
1

DISTRIBUTED MEMORY IN A HETEROGENEOUS NETWORK,

AS USED IN THE CERN. PS-COMPLEX TIMING SYSTEM

V. Kovaltsov 1, J. Lewis
 PS Division, CERN, CH-1211 Geneva 23, Switzerland

ABSTRACT

The Distributed Table Manager (DTM) is a fast and efficient utility for distributing named binary data
structures called Tables, of arbitrary size and structure, around a heterogeneous network of computers to a set of
registered clients. The Tables are transmitted over a UDP network between DTM servers in network format, where
the servers perform the conversions to and from host format for local clients. The servers provide clients with
synchronization mechanisms, a choice of network data flows, and table options such as keeping table disc copies,
shared memory or heap memory table allocation, table read/write permissions, and table subnet broadcasting. DTM
has been designed to be easily maintainable, and to automatically recover from the type of errors typically
encountered in a large control system network.

The DTM system is based on a three level server daemon hierarchy, in which an inter daemon
protocol handles network failures, and incorporates recovery procedures which will guarantee table consistency
when communications are re-established. These protocols are implemented over a communications layer which
performs the data conversions, packet splitting, error-correction with retry, and time out handling. The same
communications layer is used to implement the application program interface which calls on the server daemon for
client services. DTM is a registration based system, in which communications are established dynamically as
needed, and tables are distributed only to the clients who have registered their interest in them. The registration
protocols include mechanisms to recover from daemon re-launches, and clean up after aborted clients.

1. INTRODUCTION

The PS Complex contains nine accelerators which interact in a time sliced manner to produce particle
beams varying in particle type, energy, and time structure. The timing and sequencing of the accelerators in the
network is controlled through a Master Timing Generator (MTG) which distributes events over a specialized timing
drop net to the nine accelerator control sub systems, [Ref. 1]; some of these events are also distributed over the
computer network. DTM complements the standard RPC based PS equipment access, by providing notify-on-
change events, and data-transfer mechanisms, which are needed in any large control network, and in particular by
timing and sequencing mechanisms.

The PS-Controls general purpose computer network [Fig. 1], contains an isolated subnet for each
accelerator, and one main control system backbone which inter-connects them. [Ref. 2]. Each subnet contains its
own file server, work stations, and discless VME based front end processors, and each must be able to function
independently with its link to the main backbone cut. This network topology, and subnet isolation requirement,
implies multiple copies of the common data needed to run each subnet independently, and hence a mechanism
capable of tolerating network failures, which correctly distributes pending data modifications when the fault
disappears.

The implementation chosen for the timing system, and its application program interface, implies
almost instantaneous access to a number of common volatile data structures, which are distributed over the
network to each client every time they are modified. This access may be synchronous, meaning that a table update
provides not only the new contents of the table, but also the event which signals the time it happened. In the PS
timing system, such events can be used to transmit accelerator timings to application programs, so events are often
more important than the new table contents.

1 On leave from IHEP Protvino, Russia

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25188208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Figure-01 Network layout

Subnet Subnet Subnet

Backbone

=> Subnet file server

=> Local computers

The concept of distributed memory satisfies these requirements, in which all copies of a memory
segment residing on a set of registered hosts, contain the same data, and hence all writes into this memory space
must be distributed across all copies. In DTM, this is a One-To-Many data flow, where a single client non-
explicitly provokes a table change on all other registered clients in a heterogeneous network. This is not the only
data flow, in Many-To-Many the consuming clients sequentially processes a queue of incoming new table
instances. In a third data flow, one client explicitly reads another clients copy of a non-distributed table, this One-
To-One flow has some similarities with a classic remote procedure call mechanism. All three of these mechanisms
are used by the PS timing system, and DTM has greatly simplified the task of implementing it, by providing
applications with a fast elegant platform independent method for obtaining the data they need. Application
programs are relieved of the burden of initializing and maintaining up to date copies of volatile data, and of
knowing who else is using it. No explicit inter-client actions are required, as all data is distributed between them by
the DTM system. System maintenance is easier because of the ease with which data driven programs can be built,
and the ease with which it can be distributed over a heterogeneous network. Lastly, a faster and more efficient usage
of limited network resources can be achieved by avoiding unnecessary transactions such as polling.

