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solution found is a vertical phase advance of 90°
Q,= 76.33. In the case of 108° horizontal phase advance per cell, the best
lattice, it is also possible to change to the operating point Q,,= 90.18,
can be used to improve the dynamic aperture of the 90°/60° lattice. With this

effect on the detuning than follows from first-order perturbation theory. This
cross—talk with arc sextupoles, octupole correctors produce a much stronger
phase advances per cell and shifting to another operating point. Because of
employing multipole correctors in straight sections, changing the betatron
These include correction of vertical detuning with horizontal amplitude by
A variety of means to improve the dynamic aperture of LEP2 are studied.
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optimum phase advances from the IPs as given in Table 2.1. OCR Output
one obtains with the standard tune values Q,. =90.29, Qy=76.l9 the coefficients c,,_y and the

awx lm
(2-1)= B.B,<K2L>2l ¢.B. + ¢,B, l

Writing the maximum contribution to BQ,/GW,. from the correction sextupoles in the form
talk with the arc sextupoles. This effect will be discussed later.
results to the case of normal sextupole correctors one should keep in mind a possible effect of cross
The case of one sextupole pair per superperiod is treated analytically in Appendix 1. Applying these

2.1 Correction of the Cross-Derivative.

skew insertion sextupoles will be studied.
correction of the cross—derivative. In this section the effect on dynamic aperture of both normal and
and 7. Since the retum to pretzel operation is not planned yet, the latter are available for the
"bunch train" sextupoles (MSBT) in pits l and 5 and upright "pretzel sextupoles" (MSX) in pits 3
Presently there are two pairs of sextupole correctors in each of the four high—beta insertions: tilted

2 Effect of Sextupole Correctors on Detuning with Amplitude.

obtaining large dynamic aperture, reaching the highest possible energy is a priority.
which was therefore chosen as the reference energy. Though such a choice is not favorable for
According to Ref.[4] this voltage provides sufficient RF bucket for beam energy as high as 91 GeV,

Total RF Voltage 2236.88

72NbCu-10.2 734.40

32NbCu-10.2+28Cu-3.03 I 411.24

72NbCu-10.2 734.40

28Cu·3.0332Nb-8.5+ 356.84

Ncavities·Voltage (MV) Voltage/IP (MV)

Table 1.1

energy will probably start with RF configuration similar to the one given in Table 1.1.
even more important since the total RF voltage may be lower than planned [3]. Experiments at WI
horizontal motion in lattices with higher horizontal phase advance per cell). This effect becomes
the standard 90°/60° optics, this effect is most restrictive for vertical motion, but gets stronger for

Another limitation is associated with Radiative Beta-Synchrotron Coupling (RBSC) [2] (in
away from the integer value. These possibilities are studied in Sections 2-5.
employing multipole correctors or by changing the arc cell phase advances; b) shifting Q, farther
be followed: a) reducing the dependence of vertical tune on horizontal amplitude, either by

In the light of this, two approaches to the problem of improving LEP dynamic aperture can
discussion thereafter).
cross—derivative (supposedly because of contributions from higher order terms——see Fig.1 and
detuning at large amplitudes is appreciably larger than that predicted from the quoted values of the
tune is driven onto an integer value at large horizontal amplitudes. It is worth mentioning that the
vertical tune derivative with the horizontal invariant: GQ,/GW,. = -27 .5-10* , due to which the vertical
marginal at energies above 90 GeV [1,2]. This limitation appears to come from a large value of the
of the Courant-Snyder "invariant" W,,¤ 4.8 (1:)-mm-mrad [1]. The dynamic aperture is therefore
With the standard LPv6 optics both measurement and computation give the maximum stable value

