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1 Basic Facts about Cosmology and Inflation

It is well known" that the Standard Cosmological Model (SCM) works well at “late”
times, its most striking successes being perhaps the red shift, the cosmic microwave
background (CMB), and primordial nucleosynthesis.

However, the SCM suffers from various problems. At the theoretical level the
most serious of these is the initial singularity problem, which basically tells us that
we cannot have theoretical control over the initial conditions of the SCM. At a
phenomenological level, the SCM cannot explain naturally:

i) the homogeneity and isotropy of our Universe as manifested, in particular,
through the small value of AT /T = O(107°) observed with COBE?;

ii) the flatness problem, i.e. the fact that, within an order of magnitude,
Q = p/pcritN]-;

iii) the origin of large-scale structure.

Inflation, i.e. a long phase of accelerated expansion of the Universe (a,d > 0,
where a is the scale factor), is the only way known at present of solving the above-
mentioned phenomenological problems. Various types of inflationary models have
been proposed [for a review, see 3), 4)] each one supposedly mending the problems of
the previous version. Particularly severe are the constraints coming from demanding:

a) a graceful exit with the right amount of reheating;
b) the right amount of large-scale inhomogeneities.

In order to satisfy such constraints, fine-tuned initial conditions and/or inflaton
potentials are necessary. And this without mentioning the fact that inflation is not
addressing at all the initial singularity problem.

Actually, Kolb and Turner, after reviewing the prescriptions for a successful
inflation, add®:

“Perhaps the most important — and most difficult — task in building a successful
inflationary model is to ensure that the inflaton is an integral part of a sensible model
of particle physics. The inflaton should spring forth from some grander theory and
not vice versa”.

I will argue below that superstring theory could be the sought-after grander
theory (what could be better than a theory of everything?) naturally providing an
inflation-driving scalar field in the general sense defined again in ref. 4):



“It is now apparent that inflation, which was originally so closely related to
Spontaneous Symmetry Breaking, is a much more general phenomenon.... Stated in
its full generality, inflation involves the dynamical evolution of a very weakly-coupled
scalar field that was originally displaced from the minimum of its potential.”

I hope to convince you that this will be precisely the picture that we claim takes
place in string cosmology. In order to substantiate this claim, I will have to digress
and recall a few basic facts in Quantum String Theory.

2 Basic facts in quantum string theory (QST)

I am listing below a few basic properties of strings, emphasizing those that are most
relevant for our subsequent discussion. These are:

1. Unlike its classical counterpart, quantum string theory contains a fundamental
length scale )\, representing® the ultraviolet, short-distance cut-off (equivalently, a
high-momentum cut-off at £ = M,c? = fic/),).

2. Tree-level masses are either zero or O(M;). Quantum mechanics allows
massless strings with non-zero angular momentum® while, classically, M? > const. x
J. The existence of such states is obviously a crucial property of QST, without which
it could not pretend to be a candidate theory of all known interactions.

3. The effective interaction of the massless fields at £ < M, takes the form of
a classical, gauge-plus-gravity field theory with specified parameters. It is described
by an effective action™® of the (schematic) type:

1 _
Lepp = 3 /d4x —ge? [/\;Q(R + 0,00"¢) + Fo, + v I}y + R* + .. }
+ {higher orders in eﬂ . (2.1)

Equation (£7)) contains two dimensionless expansion parameters. One of them,
g% = €%, controls the analogue of QFT’s loop corrections, while the other, A2 = \2.9?
controls string-size effects, which are of course absent in QFT.

4. As indicated in (B.)), QST has (actually needs!) a new particle/field, the
so-called dilaton ¢, a scalar massless particle (at the perturbative level). It appears
in I'epp as a Jordan Brans-Dicke?) scalar with a “small” negative wpp parameter,
WBpD = —1.

5. The dilaton’s VEV provides®:'9) a unified value for:

a) The gauge coupling(s) at E = O(Mj).



b) The gravitational coupling in string units.

¢) Yukawa couplings, etc., at the string scale.

In formulae:

6123 = 87Gnh =e?)\?,
e?

=, (2.2)

agur(A;)
implying (from agyr &~ 1/20) that the string-length parameter A, is about 10732 cm.
Note, however, that, in a cosmological context in which ¢ evolves in time, the above
formulae can only be taken to give the present values of a and £,/ ;. In the scenario
we will advocate, both quantities were much smaller in the very early Universe!

