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Abstract

The experimental values of Rb and Rc are the only data which do not seem

to agree with Standard Model predictions. Although it is still premature to

draw any definite conclusions, it is timely to look for new physics which could

explain the excess in Rb and deficit in Rc. We investigate this problem in

a simple extension of the Standard Model, where a charge +2/3 isosinglet

quark is added to the standard spectrum. Upon the further introduction of

an extra scalar doublet, one finds a solution with interesting consequences.
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Precision electroweak tests at the Z0 resonance provide impressive confirmation of the

Standard Model (SM), allowing for the extraction of mt via global fits to electroweak data,

which is in good agreement with direct measurements at the Fermilab Tevatron. Re-

cently, however, the so-called “Rb − Rc” crisis has been reported [1], namely, an excess

in Rb ≡ Γb/Γhad and deficit in Rc ≡ Γc/Γhad, with respect to their SM predictions. From a

multiparameter electroweak fit, the latest results are

Rexp
b = 0.2219 ± 0.0017, Rexp

c = 0.1543 ± 0.0074, (1)

while, for mt = 180 GeV, RSM
b = 0.2156, and RSM

c = 0.172. Thus, with an experimental

accuracy of ∼ 0.8% (5%), the SM expectation for Rb (Rc) lies 3.7σ (2.5σ) below (above)

the experimental result. Of growing concern is that, while the discrepancy had existed

previously [2], it became more acute after inclusion of 1994 data. It should be noted that

the measurements of Rb and Rc are rather correlated (−0.35), therefore an improvement in

the measurement of one will also reflect on the measurement of the other.

It may be premature to use these measurements to draw any definite conclusions. Indeed,

more data or better analysis methods might bring Rb and Rc back at par with their SM

predictions. On the other hand, there is also the more exciting possibility that, with time, Rb

might remain above the SM prediction and Rc below it, thus hinting at physics beyond the

SM. It should be kept in mind, however, that the measurement of the total hadronic width

through the variable Rℓ = Γhad/Γℓ is rather consistent with the SM. One may therefore ask:

What sort of new physics can shift Rb and Rc in the right directions, while keeping other

observables consistent with present experimental values?

In this paper we first explore the case where Γc is reduced while Γb is not changed.

This shifts Rb and Rc in the right directions. A viable extension of the SM which can

achieve this consists of adding a charge +2/3 quark Q whose left-handed and right-handed

components are both singlets under SU(2)L. The new quark Q mixes with the standard

charge +2/3 quarks, and as a result Γc could be reduced [3]. Isosinglet charge +2/3 quarks

have been considered in models where the supersymmetric gauge group is extended [4].
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At the phenomenological level, it could lead to [5] a significant enhancement of D0 − D̄0

mixing, detectable at the next generation of experiments. More drastically, the charge +2/3

isosinglet quark might itself be the 180 GeV quark observed at the Tevatron, while the

actual top quark remains hidden below MW via fast t → cH0 decay induced by large c-Q

and t-Q mixings [6]. As we shall see later, the latter scenario provides us with a provocative

possibility for both Rb and Rc to move in the right directions in a substantial way.

The minimal extension of adding only one charge +2/3 isosinglet quark Q leads to

new gauge invariant mass terms of the type Q̄LQR and Q̄LujR, as well as additional Yukawa

coupling terms ūiLQR, where ui denotes standard up-type quarks. For the sake of simplicity,

let us for now ignore the first generation and set the standard KM mixing matrix to unity

[7]. One then has the charged current

(c̄L t̄L Q̄L)
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where Si ≡ sin θi, Ci ≡ cos θi. The isospin part of the neutral current becomes
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The only immediate change accessible in Z decay is in the Zcc̄ coupling,

vc =
√

ρ
[

tc3C
2
2 − 2Qc sin2 θ̄W

]

, ac =
√

ρ tc3C
2
2 , (4)

where
√

ρ represents the non-trivial wave function renormalization of the Z boson, and θ̄W

is the effective weak angle at the Z-pole. One finds

Rl ≃ RSM
l

(

1 − 0.41S2
2 + 0.30S4

2

)

, (5)

Rb ≃ RSM
b /

(

1 − 0.41S2
2 + 0.30S4

2

)

, (6)

Rc ≃ RSM
c

(

1 − 2.41S2
2 + 1.75S4

2

)

/
(

1 − 0.41S2
2 + 0.30S4

2

)

. (7)
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The SM expressions are given, to very good approximation, as

RSM
l = (20.2 + 10.0 δρ + 6.3 δV t

b )(1 + αS(mZ)/π + · · ·),

RSM
b = 0.220 − 0.01 δρ + 0.25 δV t

b , (8)

RSM
c = 0.170 + 0.015 δρ− 0.055 δV t

b .

where δρ denotes the deviation of ρ from unity which is mainly due to the t–b splitting, and

δV t
b corresponds to the non-universal correction to the Zbb̄ vertex. The leading Higgs de-

pendence in δρ is logarithmic, whereas in δV t
b the Higgs dependence is practically negligible.