1 Introduction.



0.6770.541 49.12 75.31 OCR Output124.0SBT.OL6+add* I tilted

0.677124.0 0.541 49.12 75.31SBT.OL6 I tilted

0.139 0.177 1 13.1 21.1334.92SBT.OL2B I tilted

1.0060.673 138.0 21.07tilted 195.4SD.OL9

normal 0.673 1.006195.4 138.0 21.07SD.OL9

0.6550.508 61.89114.0 51.95SD.OL5* I normal

0.3070.424 22.4775.86 98.02SD.OL4B I normal
X Im] [ml/2rr 21:Type S [mlName

Table 2.2a

dynamic aperture is highly detrimental. The SBT.QL6 sextupoles (when powered
is not very significant even for the large value of K2L which was taken. Moreover the net effect on
cross-derivative but the B-functions are not. As the result the effect of a tilted SD.QL9 on GQ,/BW,.

The phase advances of SD.QL9’s are almost optimal for the cffect of skew sextupoles on the
large contribution of higher order terms to the vertical detuning with horizontal amplitude.
resonance by employing a larger number of correctors, this approach seems hopeless in view of the
particles survive only few tums). Though it may be possible to diminish the excitation of this
horizontal nonlinear resonance is excited (it is difficult to determine the order of the resonance since
derivative. However the net effect on dynamic aperture is still negative, probably because a
efficient (according to MAD’s HARMON and STATIC commands) in correcting the cross
sextupoles placed at more favorable phase advances and B-functions near the QL5s seem to be quite
the cross-derivative but, since B,. >>B,, they have a much larger effect on BQ,./GW,. Additional
normal sextupoles, the effect of SD.QL4B’s being completely negative. The SD.QL9’s do reduce

The phase advances of both existing pretzel sextupole families are far from the optimum for
and arc sextupoles in the second order.
calculations in Appendix 1. This indicates that there is no significant cross-talk between correction
contribution of the correction sextupoles to the cross-derivative agrees quite well with the analytic
the perfect machine A,. = (W,[Iim])in the absence of radiation are presented in Table 2.2b. The

l/2

GQ,/GW,. = -27498, GQ,/BW, = 18210) as well as the corresponding horizontal dynamic aperture of
sextupole pairs in the ring (to be compared with the initial values BQ,./BW, = 1749,

The residual values of detuning coefficients for the given strength and number of the
MSX sextupoles in pits 1 and 3 respectively (i.e., they are not the average values).
asterisk) insertion sextupoles. The B-function values quoted here were taken at the right MSBT and
distances and phase advances from the nearest IP to the existing and additional (marked with
sextupoles. This is confirmed by computation with the program MAD [5]. Table 2.2a shows

The data in Table 2.1 show that skew sextupoles are much more efficient than normal
skew sextupoles, are shifted by 0.25.
the case of antisymmetric excitation, the optimal phases, q>,,/2rt, of normal sextupoles and ¢y/2rc of
the whole ring (Npak), k and 1 are arbitrary (non—negative) integers. As mentioned in Appendix 1, in
The number of superperiods Nsuw may be understood here as just the number of sextupole pairs in

1.0654 I tilted I 0.143+0.25k I 0.012+0.50l I 0.019

0.2652 I mma I 0.161+0.25k I 0.024+0501 I 0.020

0.0324 I normal I 0.143+0.50k I 0.137+0.25l I 0.063

0.0132 I normal I 0.036+0.50k I 0.149+0.25l I 0.171

21'ENsupcr I I

Table 2.1



i0.304 -10014 -10819 -8048 1.5 OCR Output

10.608 -8379 -12914 -3646 1.5

i0.608 -16015 -25572 17832

-35347 -194400.608 17548 1.5

-177690.608 -58935 17281 1.0

-158080.608 -12197 8765 1.5

950 -341950.608 10515 1.3

Nw I K2L {m"l ./aw.imc‘1 lao7aw.tm"1 laQmw.tma‘i lrmitmi
Table 2.2b

in their strength whereas the undesirable resonance excitation may occur in the first order and thus
It is clear that sextupoles are not the best way to correct detuning: the desired effect is second order