6. Dilaton couplings at large distance are such'? that a massless dilaton is most
likely ruled out!’'? by precision tests'® of the equivalence principle [for a possible
way out see, however, ref. 14)], i.e.

My >10""eV . (2.3)
7. Details about the dilaton potential are unknown, yet:

a) On theoretical grounds, in critical superstring theory, the dilaton potential has
to go to zero as a double exponential as ¢ — —oo (weak coupling):

2

V(¢) ~ exp (—c?exp(—¢)) = exp (—07> : (2.4)

dragur
with ¢ a positive (but model-dependent) constant.

b) On physical grounds it should have a non-trivial minimum at its present value
((¢) = ¢o ~ 0) with a vanishing cosmological constant, V'(¢y) = 0.

A typical potential satisfying a) and b) is shown in Fig. 1. The dotted lines at
¢ > 0 represent our ignorance about strongly coupled string theory. Fortunately, the
details of what happens in that region will not be very relevant for our subsequent
discussion.

8. There is an exact (all-order) vacuum solution for (critical) superstring theory.
Unfortunately, it corresponds to a free theory (¢ = 0 or ¢ = —o0) in flat, ten-
dimensional, Minkowski space-time, nothing like the world we seem to be living
in!
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Figure 1: A possible dilaton potential with illustration of an inflation-driving rolling
dilaton (large dots).

Before closing this section I would like to comment briefly on a point which
appears to be the source of much confusion even among experts: it is the debate
between working in the (so-called) String and Einstein “frames” (not to be confused
with different coordinate systems). Since the two frames are related by a local field
redefinition (a conformal, dilaton-dependent rescaling of the metric to be precise)
all physical quantities are independent of the frame one is using. The question is:
what should we call the metric? Although, to a large extent, this is a question of
taste, one’s intuition may work better with one definition than with another. Note
also that, since the dilaton is time-independent today, the two frames coincide now.

Let us compare the virtues and problems with each frame.

A) STRING FRAME This is the metric appearing in the fundamental (Polyakov)
action for the string. Classical, weakly coupled strings sweep geodesic surfaces
with respect to this metric. Also, the dilaton dependence of the low energy
effective action takes the simple form indicated in (B.1)) only in the string frame.
The advantage of this frame is that the string cut-off is fixed and the same
is true for the value of the curvature at which higher orders in the og-model
coupling A become relevant. The main disadvantage is that the gravitational
action is not so easy to work with.

B) EINSTEIN FRAME In this frame the pure gravitational action takes the stan-
dard Einstein-Hilbert form. Consequently, this is the most convenient frame
for studyind the cosmological evolution of metric perturbations. The Planck
length is fixed in this frame while the string length is dilaton (hence generally



time) dependent. In the Einstein frame I'.f; takes the form:

1 _
Lepp = 167G /d4x\/—g [R +0,00"p + e PF., + 0,A0" A + e¢m2A2}
+[Gre PR+ ], (2.5)

showing that, in this frame, masses are dilaton dependent (even at tree level)
and so is the value of R at which higher order stringy corrections become
important. It is for the above reasons that I will choose to base my discussion
(although not always the calculations) in the String frame.

3 Main ideas/assumptions of string cosmology

The very basic postulate of (our own version of) String Cosmology'®'%) is that
the Universe did indeed start near its trivial vacuum mentioned at the end of the
previous section.

Fortunately, if one looks at the space of homogeneous (and for simplicity spacially-
flat) perturbative vacuum solutions, one finds that the trivial vacuum is a very
special, unstable solution. This is depicted in Fig. 2a for the simplest case of a ten-
dimensional cosmology in which three spatial dimensions evolve isotropically while
six “internal” dimensions are static (it is easy to generalize the discussion to the case
of dynamical internal dimensions, but then the picture becomes multidimensional).

The straight lines in the H, ¢ plane (where ¢ = ¢ — 3H) represent the evolution
of the scale factor and of the coupling constant as a function of the cosmic time
parameter (arrows along the lines show the direction of the time evolution). As a
consequence of a stringy symmetry, known'®'") as “Scale Factor Duality (SFD)”,
there are two branches (two straight lines). Furthermore, each branch is split by the
origin in two time-reversal-related parts (time reversal changes the sign of both H

and ¢).