Within the framework of the SM, δρ and δV t
b , then are given by (xi = m2

i /m
2
Z)

δρ ≃ (3α/4π sin2 2θ̄W ) xt, δV t
b ≃ −(1.05α/π)(xt + 2.17 lnxt). (9)

We now extract the bound on S2
2 from Rexp

l = 20.788 ± 0.032, and examine the im-

plications for Rb and Rc. To accommodate a large mixing angle we need a large value of

αS, as is evident from the expression of RSM
l in eq. (8). Rb and Rc, on the other hand,

are independent of αS for all practical purposes. The combined average of LEP + SLD is

αS(mZ) = 0.123±0.004±0.002 [1]. Since we use Rl to extract S2
2 , we cannot use the value of

αS(mZ) derived from Rl within the framework of SM. However, various other independent

measurements of αS at LEP (e.g. the comparison between 3-jet and 2-jet events, or, say,

from τ -polarization measurement) are consistent with each other. We therefore choose two

representative αS(mZ) values [8] as 0.123 and 0.126. Since Rl is almost flat with respect to

variation of mt, we fix mt = 180 GeV. We take 70 GeV and 300 GeV as two representative

values for mH0 . A low mH0 is slightly preferred to maximize the allowed S2
2 and hence

enhance the effects in Rb and Rc. The bounds on S2
2 derived from the 2σ lower limit of Rl,

and the consequent changes in δRb and δRc using those angles, are displayed in Table I.

It is clear from Table I that, although the shifts are in the right directions, the discrep-

ancies in Rb and Rc are hard to make up in this minimal scenario. What one really needs

is a scenario where Γb is increased while Γc is accordingly reduced, such that Rl remains

consistent with experiment – a situation which could shift Rb and Rc in the right directions
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by significant amounts. However, no minimal extension beyond the SM discussed so far in

the literature can do this job satisfactorily. In minimal supersymmetry, light superpartners

(∼ 50–70 GeV) could increase Γb and push up Rb by ≃ 2σ, but Rc remains practically

untouched [10]. This results in a lower αS(mZ) ≃ 0.118 which is in consonance with lower

energy measurements, but not compatible with a simple supersymmetric Grand Unified

Theory [11]. The distinctive feature of the isosinglet charge +2/3 quark scenario is that Rc,

which in most scenarios is hard to move, can be brought down by ≃ 0.4σ by directly affect-

ing Γc [3], while the indirect effect on Rb is also non-negligible (≃ 0.5σ upward pull). Note,

however, that the c-Q mixing angle S2 has been singled out, while S3 is tacitly assumed to

be smaller. This is not particularly natural, for one might expect the t-Q mixing angle S3

to be greater than S2. Allowing for large S3, one could consider an intriguing effect of the

so called “light (hidden) top” scenario of ref. [6], which we now elaborate.

With both t and Q entering the Zbb̄ vertex correction, the charged and neutral current

couplings that appear in the loop are modified through eqs. (2) and (3). The impact can

be summarized as an effective top mass,

m2
t −→ (meff.

t )2 = m2
t + 2S2

3mt(mQ − mt) + S2
3(S

2
2 + S2

3 − S2
2S

2
3)(mQ − mt)

2. (10)

If one takes mt = 180 GeV and mQ > mt, this relation then dictates that S2
3 has to be

very small to avoid aggravating the situation with Rb. In the scenario of ref. [6] (originally

proposed in ref. [12]), however, it is proposed that mt < MW is possible because of fast

t → cH0 decay as compared to the standard t → bW ∗ mode, which allows the top quark to

evade earlier searches by the CDF Collaboration. It is then natural to take mQ = 180 GeV

to be the heavy quark that is observed at the Tevatron. This could work only if both S2
2

and S2
3 are sizable [6]. If such is the case, then meff.

t in the Zbb̄ loop could be much smaller

than 180 GeV. It has been known for a long time that the larger Rb value favors a lighter mt

than suggested from the global electroweak fit (and later, the Tevatron discovery). We now

have a mechanism to fit both demands, hence it is worthwhile to redo our analysis. We will

come back to the issue of Rl later, and for now just concentrate on Rb and Rc.
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Let us illustrate how the mechanism would work. First, RSM
b in eq. (6) should become

RSM
b (meff

t ), with meff
t as given in eq. (10). Since Rc, in particular, may not be as far away

from its SM value as in eq. (1), we assume that Rb is shifted by +3.7σ, while Rc is shifted

by −1.4σ, such that Rb + Rc is not drastically different from SM, i.e.