3 Effect of Octupole Correctors on Detuning with Amplitude.

achieve the desired goal, we need a tool for consistent analysis of the higher order effects.
positive result was obtained (in the latter case no correcting effect on detuning was observed). To
larger number of tilted insertion sextupoles or by introducing a small tilt of the arc sextupoles. No
without strong resonance excitation, thus improving the dynamic aperture, either by employing a

An attempt was made to find a skew sextupole configuration which would reduce detuning
correction sextupoles.
range of Wx, indicating that the observed effect is due to cross—correlation between arc and
Tracking with the arc sextupoles off shows no visible variation in Q, (nor particle loss) over a wide
7) at K2L = .053 m". In this case, the dynamic aperture is almost as large as without correctors.
on Fig.l shows the vertical tune with SBT.QL6’s switched on (including additional pairs in pits 3,
detuning at large values of Wx. This is quite noticeable, even at a low excitation. The dashed curve

It tums out that, in contrast to normal sextupoles, tilted sextupoles have a favorable effect on
it is already larger than in the absence of any additional correctors.
follows the corresponding cross-derivative value but at Wx = 2.2 um (the stability limit in this case)
been checked). With the nonnal sextupole SD.QLS correctors, the detuning (curve 2) initially also

conclusions since the depth of Wx beating has not
sextupoles; 3 - SBT.QL6 tilted sextupoles.

order effects (but one must be cautious in drawing
l - no insertion correctors; 2 - SD.QLS normal

AQ>/Wx = -4-10mmight be attributed to higher
4 "Figure l. Vertical tune vs. horizontal invariant with:

appreciably larger. The stability limit of
Wx [micron]

cross—derivative value but at large amplitudes it is
1 2 3 4 5

curve corresponds quite well to the calculated
7 6 . 00

small amplitudes (Wx S lum) the slope of the
the LPv6 optics without insertion correctors. At

7 6 . 05
plots (dashed curve). Curve 1 was obtained with
advance per 10 tums (solid curves) or from FFT

76. 10
` ` ` found by tracking with MAD, either from phase

E \ 3
on the horizontal Courant—Snyder invariant Wx

7 6 . 15 + 1 §_
Fig.l shows the dependence of the vertical tune Q,

A 2
2.2 Higher Order Effects.

produce a noticeable effect on detuning at large values of W, even ata much lower excitation level.
in pits 3, 7 and the excitation is lowered by half. However it tums out that tilted sextupoles can
is as small as in the previous case. This remains so even if additional SBT.QL6 pairs are installed
antisymmctrically) have a more pronounced effect on the cross—derivative but the dynamic aperture



correctors on in presence of misalignments OCR Outputl05p46v6 lattice dynamic aperture at 91 GeV.
Figure 3. Effect of octupole corrcctors on the Figure 4. Dynamic aperture at 91 GeV with OCT.QS2
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equal to -1.4-10mat K3L = -3.26 m'
4 `l

derivative follows the corresponding first order perturbation theory formula more closely, being
arc sextupoles. The contribution of higher order terms to GQ,/GW,. is less significant. This
(3) and the MAD STATIC routine. It tums out that the effect is again mainly due to cross—talk with
be 1.2-10mand 2.3-10m. These values are a factor 4 larger than follows from the expressions

4 `]4 `]

-3.26 m". Based on these data, the octupoles contributions to the cross-derivative are estimated to
strength set in turn to the values K3L = 0, -1.59 and

for the l0Sp46v6 optics. value. Fig.2 shows the vertical tune with OCT.QS2
OCT.QS2 correctors at K3L = 0; -1.59; -3.26 m" inferred from the corresponding cross-derivative
Figure 2. Vertical tune vs. horizontal invariant with amplitudes is Significantly SU-Onger than might be

of octupoles on detuning at large horizontalWx [micron}
just as in the case with tilted sextupoles. the effectI 2 3 4 5

cross-derivative by less than 3-10m. However,76-UU 3 ‘1

\ GeV is lK3LI = 1.6 m", allowing a correction of the
supply, their maximum normalized strength at 9176-05