2. THE IMPLEMENTATION

The DTM system is built on a hierarchy of three classes of server daemon [Fig. 2]; one unique
master server running on the backbone subnet, one global server running on each control subnet, and one local
server running on all other hosts. Except when a network broadcast is used, all DTM data tables flowing between
clients pass via the master daemon along the path shown in [Fig. 3].

3

Figure-02 Daemon and client communications hierarchy

Client

Local Level

Global Level

Master Level

These communication layers export the services provided by
the next level up to the network, making all internals
available for diagnostic tools. Local function calls are used
between the levels in a single server daemon.

The class hierarchy starts with the local server, which provides the applications program interface,
and whose functions are available on all hosts. Next is the global server which inherits the local server functions,
and provides specific global functions. The unique master server inherits all local and global functions and provides
specific master functions. Thus on any given host only one server runs. All communications between class levels
and between the client and server, are available across a communications layer which renders all such transactions
independent of their location on the network. This approach has greatly eased the task of building diagnostic tools,
which are able to communicate with any level of any daemon anywhere in the network. The current
implementation makes use of UDP and UNIX domain sockets for inter host and inter task transactions. All
daemons launches are triggered automatically in the standard way by inetd. Packet splitting, sequencing, and error
correction with retry are handled, and connections are dropped and re-established between daemons using time-outs
and an I-am-alive protocol. When a control subnet is isolated from the backbone, then all DTM table updates to or
from that subnet, will be completed later automatically, when the inter server communications are re-established
via the I-am-alive protocol..

4

Figure-03 DTM server daemon data flow

MS

GS GS GS

LS

LS

Data flow

Client

Update table

MS => Master Server
GS => Global Server
LS => Local Server

Client

For ease of maintenance, the only system knowledge given to a server on start up, is the directory
path name: /usr/dtm, where it finds all the information it needs in two configuration files. This directory is usually
an NFS mount point for local server hosts on their global server, and besides the configuration files, it also
contains disc copies of tables in network format, and client registration tables. The two ASCII configuration files
describe the attributes of each table, and the host names of the subnet global server and master server respectively.
The attributes of a table are as follows:·

• The tables name: E.g. CPS_LINE_NAMES·

• The tables format specification: E.g. 1L32{1L24{9C51C}}·

• The table producer host list: E.g. PsStation1, PsServer19·

• The table properties: E.g. PROD+NONC

The table name is any string by which the table is identified, and provides the binding between DTM
servers for its transfer in the network. The table format string describes the table structure. In the above example
you read: "1 Long, 32 Structures of { 1 Long 24 Structures of { 9 Characters, 51 Characters } }". The producer list
contains the list of host names permitted to update the table. The table properties are any coherent subset of the
following:·

• NONC Not kept on disc, so the table exists only in memory. This property concerns tables which are
updated frequently. Disc kept tables are only useful when recovering from a general power failure, or when
bringing up a subnet in isolation, as in all other cases the latest table contents are transferred between servers
when communications are re-established via the I-am-alive protocol..·

• LOCL The table exists in local heap memory, and not in shared memory. In this case the table memory is
allocated to the client via the application program interface library.

5
• PROD The table may only be updated by a host in the producer list. Any write attempts by clients not on

the producer list result in an error return from the library.·

• MCOP The table has multiple different values. Used in Many-To-Many and One-To-One.·

• FIFO, FILO, LIFO ... Various table queue disciplines for Many-To-Many.·

• BRDC The new table contents is broadcast, rather than using inter server point to point transfers. A UDP
type-C subnet address is currently used, but for hosts outside the type-C subnet, the table is transferred in the
usual way.

3. THE APPLICATION PROGRAM INTERFACE

The entire DTM application program interface is described by 10 simple function calls. All other
daemon inter-level function calls are also available, but they are used exclusively for system internals and
specialized diagnostic programs and are not listed here.