Rb ≃ 0.2219 (+3.7σ shift), Rc ≃ 0.1616 (−1.4σ shift). (11)

Thus, with Rc/R
SM
c ≃ 0.940, from eq. (7) we find

S2
2 = 0.0305, (12)

which is larger than the values of 0.007 – 0.009 given in Table I. Substituting into eq. (6),

we find that RSM
b (meff.

t ) = 0.219, which implies that meff.
t ≃ 100 GeV. In the scenario of ref.

[6], we could, for example, take mt = 70 GeV and mQ = 180 GeV. Solving eq. (10) we get

S2
3 ≃ 0.27, (13)

which is larger than S2
2 . Note that t is still dominantly the SU(2) partner of the b quark,

which justifies our flavor label. It may be noted , however, that with C2S2S3 ≃ 0.089, the

c̄LtRH0 Yukawa coupling is a factor of 3.5 weaker than in ref. [6], and if mH0
>∼ 60 GeV,

phase space suppression of t → cH0 is itself too severe to allow it to dominate over the

standard t → bW ∗ mode. We turn, however, to the issue of Rl, the resolution of which

results in a possible way out from this problem as well. Note that the present mechanism

naturally does not affect Γd and Γs, and could be chosen not to affect Γu.

It should be emphasized that, within the present setup (minimal addition of Q), Rl

cannot be accounted for. The reason is because something similar to eq. (10) would also

enter into δρ, making it smaller than the SM value for mt = 180 GeV. To be more precise,

defining δρ = (3α/4π sin2 2θ̄W ) T̂ , one finds [13]

T̂ = xt + S2
3

(

−xt + xQ − C2
3 ftQ

)

+ S2
2

(

S2
2S

2
3xt + S2

2C
2
3xQ + (2 − S2

2)S
2
3C

2
3 ftQ

)

, (14)

where fab = xa +xb +2/(x−1
a −x−1

b ) lnxa/xb. Using eqs. (12) and (13) and mt, mQ = 70, 180

GeV, one obtains T̂ = 1.14, which should be compared with T̂ SM(mt = 180) = 3.90.
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However, T̂ is largely a measure of the accumulative effect of doublet splitting in Nature,

which enters into the W and Z boson two-point functions (vacuum polarization). In contrast,

the effects that we discuss are for the flavor specific Zcc̄ (tree level) and Zbb̄ (t and Q in loop)

three-point functions [15]. Departing from the minimal addition of a singlet quark Q, it is

easy to conceive other sources of doublet splitting that affect mainly the two-point functions

and only marginally the flavor specific three-point functions. A convenient example is a

second Higgs doublet with mH+ > v but mh0 < MW , where h0 stands for lightest neutral

(pseudo)scalar. This gives a positive contribution T̂ h = f+0/3, where ‘+’ and ‘0’ stand for

mH+ and mh0. Numerically, taking mH+ , mh0 = 300, 60 GeV, one obtains T̂ h = 2.78. Hence,

a sufficiently split second scalar doublet could mimic the effect of the SM top-contribution

to δρ, and help Rl maintain its near-perfect agreement with observation. As an extra bonus,

mh0 < 60 GeV becomes possible. In fact, no realistic limit exists on the lighter neutral Higgs

in a two-doublet scenario. Thus, a relatively light h0 boson (which is not directly produced

in e+e− collisions) could help overcome the above mentioned phase space suppression in the

decay mode t → ch0, and facilitate the hiding of the top below MW [14]. Note that a heavy

H+ boson makes little impact on low energy observables such as b → sγ and B0-B̄0 mixing.

We turn towards phenomenological consequences and check whether one runs into conflict

with other data. In the conservative approach, because of the smallness of S2 and the tacit

assumption that S3 is even smaller, there is practically no observable consequences, beyond

the insufficient negative pull on Rc. However, for the more provocative case, because both S2

and S3 are quite sizable, there is considerable impact on phenomenology [6], especially those

involving the top and singlet quarks. First, from eq. (2) one sees that Vcs gets modulated by

C2 ≃ 0.985, which is fully compatible with present errors. Second, one finds Vtb ≃ C3 ≃ 0.85,

which may appear to be a bit small. However, in this scenario, it is the (dominantly) singlet

quark Q that is “faking” the SM top quark at the Tevatron. From eq. (2) one then finds that

|VQb| ≃ S3 ≃ 0.52, |VQs| ≃ S2C3 ≃ 0.15, which is in apparent conflict with recent studies at

the Tevatron that give |V‘t’b| = 0.97 ± 0.15 ± 0.07 [16]. On closer inspection, however, what
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is actually measured is the “b-content” of top events. If mQ ≃ 180 GeV, the leading decays

are Q → bW , sW ; tH , tZ; cH , cZ. Using eqs. (2), (3), (12) and (13), we find their relative

weights 66.3%, 5.4%, 14.6%, 7.3%, 3.3%, 3.0%, respectively. Since t → cH0, bW ∗ and

H0 → bb̄, the final state contains b quarks whenever it contains t or H0. Thus, the b quark

content of Q decay is close to unity, and |V‘t’b| ≃
√

0.663 + 0.146 + 0.073 + 0.033 ≃ 0.96,

which is fully consistent with Tevatron results.