<|3,,|3y> = 8.47-10m. With the present power
4 z

product of beta-functions at their location being76- 10

around all even IP’s, the average value of the
In LEP there are OCT.QS2 octupole pairs installed76· 15

3 3.1 90°/60° lattice.

invariant. These can be found in Appendix 2.
from an octupole pair per superperiod to the second derivative of vertical tune with the horizontal

With the help of Mathematica [6], we have generated analytical expressions for contribution

BWU 321t
ao [$2101. —i = —-——“ . u = x
3Wx 161:

3Qy Bx|3yK3L
The contribution of a single octupole to the detuning coefficients is given by the formulas

more promising.

dominate the particle dynamics. In this respect, correction of the detuning with octupoles looks



derivative as a function of ii, falls off rapidly for u,>l20°. The ti, = 135° option has been well OCR Output
tunes modulo 4 are kept constant (as well as phase advances in the even insertions).. The cross
with the help of Mathematica (see Appendix 2 in Ref.[7]) under the assumption that the betatron

Figures 5,6 show the dependence of the cross-derivative on arc cell phase advances obtained

4 Variation of Cell Phase Advances

octupoles would have to be even more powerful.
improvement can probably be achieved with octupoles installed near the QS3 quadnrpoles but these

- emrttances 22, = e, = 32 nm. A more significant
(108/60) lattice dynamic aperture at 91 GW.Figure 5. Effect of octupole correctors on the c05r46 ·· This is still smaller than the 100 ellipse forbeam

dogs nOtmany improve the dynarnic aperture.
0.5 1 1. 5 A, value was found to be the most effective but

values K3L = 0; -1.59; -10.3 m" in tum. The last
OCT.QS2 correctors with strength set equal to he
and in relation to 0,. Fig. 5 shows the effect of
correspondingly smaller, both in absolute value

U 5 `
The dynamic aperture (see curve 1 in Fig.5) is
than for the 90°/60° lattice: GQ,/8W, = -8.12-10
The cross-derivative in this case is much larger
tune dependence on the horizontal amplitude.
limited at large W, by the same effect of vertical
The dynamic aperture of the 108°/60° lattice is

3.2 108°/60° lattice.

these octupoles do not reduce the energy acceptance.
Fig.3 shows no significant effect of misalignments in the present case. lt has also been checked that
monitor read error being 0.2 mm. The solid curves join average values. Comparison with curve 2 in
has been made rather worse than in reality just to make the effect of errors more visible), RMS
closed orbit was corrected with accuracy <xC_O>= 0.3 mm, <yc_,,>= 0.6 mm at BPM’s (this

2’//2 2l/2

21/22l/2alignment errors were assumed to be <x>=<y>=0.15 mm, <psi2>l/2=0.24 mrad. The
different seeds of quadrupole misalignments with OCT.QS2 correctors on at K3L = -1.59 m`°. The
resonances due to errors in phase advances. Fig.4 shows the dynamic aperture calculated with

It may tum out that, in the presence of misalignments, octupoles would excite additional
side effects from these octupoles when the bunch trains bumps are on.
practically the same as given by curve 3 in Fig.2. It should be checked that there are no negative
pit B, = 50m, By = 122m. ln this case the vertical tune dependence on horizontal amplitude is
octupole correctors placed at 162m from the even IPs near QS3 quadmpoles, where in the second

large vertical B-function. The dashed line in Fig.3 was obtained with strong (K3L= -10 m")
lt is possible to improve the dynamic aperture further by installing octupoles in places with