3.1 Basic One-To-Many non-synchronous access

For the more common One-To-Many data flow the following five very simple functions provide an
elegant way for an application to use non synchronized access to distributed shared memory.·

• int DtmrtRegisterTable(table_name)

A client calls this function when it wants to register its interest in a table. Two registrations are
actually made by the system, a global registration saying that this host is using the specified table, and a local
registration saying that this task PID uses the table. Hence for any given table, there is one global registration
per host using it, and one local registration for each PID on that host using it. When the last local registration is
removed, the global registration is also removed, and all system resources are de-allocated.·

• int DtmrtUnregisterTable(table_name)

A client may call this function if it is no longer interested in a table. The local DTM server in any
case checks that the PID exists each second, and will clean up its registrations within this time if the task stops
running for any reason. The only use of this function is thus in limiting the total resources consumed by a
client at any one time, in particular the shared memory attach count.·

• table * DtmrtShareTable(table_name)

This function returns a pointer to the registered table either located in shared memory, or on the local
heap allocated within the function. Typically a client will cast the returned pointer into a defined data structure,
for reading it can be directly accessed, for writing , if it is located in shared memory, a copy should be made
because DTM can update it at any time.·

• int DtmrtUpdateTable(table_name, new_table)

If this host has the correct write permission, then calling this function pushes the new table contents
out to all registered clients on the network, and overwrites the local copy.·

• int DtmrtCheckTable(table_name, callback)

This routine can be called periodically from an application program main loop. If the table has been
updated, the callback is invoked with the name of the table as its parameter. In this way an application is able to
take specific action each time the table is changed, this is the non-synchronized access method. If the table name
is NULL the callback is called once for each updated table.

6
3.2 Other data flows Many-To-Many and One-To-One

The next two function calls provide support for the Many-To-One and One-To-One types of data
flows:, ·

• int DtmrtRegisterTableCopies(table_name, queue_size)

This function is similar to the normal registration, but in addition, the DTM server allocates enough
memory to contain queue_size copies of the table, which it will pass back one at a time to the client in the
event of multiple updates. This type of registration thus provides the support required for Many-To-One data
flows.·

• int DtmrtReadRemoteTable(remote_host_name, table_name, table_buffer)

This function explicitly reads the specified table from the remote host into a supplied table buffer.
No host, in this case, would in general call DtmrtUpdateTable, but instead clients write directly into the table in
shared memory. When many remote hosts do this, then the table instances all contain different data which can be
read via this function. This function thus provides the support required for One-To-One data flows

3.3 Synchronized access and event handling

Synchronized table access is based on subscribing to table update events, which are interesting in
themselves as a means of sending real timing events over the network, so in this case, the time of arrival of an
update event is often more important than the table contents.·

• file_descriptor DtmrtSubscribeTable(table_name)

Subscribe to real time table update events, the function returns an integer file handle suitable for use
within a select system call. The table must already be registered.·

• int DtmrtUnsubscribeTable(table_name)

Un-subscribe to the table update events, this will happen anyway if the subscribed task stops running
for any reason.·

• int DtmrtSelect(select_mask, event_handler, time_out)

In addition to calling the standard UNIX file select system call, the table data is transferred between
the server and the clients local memory. A subsequent call to Dtmrt-CheckTable will provide the table name.

4. CONCLUSION

The latest DTM package has been operational in the PS control system since March 1995, and is
dealing with 20 different tables distributed over 6 control subnets, and about 1000 global registrations is a typical
figure. It is currently running on:·

• DEC MIPS Ultrix 4.4·

• DEC ALPHA OSF/1 2.1·

• IBM RS/6000 Aix 4.1·

• MOTOROLA MVME147/167 LynxOS 2.2·

• CETIA PowerPC 601 LynxOS 2.2·

7
• PC486 LynxOS 2.2·

• SUN Solaris 2.3 SunOS 4.1.3·

• HP HP/Ux 9.1

During this time it has recovered from network failures, CPU crashes, general sector power-failures,
task crashes, and new users developing application programs. The simple and elegant application program interface
has permitted the port of complex timing system libraries, and the applications using them, to all of the above
platforms with minimal effort. DTM also allows us to modify control system tables on all platforms while
applications are still running, and avoids the need to build global data into these programs, and the maintenance
problems and inflexibility this causes.

REFERENCES

[1] J. Lewis, V. Sikolenko: "The new CERN PS timing system", ICALEPCS, Berlin, Germany Oct 18-23,
1993, Nucl. Instr. And Meth. A352 (1994), 91.

[2] F. Perriollat, C. Serre: "The new CERN PS control system overview and status", ICALEPCS, Berlin,
Germany Oct 18-23, 1993, Nucl. Instr. And Meth. A352 (1994), 86.