The origin (the trivial vacuum) is an “unstable” fixed point: a small perturbation

in the direction of positive ¢ makes the system evolve further and further from
the origin, meaning larger and larger coupling and absolute value of the Hubble
parameter. This means an accelerated expansion or an accelerated contraction, i.e.
in the latter case, inflation. It is tempting to assume that those patches of the
original Universe that had the right kind of fluctuation have grown up to become
(by far) the largest fraction of the Universe today.

In order to arrive at a physically interesting scenario, however, we have to connect
somehow the top-right inflationary branch to the bottom-right branch, since the
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Figure 2: Phase diagrams for the perturbative (a) regime and a conjectured non-
perturbative solution (b) to the branch-change problem.

latter is nothing but the standard FRW cosmology, which has presumably prevailed
for the last few billion years or so. Here the so-called “exit problem” arises. At
lowest order in A? (small curvatures in string units) the two branches do not talk to
each other. The inflationary (also called +) branch has a singularity in the future
(it takes a finite cosmic time to reach oo in our gragh if one starts from anywhere
but the origin) while the FRW (—) branch has a singularity in the past (the usual
big-bang singularity).

It is widely believed that QST has a way to avoid the usual singularities of
Classical General Relativity or at least a way to reinterpret them'®'). Tt thus
looks reasonable to assume that the inflationary branch, instead of leading to a non-
sensical singularity, will evolve into the FRW branch at values of \? of order unity.
This is schematically shown in Fig. 2b, where we have gone back from ¢ to é and we
have implicitly taken into account the effects of a non-vanishing dilaton potential at
small ¢ in order to freeze the dilaton at its present value. The need for the branch
change to occur at large \?, first argued for in??, has been recently proved in ref.

21).

There is a rather simple way to parametrize a class of scenarios of the kind
defined above. They contain (roughly) three phases and two parameters. Indeed:

In phase I the Universe evolves at g2, \> < 1 and thus is close to the trivial
vacuum. This phase can be studied using the tree-level low-energy effective action
(B.J) and is characterized by a long period of dilaton-driven inflation. The accel-
erated expansion of the Universe, instead of originating from the potential energy
of an inflaton field, is driven by the growth of the coupling constant (i.e. by the
dilaton’s kinetic energy, see ref. 22) for a similar kind of inflationary scenario) with



¢ =2¢/g ~ H during the whole phase.

Phase I supposedly ends when the coupling A? reaches values of O(1), so that
higher-derivative terms in the effective action become relevant. Assuming that this
happens while g2 is still small (and thus the potential is still negligible), the value
gs of g at the end of phase I (the beginning of phase II) is an arbitrary parameter
(a modulus of the solution).

During phase II, the stringy version of the big bang, the curvature, as well as ¢,
are assumed to remain fixed at their maximal value given by the string scale (i.e.
we expect A ~ 1). The coupling g will instead continue to grow from the value
gs until it is its own turn to reach values O(1). At that point, assuming a branch
change to have occurred at large curvatures, the dilaton will be attracted to the
true non-perturbative minimum of its potential; the standard FRW cosmology can
then start, provided the Universe was heated-up and filled with radiation (this is
not a problem, see below). The second important parameter of this scenario is the
duration of phase II or better the total red-shift, z; = @cpg/dpey, Which has occurred
from the beginning to the end of the stringy phase.

Our present ignorance about this most crucial phase (and in particular about
the way the exit can be implemented) prevents us from having a better description
of this phase which, in principle, should not introduce new arbitrary parameters (zg
should be eventually determined in terms of g;).

During Phase III, the Universe evolves towards smaller and smaller curvatures
but stays at moderate-to-strong coupling. This is the regime in which usual QFT
methods are applicable. The details of the particular gauge theory emerging from
the string’s non-perturbative vacuum will be very important in determining the
subsequent evolution and in particular the problem of structure formation, dark
matter and the like.

Our scenario contains implicitly an arrow of time, which points in the direction
of increasing entropy, inhomogeneity and structure. As a result of the amplification
of primordial vacuum fluctuations, the Universe is not coming back to its initial
simple (and unique) state (the origin in Fig. 2), but to the much more structured
(and interesting) state in which we are living today. Actually, the arrow of time
itself should be determined by the direction in which entropy (and complexity) are
growing. This will force us to identify (by definition) the perturbative vacuum with
the initial state of the Universe!