5,, = 0.5%.
energy deviation, the RBSC mechanism excites synchrotron oscillations with amplitude up to
horizontal resonances. It should be noted that although tracking was performed with zero initial
increasing the OCT.QS2 octupoles strength over the present limit because of excitation of
beam emittances 2ey=e, = 47.5 um. As can be seen from the plot, there is little advantage in
given in Table 1.1. Curves 1-3 co rrespond to those in Fig.2. The dotted line is the 100 ellipse for
Au = (W..[;.tm]), u = x,y. It was computed with the 105p46v6 optics and the RF configuration

1/2
Fig.3 shows the dynamic aperture the perfect LEP at 91GeV in the A,-A, plane, where



and RF voltage (as has been already found in Ref.] 1]) since it is limited by the systematic integer OCR Output
The horizontal dynamic aperture of the l08°/60° lattice is insensitive to both misalignments

choosing [3,.and [3,for high energy operation.
* *

correspondingly larger 16,.. This underlines the necessity of taking RBSC into consideration when
s05m46_934 lattice is more severely limited by RBSC because of the smaller Bf and
higher uy only when the RF voltage is sufficiently high. At lower voltage, the dynamic aperture of

Comparison of the two optics with px = 90° shows some gain in dynamic aperture due to
voltage VRF = 2500 MV. Dotted lines correspond to 100 beam ellipses.
VRp= 2236.9 MV), solid lines show the dynamic aperture of the perfect machine with total RF
(with the exception of the 90°/90° case where it corresponds to the perfect machine with
errors and closed orbit correction were as given in subsection 3.1. Dashed lines join average values
under consideration. Dots represent values obtained with different seeds of misalignments. RMS
obtained at 91 GeV with the LEP2 RF configuration presented in the Introduction for the four optics

Fig. 8 compares the dynamic aperture in A, - A, plane, where Au =(W..[t1m]), u = X,y,
1/2

l08°/90° I 23,650 I -17,060 I 11.340 I 79.2 I 216.3

108°/60° I 23.560 I -81,180 I 75,430I 75.4 I 218.2

90°/90° I 950 I -13,930 I 960 I 84.5 I 226.1

90°/60° I 1.750 I -27,500 I 18,210 I 62.8 I 207.9

kxlattice I BQ,./BW,. I BQ,/BW,. I GQ,/BW

Table 4.1

and synchrotron integrals responsible for RBSC [2] for these four optics.
l05p46v6 (90°/60°) and C05R46 (l08°/60°) optics. Table 4.1 gives values of detuning coefficients
report). For the case of pt,. = l08° a new optics called y05e46 was matched and compared with
optics Bf = 1.25m at even [Ps, a factor two smaller than in the other optics considered in the present
To study the uy = 90° option in the case of ir,. = 90° an old s05m46_934 optics was used (with this

4.1 Comparison of different optics

advance with two p., values: 1 - 90°, 2 - 108°Nv = 6O°
Figure 7. Cross-derivative vs. vertical phaseadvance Pc" cen with

Figure 6. Cross·derivative vs. horizontal phase
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value with uy increasing and reaches fairly low values at uy = 90°
natural beam emittance. As a function of uy the cross-derivative monotonously decreases in absolute
studied (see [7] and references therein) and is of significant interest for LEP2 since it minimises the



c) higher TMCI threshold due to a smaller <[5,> in the arcs [8]. OCR Output
b) larger horizontal dynamic aperture than with the lO8°/60° optics;
luminosity at LEP2 energies;

a) low natural emittance (ex = 32.6 nm at 9l GeV) due to px = lO8°, necessary for obtaining high
The interest of this lattice is based on the following points:

4.2. l08°/90° lattice.

