
Using SNMP for creating

Distributed Diagnostic Tools

O. Reisacher*, P. Ribeiro, H. P. Christiansen**

SL Controls Group

CERN, Geneva, Switzerland

* Currently at Sun France

** Currently at UI Design AB, Linköping, Sweden

Abstract

In this paper we describe how SNMP (Simple Network Management Protocol) can be extended to do
control system diagnostics. Our solution consists of a SNMP agent for LynxOS and a configurable MIB
(Management Information Base) browser. We have reused diagnostic modules from the existing diagnostic
system and integrated our development into a commercial network management product.

Introduction

The control system  for the LEP and SPS accelerators, at CERN, is a distributed computer system of over
300 nodes. This system must be operational during long periods of the year on a 24 hours a day basis. A
number of diagnostic tools have been developed over the years to support the intervention of the on-call
team, but they were also integrated into the Control Room operations environment. For the management of
the large Local Area Network, covering over 200 sq. Km, a commercial product, HP OpenView is used. In
1993 aiming at integrating these different tools into a common framework the project described in this
paper was started.

This paper is divided into five parts. We start with the description of the existing distributed diagnostic
architecture and motivations for this project. Follows a brief description of the current network management
standards. The description of an SNMP agent for LynxOS along with its enterprise MIB is followed by the
presentation of a configurable MIB browser. The last part covers the integration of this framework into the
HP OpenView environment.

1.  Existing architecture and motivations for this project

The LEP and SPS control system is a distributed system that can be divided into three interconnected
logical layers :

1. Back-Ends

At this level run the applications for the daily operations of the accelerators. This includes all the
application software related to normal machine operation but also all the work related to anticipating control

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25187912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

system failures and bringing the system back to a normal state after a breakdown. At this level, for system
management, we have a home-made tool called xcluc browses an information repository where all the
periodic reports from the agents arrive. Xcluc presents the state of the different network nodes, enables the
access to the report information stored in the repository and also provides a number of primitives to interact
with the different nodes. These systems are mainly X-Terminals running of HP 9000-7xx servers.

2. Front-Ends

The front-ends run a number of applications controlling the activity of a certain number of entities described
in 3. These entities also act as proxies for the message oriented acquisition and control scheme. A home-
made diagnostic tool, clic (from the sound made when one takes a photograph), runs periodically acquiring a
certain number of states pertaining to important sub-systems in this environment. These systems are PC or
VME boards running the LynxOS operating system.

3. Equipment Control Assemblies (ECA)

These systems are doing I/O multiplexing acquisition and control. They are connected to the upper layer
(the front-ends) by a message oriented protocol on top of a field bus. The status of the different ECA
stations on the bus is periodically controlled by the clic application mentioned on 2.

The main motivation for this project was to develop an integrated system and network tool for operations
and diagnostics. Also to reuse existing code from the clic application but standardizing the system
information model and transport protocol aspects. As HP OpenView (OV) is used for the network
management aspects the basic idea was to transform the existing tools so that they could be easily interfaced
to this package. Accordingly we took a number of decisions :

- Use SNMPv1 with MIB II, supported by OV

- Use the HP SNMP library

- Develop a number of applications to support the integration

2. Standards

A number of Network Management standards have been developed over the past few years. These standards
have a scope that goes beyond managing networks into areas like the one explored by this paper, system
management. All the different architectures and standards for designing network management share the  basic
model that splits the Managing System and the Managed System into two separate sub-systems. Each one
of these sub-systems communicates with a Manager Kernel or an Agent and these last two layers
communicate with each other in a client-server relationship via a Management Protocol. The applications,
their environment, and the system they run on are called a managing system. The network equipment and
software is represented as a collection of managed objects. Those managed objects are supported by an
agent. The managed objects, their agent and the computer system they run on are called the managed
system. This management framework provides application programming interfaces (APIs) to the
applications and objects. Of the three main management families, SNMP, CMIP (OSI) and DME (OSF) we
will focus on SNMP used as framework for this project.

The management information model (SMI) is the most important part of a network management structure
as it defines the kinds of interactions between management applications and managed objects supported by
the model. The managed objects are often active entities their behavior being independent of any
management system.



3

The SNMP family

The following refers to what is termed as SNMP version 1 as described in [RFC 1155, 1157, 1212]. There
are three distinct sets in this family of standards :

- Management Information Base (MIB)

Specifies the variables maintained by the framework (this is the information that can be queried and set by
the manager (MIB II, [RFC 1213]). This is in practice a text file describing the variables supported by a
SNMP agent. For the sake of simplicity a limited number of syntactical elements, of the base syntax
ASN.1 (Abstract Syntax Notation 1), are used. To avoid variations on the possible syntactical constructs
defining the same object a set of macros in ASN.1 notation is used [RFC 1212].

- Structure of Management Information (SMI)

A set of common structures and an identification scheme used to reference the variables in  the MIB,
described in [RFC 1155].

- The Management Protocol

A protocol layer on top of the User Datagram Protocol (UDP) implementing five basic types of
transactions

SNMP GET

SNMP GETNEXT

SNMP SET

SNMP RESPONSE

SNMP TRAP

 The philosophy behind SNMP is that the agent and the object implementation should be simple. In this
context the SNMP SMI only supports a limited set of interactions between the application and the object.
Operations to Get and Set attributes (called MIB variables) are supported. Attributes can be gathered into
tables and groups, but operations on tables or groups are not directly supported. Create, Delete and various
Actions are all implemented as a side effect of setting a MIB variable. An individual MIB variable is named
within an agent by an object identifier. Object identifiers are a sequence of integers, representing a path
through a tree. Individual MIB variables in a system are represented by a leaf in this tree. The nodes above,
the leaf level, represent tables, groups or MIB variable types. The GetNext operation is the only means to
make an inventory, much like a directory tree listing, of all the MIB variables supported by an agent.