4 Observable consequences

All the observable consequences I will discuss below have something to do with
the well-known phenomenon?®? of amplification of vacuum quantum fluctuations in
cosmological backgrounds. Any conformally flat cosmological background is known:

a) to amplify tensor perturbations, i.e. to produce a stochastic background of
gravitational waves;

b) to induce scalar-metric perturbations from the coupling of the metric either
to a fluid or to scalar particles (in our context to the dilaton).

By contrast, because of the scale-invariant coupling of gauge fields in four dimen-
sions, electromagnetic (EM) perturbations are not amplified in a conformally flat
cosmological background (even if inflationary). In string cosmology, the presence of
a time-dependent dilaton in front of the gauge-field kinetic term yields, on top of
the two previously mentioned effects,

c¢) an amplification of EM perturbations corresponding to the creation of macro-
scopic magnetic (and electric) fields.

Various physically interesting questions arise in connection with the three effects
I have just mentioned. These include the following:

1. Does the Universe remain quasi-homogeneous during the whole string-cosmology
history?

2. Does one generate a phenomenologically interesting (i.e. measurable) back-
ground of GW?

3. Can one produce large enough seeds for generating the observed galactic (and
extragalactic) magnetic fields?

4. Can scalar, tensor (and possibly EM) perturbations explain the large-scale
anisotropy of the CMB observed by COBE?

5. Do these perturbations have anything to do with the CMB itself?

In the rest of this talk I will first explain, on the toy example of the harmonic
oscillator, the common mechanism by which quantum fluctuations are amplified in
cosmological backgrounds. I will then give our present answers to the questions
listed above. For more details, see Ref. [24].



Consider a one-dimensional (non-relativistic) harmonic oscillator moving in a
cosmological background of the simplest kind, characterized by a scale factor a(t).
In units in which the mass of the oscillator is 1, the Lagrangian reads:

1
L= §a2(x'2 — w?z?) (4.1)

while the canonical momentum and Hamiltonian are given by

1
p=ad’it, H= Q(a_2p2 + a’wr?) . (4.2)

Let us first discuss the solutions of the classical equations of motion:
i+2alar+wr=0, j+ (W —dfa)y=0, (4.3)

where y = ax is the proper (physical) amplitude as opposed to the comoving am-
plitude z.

Solutions to Egs. ([.3) simplify in two opposite regimes:
a) For w? > i/a there is “adiabatic damping” of the comoving amplitude (the
name is clearly unappropriate in the case of contraction):

T~ a—l e:l:zwt ’ p~aw e:l:zwt (44)

which means that, in this regime, the proper amplitude y and the proper momentum
p/a stay constant (and so does the Hamiltonian).

b) For w? < d/a one finds the so-called “freeze-out” regime in which:

t
r~DB + C/ dt'a % (t)
0
p~CH+... (4.5)

where the comoving amplitude and momentum are fixed. In this regime the Hamil-
tonian (the energy) of the system tends to grow at late times whenever a increases
or decreases by a large factor during the freeze-out regime. In the former case the
energy is dominated asymptotically by the term proportional to z? and is due to
the “stretching” of the oscillator caused by the fast expansion, while in the latter
case the term proportional to p?> dominates because of the large blue-shift suffered
by the momentum in a contracting background.

Consider now a cosmology such that

Wr>adaja,  t<teg, t >t
W< ifa,  te <t <t (4.6)



where, anticipating our subsequent discussion, we have defined the moments of exit
and re-entry by the condition w ~ H. Such an example will be typical of our
scenario, since a given scale will be well inside the horizon at the beginning (small
Hubble parameter), outside during the high-curvature regime, and then inside again
after re-entry. By joining smoothly the two asymptotic solutions, we easily find that
the energy of the harmonic oscillator (which is constant during the initial and final
phases) has been amplified during the intermediate phase by a factor:

2 _ a2(tre) a’? (tex)
lc|* = Mazx <a2(tex) : a2(tre)> (4.7)

corresponding to the two above-mentioned cases.

The excercise can be repeated at the quantum level starting, for instance, from
a harmonic oscillator in its ground state. Quantum mechanics fixes the size of the
initial amplitude, momentum and energy:

h
2| ~a =, E~lw. (4.8)
w

The quantum mechanical interpretation of eq. (f.7) is that ¢ is the Bogoliubov
coefficient transforming the initial ground state into the final excited quantum state
(|c|? being the average occupation number for the latter). Note that the final state
ends up being highly “squeezed”, i.e. having a large Ax or Ap depending on the
sign of H. If, because of coarse-graining, the squeezed coordinate is not measured,
the final state will look like a high-entropy, statistical ensemble of quasi-classical
oscillators.