Figure 8. Dynamic aperture in A,, A, plane of the four lattices at 91 GeV.
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cooperative effect of imperfection driven resonances and RBSC.
resonance Q, = 4-19. The dynamic aperture of the lO8°/90° lattice seems t0 be determined by the



300.42 59108°/90° I 68

30 660.42l08°/60° I 86
_ ms<p,>m 2,0,lattice

Table 4.2 OCR Output

data of Ref.[11] were used).
than ¤13% expected from the ratio of 28,2, for equal numbers of RF cavities (see Table 4.2, where
same conditions [10] but with a smaller number of SC RF cavities) tumed out to be even larger
measured to be 0.505 mA/bunch. so the gain w.r.t. 108°/60° lattice (0.430 mA/bunch under the

07/10/95. The vertical TMCI threshold with only damping wigglers on and QS=0.085 was
The YE optics was tested in two machine development (MD) studies on 15/09/95 and

of imperfections.
nonlinear chromaticity. This indicates that the RBSC is a major limiting mechanism in the absence
at 91 GeV shows a slight increase in dynamic aperture of the perfect machine due to correction of
argued whether the variation in SD strengths would affect the transverse dynamic aperture. Tracking
acceptance may be increased up to 2% and is determined by the RF bucket energy width. It may be
With normalized gradients in the families KSD1 = —0.333m", KSD2 = —0.185 m", the energy
chromaticity with u, = 90° can be achieved by rearranging the SD sextupoles into two families [9].

lf this optics were to be adopted for operation, a proper correction of vertical nonlinear
chromaticity correction.
become larger, so the value of 1.1% can be considered as maximum achievable without nonlinear
vertical amplitude (see Table 4.1). But with higher RF voltage the energy acceptance does not
taken). This may be explained by a stabilizing positive shift of the vertical tune with increasing
bucket energy width (with exception for one "pathological" seed of misalignment out of the five
0.8% (see Fig.9). However with a strong radiation damping at 91 GeV it is almost as large as the RF
excitation of both SF’s) the energy acceptance (in absence of radiation damping) is smaller than
connection of SD sextupoles. With equal excitation of all three SD families (and also equal
odd in order to reduce nonlinear chromaticity [9] since it cannot be corrected with the present
nominal tune values being Qt = 103.268, Q, = 97.193. The integer parts of the tunes were chosen
The proposed YE optics has the same low- and high—beta insertions as the standard LPv6 optics, the

the right.
amplitude at different seeds are slightly shifted to
VRF = 2237MV. Dots representing vertical
synchrotron amplitude at 91GeV with
of the Courant-Snyder invariant in pm) vs.
Figure ]()_ Maxima] Stable ampmude (Square rootcorrection of vertical non linear chromaticity.

deviation before (solid lines) and alter (dashed lines)
Figure 9. Fractional part of the tunes vs momentum U O ' 4 U ' B SP [%]
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that region. OCR Output
down. The reduction was well above the random and roundoff errors of ~l % in measuring Alb! Ib in

voltage were seen also, but having reached a maximum of about 5% at Vkick = 4.6 kV they went
significant (about 20%) losses already at Vkick-=4.2 kV. Without wigglers some losses at this

Some measurements with wigglers on were made only for B,` = 0.09m and showed
the predictions.

wigglers. dynamic aperture A, = 2.37 i/um and Ax = 2.23
emittance and damping wigglers on; 3 - B,` = 0.05m, no [5,* = 0.05m, which gives for the horizontal
voltage: 1 - B,`=0.09m, no wigglers; 2 - Bf =0.09m,

{$,` = 0.09m and at Vim. = 6.2kV withFigure 11. Relative bunch current loss vs. IK3E kicker
reached some 40% at Vkick = 6.6kV with

With wigglers switched off the losses
lkVl

on (cx = 23.6nm, 0E = 1.42-10`°).6 Vkiek. _ 4 one-with the emittance and damping wigglers0 . U 1 4%
off (sx = 8.3nm, oE=0.72·l0"), the dashed
solid curves join values obtained with wigglers
Fig.l1 as a function of the kicker voltage. The
The observed loss in bunch current is plotted inJ l

D . ZLU
mrad/kV, at its location B, = 126 m, ot, =2.7.
kicker calibration at this energy is 0.032
measured using the injection kicker IK3E. The
of the squeezed optics at 45.6 GeV was

ln the second MD, the dynamic aperture

not measured.