4

3. SNMP agent for LynxOS and its enterprise MIB

The SNMP agents available for commercial systems are often closed in design. The extension capability,
although available most of the time, is often of limited scope for the needs. The first version of the  SNMP
agent for LynxOS was based on the Carnegie-Mellon University (CMU) source code.

Along with the extensible SNMP agent prototype, compliant to the MIB II specification, a ASN.1 parser
has been developed. Each extension, new object, is described as a MIB object with the ASN.1 syntax and
entered in the database. This description is run through the parser which generates the hooks to the C code
to be called whenever an access to the new object is requested. The new code should be linked with the other
SNMP agent modules to produce the extended agent (see figure 2). Using this method the SNMP agent was
first made to support the network management MIB. The private part of the MIB was then integrated in a
stepwise fashion.

Figure 1 shows the main building blocks of the described SNMP agent. The system surveillance is
performed every trap_interval seconds. If an error condition is detected a TRAP is sent to the manager.
Trap_interval is a MIB object that can be set. Another agent module handles the SNMP requests originated
by the manager. The extensions to the MIB describe the system variables that should be monitored and also
the variables specifying the limits against which the first are tested. These variables are specific to the
system to be managed.

While loop

SNMP packet request

every trap_interval seconds

Do the test
In case of failure

SNMP TRAP

Parse SNMP
packet request

Check community/
type of request

Are the variables 
supported by the MIB

Check variable access/
type of request

Call get/set C 
function

Build SNMP packet
response

SNMP PACKET RESPONSEFigure 1

The instrumentation of operating system parameters is not a trivial task. Moreover one of the main
concerns of this project was to provide this information using a minimum of system resources. As our



5

LynxOS systems run diskless we had to implement and incorporate into the SNMP agent functionality
similar to the one provided by system applications like df, ps and netstat. The agent is not forking,
doing dynamic memory allocations or interacting with files once it is up and running. The reason is that
this is the only way to be efficient when the node is in a bad state and needs diagnostic.

What follows is an example off adding an object to the private MIB subtree. This example code is written
for LynxOS where many system parameters can be obtained using the info system call.

The ASN.1 definition for the MIB :

max_inode OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-only

DESCRIPTION

“Read-only integer value corresponding to the system file table size”

::= { filesystem 1 }

The C function that implements the described object :

#include “snmp_impl.h”

#include “pdu.h” /* VarBind */

#include “error.h” /* ERROR_MALLOC, NO_ERROR */

int get_file_table_size ( var )

VarBind *var;

{

var->value.integer = ( long *) malloc (sizeof (long));

if (var->value.integer == NULL) return (ERROR_MALLOC);

* (var->value.integer) = info (I_NFILES);

var->value.len = 1;

return (NO_ERROR);

}



6

MIB.txt
ASN.1 PARSER C structures

C functions

SNMP engine

c c SNMP
AGENT

Figure 2

4. The development of a configurable MIB browser

The development of this product was decided at a late stage of the project. Apparently in contradiction with
the project aim of integrating applications at the top level this product is justified by the need of a
simplified and user configurable view of a limited number of variables and tables.

 The OpenView browser has a lot of very powerful capabilities like the possibility to dynamically
load/unload a MIB file. It also has a menu based application builder but it  suffers from a number of
drawbacks like being too close to SNMP theory, producing almost unreadable output of table variables and
producing a complex set of windows where the destination entity for the manager queries is not easily
known all the time.

The described browser was developed using the Hewlett-Packard SNMP library and a Motif user interface.

Following the requirement specifications, the browser, is capable of reproducing a session, by saving the
previous session layout  in a configuration file, on a per user basis. This enables a user to create a
reproducible session profile by adding to the current session the objects pertaining to the  required status
view.

 A clear distinction is made between columns in a table object themselves and plain objects so that the
presentation follows the object type.

All the SNMP related information is kept away from the user interface.

The browser can be configured to run in a single window mode.

The type of the data displayed can be changed with a “translator” function.



7

5. The integration of this framework into HP OpenView environment

The HP OpenView system allows the creation of submaps and different views. This has been exploited in
this project. In addition to the view that IP Map offers, a secondary view, close to the existing repository
browsing tool xcluc has been created.

The usage of the IP Map application can continue as before. This view will reflect the combined network
and system states of the nodes as reported by the extended SNMP agents.

With the API provided with HP OpenView a simple interface to display parts of the extended MIB can be
quickly built. The experience acquired by doing this will make extensions to similar interfaces concerning
other objects in the MIB an even easier job.

The API also provides interfaces to the HP OpenView database to get hold of the received traps and also
OSF/Motif functions that allow several applications to work with and control the visual aspects of a
common submap hierarchy, thus cooperating with the IP Map application.

Conclusions

This project proved the feasibility of replacing the home-made distributed diagnostic tools by a SNMP
based framework. Among other benefits we will be able to integrate the view of network and system
diagnostics, use a standard protocol for the manager-agent communications, provide a standard hierarchy for
the managed data and reduce the maintenance effort to one agent.

We stepped into some limitations and this were,  short support at the data types level, further studies to be
done on security and reliability issues, very slow access time under SNMPv1 for table objects retrieval.

References

Managing networks and systems with SNMP. O. Reisacher 1995,
http://www.cern.ch/CERN/Divisions/SL/SpsLepControls/snmp_sysman.html

Installation and Management of the SPS and LEP control system computers, Alastair Bland, CERN, paper
presented at ICALEPCS’93, Berlin, Germany

SNMP, SNMPv2 and CMIP, William Stallings, Addison Wesley 1993