Note, finally, the (Scale-Factor) duality invariance of the resulting amplification.
Under a — a~!, position and momentum operators swap their role as the variable
in which sqeezing or amplification occurs. Thus the final amplification remains the
same.

Up to technical complications, things work out pretty much in the same way for
strings?® and for the three kinds of perturbations mentioned at the beginning of
this section. In particular, for each one of the latter, one can define?® a canonical
variable 1) (similar to the harmonic oscillator’s y) satisfying an equation of the type

F R = Vi)l =0, (4.9)

where the label ¢ on 1 has been suppressed, £ is the comoving wave number, and
derivatives with respect to conformal time 7 are denoted by a prime.

Since, for each i, the “potential” V; is very small at very early times, grows to a
maximum during the stringy era and, finally, drops rapidly to zero at the beginning



of the radiation era, a given scale (k) begins and ends inside the horizon with an
intermediate phase outside. Larger scales exit earlier and re-enter later. Also, in
our scenario, larger scales exit and re-enter at smaller values of H. Very short scales
exit during the stringy era and, for those, our predictions will not be as solid as for
the scales that leave the horizon during the perturbative dilatonic phase I. The fact
that the amplification of perturbation depends just on some ratios of fields evaluated
at exit and re-entry (and not on the details of the evolution in between) makes us
believe that our detailed results are trustworthy for those larger scales. This being
said, I present below some results on the five issues mentioned above (see, again,
ref. 24) for derivations and/or details).

1. Does the Universe remain quasi-homogeneous during the whole string-
cosmology history?

The answer to this question turns out to be yes! This is not a priori evi-
dent since, in commonly used gauges?®) for scalar perturbations of the metric
(e.g. the so-called longitudinal gauge in which the metric remains diagonal),
such perturbations appear to grow very large during the inflationary phase
and to destroy homogeneity or, at least, to prevent the use of linear perturba-
tion theory. Similar problems had been encountered earlier in the context of
Kaluza-Klein cosmology?”).

In ref. 28) it was shown that, by a suitable choice of gauge (an “off-diagonal”
gauge), the growing mode of the perturbation can be tamed. This can be
double-checked by using the so-called gauge-invariant variables of Bruni and
Ellis*). The bottom line is that scalar perturbations in string cosmology be-
have no worse than tensor perturbations, to which we now turn our attention.

2. Does one generate a phenomenologically interesting (i.e. measur-
able) background of GW?

The canonical variable ¢ for tensor perturbations (i.e. for GW) is defined by:

uv = a2 [nuu + h;w]
Y =(a/g) h=ae*?h, (4.10)

where h stands for either of the two transverse-traceless polarizations of the
gravitational wave. As long as the perturbation is inside the horizon, 1 remains
constant while h is adiabatically damped. By contrast, outside the horizon, v
is amplified according to

Ve~ (af9)[Co+ Dy [ dif *r) a7 (4.11)

ex

where, for each Fourier mode of (comoving) wave number k, 7., = k=1



The first term in ([L.IT]) clearly corresponds to the freezing of h itself, while the
second term represents the freezing of its associated canonical momentum. In
standard (non-dilatonic) inflationary models, the first term dominates since a
grows very fast. In our case, the second term dominates since the growth of a
is over-compensated by the growth of ¢ (i.e. of ¢). This is equivalent to saying
that, in the Einstein frame, our background describes a contracting Universe.

After matching the result (fL.1]) with the usual oscillatory, damped behaviour
of the radiation-dominated epoch, one arrives at the final result®®»3% for the
magnitude of the stochastic background of GW today:

7t g w12
Shy| = K32 || ~ | 22,mvd, (s (_)
ol = K2~ (e (2 (2
-2
[ln (%) + (zs)_?’ <§> ] ’ w < ws (4.12)
1

where w = k/a is the proper frequency, z., ~ 104 w, ~ 27(g1)"/? x 10'! Hz

— -1
= 25 W1.