camera was out of operation during these machine development periods and the bunch length was
(and/or larger longtudinal impedance with new SC RF cavities in). Unfortunately the streak
possible explanation of the observed changes is a stronger bunch lengthening due to smaller 0tM
horizontal tuneshift with current since the expected drop in EBXZX due to larger rr, is only 0.6%. A
from l.9·l0`“ to 1.4·10`“ should overcome smaller Qs). Even more suprising is the 9% reduction in
partially compensated due to 6% bunch shortening (decrease in momentum compaction factor 0tM
current is again somewhat larger than might have been expected: the reduction in 28,2, should be
damping wigglers on but with 4 fewer SC RF units. The 11.5% reduction in vertical tuneshift with
and vertical tuneshifts obtained with 90°/60° optics (see Ref.[l2]) with QS = 0.102 and also only

which may be compared with the values -0.066 mA" and -0.145 mA" respectively for horizontal

L = -0.130 mx?

& = -0.061 mf
current. It was found to be

Another important characteristic of bunch stability is the coherent tune shift with bunch



12 OCR Output

Q, = 91.3 (dashed curve).
with horizontal tune: Q, = 90.3 (solid curve) and

Figure 13. Cross-derivative (in nm") vs vertical tune YO0m TROY [h€ time Shift
the operating point so as to provide a arger

P 76- 5 77 i if 7,7 _ 5] Ox = 64 resonance. Hence one should clioose
-35 moving close to the systematic Q, — 2Qy

/ little possibility to reduce detuning unless
/,/’ l /. the same assumptions as Figs. 6,7) there is

As can be seen from Fig.13 (obtained underfl 2, —3U ’ 'F
aperture is to choose different tune values.

-25 problem with the 90°/60° lattice dynamic

Another conceivable solution of thedwx
5 Shifting Q, updQy

displacement of islands in the phase space.
off), which can be explained by more thorough closed orbit and chromaticity correction and/or

At Bf = 0.05m no losses at the intermediate kicker voltages were observed (with wigglers
fluctuations, especially due to increased energy spread

When the wigglers are switched on the losses can be intensified due to stronger quantum
increasing kicker voltage the number of trapped particles gets smaller which reduces the losses.
there can get out of the (dynamic) aperture due to quantum fluctuations or another mechanism. With
when the kicker voltage is high enough to throw particles into a resonant island, particles trapped
maximum it is as high as 60%. Therefore the following scenario of particle losses seems possible:
(corresponding to beam energy 9lGeV) but without quantum excitation is shown in Fig. l2. At
probability of trapping particles into the islands in presence of strong radiation damping

_fluctuations shows). The rough estimate of
mpuruue orcuiation mated by the kick.... ...,........i..gzgci 1000 F“mS· as Uackmg mth qu‘°mmm
FZ’;`fi3i;E"§°i§‘£I}°I1§Z‘;'f?$3*iZ‘?§ I‘I‘i1‘"f€§’I “‘“€ cm “"“‘ W*gg‘€‘S °“““‘“°‘° "‘““

particles can survive in them for quite a long
L 3 2 _ 2 Ax typical width of the islands is AA, =O.5; so

orbit correction as cited in section 3.1 the

0-1

“

W, = 103.264+ 2.1-10 -2.73-l0= 103.32).
the horizontal tune being Q, = Q,0 + GQ,/8W,

0 . 3 corresponds to VMC, = 4.6 kV is W, = 2.73 um;
amplitude (the Courant-Snyder invariant which
corresponding to the acquired betatron

U ‘ 5
resonance islands at the radius in phase space
by invoking the presence of third integer

Alb These observations may be explained
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Summary

t0 operation point Q, = 90.18, Q, = 76.33
91 GeV with VRF = 2.237 GV and betatron tunes shifted