The implication for LEP-I is that, with our choices of S2 and S3, Γ(Z → tc̄ + t̄c) ∼ 1

MeV [4,6], but this is no easy task to measure. We also note that the impact on Af
FB and Af

are within errors. In contrast, the consequence at LEP-II is dramatic. The “light (hidden)

top” scenario demands that mh
<∼ mt

<∼ MW < mQ ≃ 180 GeV. Thus, unless the Tevatron

could rule out the scenario by detailed analysis below MW [14,17] (without assuming SM

decay), toponium may show up soon at LEP-II. One could also observe open tt̄, and check

that the decay rate is indeed faster than in SM. At the same time, one should be able to

discover a relatively light Higgs boson in the decay products of tt̄ events.

Turning our attention to D0–D̄0 mixing, we note that it is expected to be small in the SM,

while the present scenario can induce a substantial effect. The Z mediated contribution gives

[5] ∆mD ≃
√

2GFf 2
DBDmDηQCDS2

1S
2
2/3 ∼ 1× 10−7S2

1S
2
2 GeV, hence it depends crucially on

the size of S1. We have set S1 = 0 from the outset, but it is in principle a free parameter,

just like S2 and S3. Furthermore, it has been shown [5,6] that the hierarchy S1 : S2 : S3 ∼

mu : mc : mt does not necessarily hold. From the experimental limit ∆mD < 1.3 × 10−13

GeV [18], we obtain the limits |S1| <∼ 0.012, 0.006 for S2
2 = 0.008, 0.0305, respectively. Note

that with such an S1 value, B0–B̄0 mixing in the present scenario can have both t and Q

(with mt
<∼ MW and mQ ≃ 180 GeV) quarks in the loop, but can still be accounted for.

In summary, we present the case of adding a charge +2/3 isosinglet quark as a possible

solution to the so-called Rb −Rc problem. In the conservative, minimal scenario where just

one such quark is added and mt is taken as ∼ 180 GeV, the precisely measured quantity Rℓ

can tolerate only a −0.4σ pull on Rc, while generating a +0.5σ pull on Rb. The direction is

right, but the magnitude is insufficient. However, in the “light (hidden) top” scenario, one
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could take mt < MW and identify the dominantly singlet quark as weighing 180 GeV. One

could then in principle allow δRc ∼ −1.4σ while inducing δRb ∼ +3.7σ. The push or pull

comes about because of c-Q mixing, just like in the conservative case, but in addition, Rb

is raised due to a lower effective top mass. The common, key ingredient is to have rather

sizable c-Q and t-Q mixings. It is, however, necessary to add a sufficiently split scalar

doublet to simulate the effect of a standard heavy top on the oblique parameters, as inferred

by the global fit. At least one neutral Higgs boson should be rather light such that fast

t → ch0 decay would not be hindered by phase space. The existence of toponium and light

Higgs bosons are dramatic consequences that can be tested immediately at LEP-II, where

the model could be fully confirmed or ruled out. Unlike MSSM solutions to Rb (but not

Rc) problem, the present scenario is rather ad hoc, i.e. tailored to the Rb–Rc problem. But

that is also an advantage, for its effects do not show up strongly elsewhere except when

involving heavy charge +2/3 quarks. If new particles are found at LEP II, one should strive

to distinguish between the light chargino/stop option of minimal supersymmetric Standard

Model, vs. the light top/Higgs scenario with exotic charge +2/3 isosinglet quarks.
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TABLES

TABLE I. Bounds on S2
2 from 2σ lower limit of Rl for a fixed mt = 180 GeV, but for different

values of mH and αS(mZ), are displayed. RSM
l for various inputs have been calculated [9] using

the ZFITTER version 4.9. Also shown are the corresponding δRb and δRc. For αS(mZ) = 0.123

and mH = 300 GeV, Rl lies below the 2σ lower limit of RSM
l .

mH αS(mZ) = 0.123 αS(mZ) = 0.126

(GeV) S2
2 δRb δRc S2

2 δRb δRc

70 0.007 0.0006 −0.0024 0.009 0.0008 −0.0032

300 – – – 0.008 0.0007 −0.0026
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