The above result can be converted into a spectrum of energy density per
logarithmic interval of frequency. In critical density units:

dQaw _ 21 (g.)? (%)3 [ln (&) + (2,)7° <%>_2 r L w<ws . (4.13)

dlnw s w a1

The above spectrum looks quasi-thermal al large scales (i.e. at w < wy), but is
amplified by a large factor relative to a Planckian spectrum of temperature ws.
In analogy with the harmonic oscillator case, there is a duality symmetry of
the spectrum, this time under the transformation (2, gs) — (25, 25295 "). The
transformation corresponds to changing ¢ into —¢ i.e. to what we may call
S-duality. As with the harmonic oscillator, the metric perturbation and its
canonically conjugate momentum variable swap their role under such trans-

formation.

In Fig. 3 we show the spectrum of stochastic gravitational waves expected from
our two-parameter model. For a given pair g, 2z, one identifies a point in the
w, 6h,, plane as illustrated explicitely in the case of g, = 1073, 2, = 10°.The
resulting point (indicated by a large dot) represents the end-point ws, dh,,
of the w'/? spectrum corresponding to scales crossing the horizon during the
dilatonic era.

Although the rest of the spectrum is more uncertain, one can argue that it
has to join smoothly the point wy, 6h,, to the true end-point 6h ~ 10730, w ~
10'*Hz. The latter corresponds to a few gravitons produced at the maximal
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Figure 3: GW spectra from string cosmology against interferometric sensitivity.



amplified frequency wy, the last scale to go outside the horizon during the
stringy phase. The full spectrum is also shown in the figure for the case
gs = 1073, z, = 105, with the wiggly line representing the less well known high
frequency part.

Curves of constant 2w are also shown. If g, < 1, as we have assumed,
spectra will always lie below the Qgy = 107* line corresponding to as many
photons as gravitons been produced. On the other hand, by invoking S-
duality, one can argue that the actual spectrum, by containing two duality-
related contributions, will never lie below the self-dual spectrum ending at
dh ~ 1073 w ~ 10" Hz (the thick line bordering the shaded region). In
conclusion all possible spectra sweep the angular wedge inside the two above-
mentioned lines.

The odd-shaped region in Fig. 3 shows the expected sensitivity of the so-
called “Advanced LIGO” project®). While there is no hope to detect our
spectrum at LIGO if g, = 1073, 2z, = 108, perspectives would be better for,
say, gs = 1071, z; = 108 (the corresponding spectrum is also sketched).

Resonant bars might also be able to reach comparable sensitivity in the kHz re-
gion, while microwave cavities, if conveniently developed, could be used in the
region 10°-10° Hz 3. Another interesting possibility consists of coincidence
experiments between an interferometer and a bar. The quoted sensitivity>®
to a stochastic background, as a function of the frequency f, of the individual
sensitivities of the bar and of the interferometer dh, and of the observation
time T, is:

0Qaw = 1.5 107°(f /10%Hz)3 (10% 6 iy ) (10 6 hyr ) (Tops /107 8) "2 (4.14)

Obviously, detecting a stochastic backgound like ours is a formidable chal-
lenge. Also, the physical range of our parameters gy, zs could be such that no
observable signal will be produced. What is interesting, however, is the mere
existence of cosmological models predicting a non-negligible yield of GW in a
range of frequencies where other sources predict just a “desert”. More com-
plete studies of the sensitivity of various detectors to a stochastic, coloured
spectrum of our kind are presently under way.

. Can large enough seeds be produced for the generation of observed
galactic (and extragalactic) magnetic fields?

As already mentioned, seeds for generating the galactic magnetic fields through
the so-called cosmic dynamo mechanism?® can be generated in our scenario by
the amplification of the quantum fluctuations of the EM field. In this case the
canonical variable is just the (Fourier transform of the) usual A, potential. In



analogy with (f.I1) its amplification, while outside the horizon, is described
by the asymptotic solution:

Ay ~g! [Ck +0, [ dn’gQ(n’)} , (4.15)
which leads®®37) to an overall amplification of the electromagnetic field by a
factor |cr|? ~ (gre/Gex)? + (gex/gre)?. This time the spectrum is invariant under
g — g~ 'i.e. under ordinary S or electric-magnetic duality. In our cosmological
scenario we have excluded the possibility of a decreasing coupling constant and,
therefore, the main contribution to the amplification comes from the second

term on the r.h.s. of eq.(f.15) which gives |cx|? ~ (gre/gex)?-

One can express this result in terms of the fraction of electromagnetic energy
stored in a unit of logarithmic interval of w normalized to the one in the CMB,
p~. One finds:

wdpp W' o _ W' 2
rw)=———~—|c_(w)|" = —(Gre/Gez)” - 4.16
@)= 20 = e () = 2 g/ g (4.16)

