy with the Born contribution):

�H(S+V )
� =

1

2
(
�

�
)
2

�2Z
1

dz

z2
L

1��Z
xc

dx
1 + x2

1� x

�
(1 + �(�2x2 � z)) (C.7)

�
�
L(2 ln �� ln x+

3

2
) + (2 ln �� lnx)(ln x� 2)� 1

2
ln2 x� 15

4

�

+ (2 ln �� ln x+
3

2
) k(x; z)� 2 ln x(2 ln�� ln x)�(�2x2 � z)

�
:

To obtain the contributions from T we consider at �rst new types of integrals:

Isftg = Q2
1

Z
d2q?2
�(q?2 )4

Z
d2q?1
�sftg ln

(q?2 )
2

sf�tg ; (C.8)

isftg = Q2
1

Z
d2q?2
�(q?2 )4

Z
d2q?1
�sftg ; msftg = Q2

1

Z
d2q?2
�(q?2 )4

Z
d2q?1m

2

�s2ft2g :

Denoting �2(1� x)2 + (q?2 x� q?1 )
2=Q2

1 as a+ b cos� and using the expressions

1

2�

2�Z
0

d�

a+ b cos �
=

1p
a2 � b2

; (C.9)

1

2�

2�Z
0

d�
ln(a+ b cos �)

a+ b cos�
=

1p
a2 � b2

ln
2(a2 � b2)

a+
p
a2 � b2

with a2 � b2 = (z1 � x2z2)
2 + 4�2(1 � x)2x2z2 , �2 = m2=Q2

1 and z1;2 = (q?1;2)
2=Q2

1 we derive

that

Is = (1� x)x

�2Z
1

dz2

z22

x2�2Z
x2

dz1 (C.10)

� ln(z22(1 � x)x3)� ln[(z1 � z2x
2)2 + 4�2x2(1 � x)2z2]q

(z1 � x2z2)2 + 4�2x2(1� x)2z2
:
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Since we are evaluating with logarithmic accuracy, we may consider the contribution of the

region jz1 � x2z2j < �, �2 � �� 1 when integrating over z1. The result reads

Is = x(1� x)

�2Z
1

dz2

z22
L

�
1

2
L + ln

x

1� x

�
: (C.11)

The rest of the integrals can be calculated in the same way, and we have:

It = �(1 � x)

�2x2Z
1

dz2

z22
L

�
1

2
L+ ln

1

1 � x

�
; it = �(1� x)

�2x2Z
1

dz2

z22
L; (C.12)

is = x(1 � x)

�2Z
1

dz2

z22
L; mt =

�2x2Z
1

dz2

z22
; ms = x2

�2x2Z
1

dz2

z22
:

Using (C.11) and (C.12) we may represent the �nal result for the contribution to �H(S+V ) due

to the T term as

�
H(S+V )
T =

1

2
(
�

�
)
2

�2Z
1

dz

z2
L

1��Z
xc

dx
1 + x2

1� x

��
1

2
L+ ln

x

1 � x

�
ln x (C.13)

+ �2 � Li2(x) +
x2 + 2x� 1

4(1 + x2)
� 2x ln x

1 + x2
��(x2�2 � z)

��
1

2
L+ ln

1

1� x

�
ln x

� 1

2
ln2 x� Li2(1� x)� 1 + 2x� x2

4(1 + x2)
� 2x ln x

1 + x2

��
:

The total contribution to �H(S+V ) (one-side hard photon emission with virtual and soft

photon corrections) is the sum of (C.7) and (C.13):

�H(S+V ) = �H(S+V )
� + �

H(S+V )
T : (C.14)

This quantity is given in Eq. (51).
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Appendix D

Leading logarithmic contribution to �

Here we show that the main logarithmic terms can be summed according to the renormal-

ization group. The sum, as given in the text, may be written as:

S = 2(
�

�
)
2

�2Z
1

dz

z2
L2
� 1Z
xc

dx �(1� x)

�
ln2�+

3

2
ln� +

9

16

�
(D.1)

� (1 + �(x2�2 � z)) +
1

2

Z 1��

xc

1 + x2

1� x
(2 ln �� ln x+

3

2
)(1 + �(x2�2 � z))

+
1

4

1�2�Z
xc

dx

�
2
1 + x2

1� x
ln
1 � x��

�
+
1

2
(1 + x) lnx� 1 + x

�
[1 + 3�(x2�2 � z)]

+
1

4

1Z
xc

dx

�
2
1 + x2

1� x
ln

 
(1 � x��)(��pz)

�(
p
z � �x)

p
x

!
+ x� 1

� 1

2
(1 + x) ln

�2

z
+

p
z

�
� x�p

z

�
�(z � x2�2)

�
:

One can see that the dependence on the parameter � disappears in the expression above.

We will now show that eq. (D.1) is equivalent to eq. (57). Let us transform eq. (57) using

the substitution

�(t2�2 � z) =
1

2
(1 + �(x2�2 � z)) +

1

2
�(z � x2�2)��(z � t2�2); (D.2)

and changing the order of integration in the last term:

1Z
x

dt

�2Z
�2t2

dz =

�2Z
�2x2

dz

p
z=�Z
x

dt =

�2Z
1

dz�(z � �2x2)

p
z=�Z
x

dt: (D.3)

By evaluating the integral over t, and using the explicit expressions for the splitting func-

tions one can verify the coincidence of eqs. (D.1) and (57). In an analogous way one can prove

the validity of the representation (59) for �
.

Using the representation in Eq. (58) for the function P (2) one can see that the above

expression is equivalent to Eq. (D.1). In an analogous way one can prove the validity of

representation in Eq. (59) for �
 .
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Appendix E

Cancellation of the � dependence in the non-leading contributions to �2

Let us consider the singular non-leading terms in �2 in the limiting case �! 0. Dropping

the common factor (�=�)2L R dz=z2, we give below the various contributions separately.

Let us consider �rst � . The contributions from the soft photon radiation and virtual

corrections are:

(�V V+V S+SS)� = ln�(�7� 4 ln�)(1; �2); (E.1)

where we denote by (a; b) the limits of the integration over z: (a; b) = �(z � a)�(b� z).

The contribution due to the virtual corrections to the single hard photon emission gives
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where ~xc = max(xc; 1=�) and the quantity k(x; z) is de�ned in Eq. (30). The singular part in

the contribution in Eq. (54) due to double hard photon bremsstrahlung reads:
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:

It is possible to verify the cancellation:

(�V V+V S+SS )� + (�H(S+V ))� + (�HH)� = 0: (E.4)

The corresponding contributions to �
 are:
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(�S+V
S+V )� = ln�(�14� 8 ln�)(1; �2); (E.5)
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Rearranging the last term in (�H
H)� as
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we can see again the cancellation of the �-dependence in the sum:
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Appendix F

Relevant integrals for collinear pair production

We give here a list of the relevant integrals, calculated within the logarithmic accuracy, for

the collinear kinematical region of hard pair production.

We use the de�nitions in Eq. (65) and we imply, in the left-hand side of the expressions

below, the general operation:
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with the conditions z0 = ("�0=m)2 � 1, L0 = ln z0 � 1. The details of the calculations can

be found in the Appendix of Ref. [16]. The results are:
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