The ratio r(w) stays constant during the phase of matter-dominated as well
as radiation-dominated evolution, in which the Universe behaves like a good
electromagnetic conductor®®. In terms of r(w) the condition for seeding the
galactig magnetic field through ordinary mechanisms of plasma physics is®®)

r(wg) > 107 (4.17)

where wg ~ (1 Mpc)™' =~ 107 Hz is the galactic scale. Using the known
value of p,, we thus find, from ({14, f:17):

G < 10733 (4.18)

i.e. a very tiny coupling at the time of exit of the galactic scale.

The conclusion is that string cosmology stands a unique chance in explaining
the origin of the galactic magnetic fields. Indeed, if the seeds of the magnetic
fields are to be attibuted to the amplification of vacuum fluctuations, their
present magnitude can be interpreted as prime evidence that the fine structure
constant has evolved to its present value from a tiny one during inflation. The
fact that the needed variation of the coupling constant (~ 10%°) is of the
same order as the variation of the scale factor needed to solve the standard
cosmological problems, can be seen as further evidence for scenarios in which
coupling and scale factor grow roughly at the same rate during inflation.



4. Can scalar, tensor (and possibly EM) perturbations explain the
large-scale anisotropy of the CMB observed by COBE?

The answer here is certainly negative as far as scalar and tensor perturbations
are concerned. The reason is simple: for spectra that are normalized to O(1)
(at most) at the maximal amplified frequency w; ~ 10" Hz, and that grow
like w'/2, one cannot have any substantial power at the scales O(107'®Hz) to
which COBE is sensitive. The origin of AT/T at large scale would have to be
attributed to other effects (e.g. topological defects).

Fortunately, there is a possibility ? that the EM perturbations themselves
might explain the anisotropies of the CMB since their spectrum turns out to
be flatter (and also more model-dependent) than that of metric perturbations.
Assuming this to be the case, an interesting relation is obtained®? between
the magnitute of large scale anysotropies and the slope of the power spectrum.
Such a relation turns out to be fully consistent, with present bounds on the
spectral index.

5. Do all these perturbations have anything to do with the CMB itself?

Stated differently, this is the question of how to arrive at the hot big bang of
the SCM starting from our “cold” initial conditions. The reason why a hot
universe can emerge at the end of our inflationary epochs (phases I and II)
goes back to an idea of L. Parker’”) according to which amplified quantum
flluctuations can give origin to the CMB itself if Planckian scales are reached.

Rephrasing Parker’s idea in our context amounts to solving the following
bootstrap-like condition: at which moment, if any, will the energy stored in
the perturbations reach the critical density?

The total energy density p,s stored in the amplified vacuum quantum fluctu-

ations is given by:
4

MS
Paf ~ Negr =3 (a1/a)" (4.19)

where N.sr is the number of effective (relativistic) species, which get produced
(whose energy density decreases like a™*) and a; is the scale factor at the
(supposed) moment of branch-change. The critical density (in the same units)
is given by:

per = € *M?H? . (4.20)

At the beginning, with ¢? < 1, p,;; < per but, in the (=) branch solution,
per decreases faster than p,¢ so that, at some moment, p,r will become the
dominant sort of energy while the dilaton kinetic term will become negligible.
It would be interesting to find out what sort of initial temperatures for the
radiation era will come out of this assumption.



5 Conclusions

I want to conclude by listing which are, in my opinion, the pluses and minuses of
the scenario I have advocated:

The Goodies
e Inflation comes naturally, without ad-hoc fields and fine-tuning: there is even
an underlying symmetry yielding inflationary solutions.

e Initial conditions are natural, yet a simple universe would evolve into a rich
and complex one.

e The kinematical problems of the SCM are solved.
e Perturbations do not grow too fast to spoil homogeneity.
e An interesting characteristic spectrum of GW is generated.

e Larger-than-usual electromagnetic perturbations are easily generated and could
explain the galactic magnetic fields.

A hot big bang could be a natural outcome of our inflationary scenario.

The Baddies

e A scale-invariant spectrum is all but automatic (unlike what happens in normal
vacuum-energy-driven inflation).

e Our understanding of the high curvature (stringy) phase and of the crucially
needed change of branch is still poor in spite of recent progress in Conformal
Field Theory.
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