Figure 14. Dynmmc apmum or me i0sp46v6 optics at 108°/6O° and 1O8°/9O° Optics as WCH
tunes would be beneficial in the cases ofU' 5 1 l` 5 2 Ax
probable that transition to such fractional

It was not checked but seems quite
(dashed curve joins mean values).
machine (solid curve) and misaligned ones

U- 5 . ellipse (dotted curve) for both the perfect
practically coincides with the 100 beam
shifted tunes is shown in the A,·A, plane. It
dynamic aperture of the standard optics with
Q, = 90.18, Q, = 76.3 [14]). In Fig.14 the
confirmed in a test physics mn with
beam effect as the standard one (this was

According to simulations [13] the point QX = 90.18, Q, = 76.33 is as good for the coherent beam
The simplest solution is to pull the vertical tune a little farther from the integer value.
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considered. At the beginning it is better not to give too much detail of the structure of coefficients
The original Hamiltonian should be specified by the user according to the problem

normalization procedure.
order. The initialization cells contain the most general relations necessary for performing
To reduce the computation time (or make it at all possible) it is important to proceed in a certain

I How to use this notebook

limited to the nonresonant case.

Arising from Magnetic Multipoles", FERMILAB-Conf-86/30, March 1986. The present version is
presented by Leo Michelotti in his brilliant lecture "lntroduction to the Nonlinear Mechanics
and the corresponding phase space transformation by making use of the Hori-Deprit algorithm as

This notebook is intended to be a tool for easily finding the 2DoF Hamiltonian normal form

I Introduction

Off[General::spe1l]; Off[Genexal::spell1];
roman font, input and output are shown in bold and regular typewriter fonts;
This appendix has the format of a Mathematica notebook. Hereafter the plain text is printed in a
Appendix 2. Hori-Deprit Algorithm for 2DoF Nonlinear Motion

In the case of skew sextupoles the above formulas can be used with interchanged indices.
and unchanged tp,.

With antisymmetrical excitation the maximal value is the same and is reached at qi,. shifted by it/2

By|csc(rtqx — 21cqy )— csc(rtqx + 21cqy + Bycotnqx — Zrcqy )— cot(rcqx + 21tqy ))]1 ((
(A13).. .. P 327I

l2B. I¢S¢(¢¤<i. 1 + ¤<>t(¤¤i.) + ( )M is By(K2L)* ·‘8Qy A awx max
The maximum value is:

(A1.2>sin(2q>x -¤qx)=Si¤(4rpy -2%,):0
a single harmonic function in both ox and oy, all its extrema are given by the equations
so as to maximise the contribution from correction sextupoles. The BQ,/BW,. from Eqn.(Al. l) being

For the purpose of correcting negative cross-derivative the phase advances should be chosen
sextupole and W, is the Courant—Snyder invariant (twice the action variable).
Q,/Nw., are betatron tunes per superperiod, K2L is the normalized integrated strength of a
where 2¢,, 2q>y are the betatron phase advances between sextupoles in a pair, q,. = Qx/Nw., , q y

sintrtqx + 21rqy

cosfrtqx + 21rqy +cos2q>x + 4q>y — rtqx — 21tqy)(

sin(1tqx — Zrtqy)
(A1 1) l

cosfrtqx — 21tqy +cos2q>x — 4qiy —— nqx +21tqy)(

(1tqx)___ = supcr - GW, 321t sin
BQ, BXBY (K2L)° cos(1¤qx )+ cos(2¢x — 1tq, ) N

the cross—derivative is given by the formula
In the case of one pair of symmetrically excited normal sextupoles in each of the Nw., superperiods

Appendix 1. Cross-Derivative Due to a Sextupole Pair.
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aver[a_*b_]:=a*aver[b] /; NumberQ[a];

aver[a_+b_]:=aver[a]+avex[b];

px0[m_,a_*f[e_,n_]]:=a*f[e,n]*If[n==m,l,0];

pr0[m_,b_+c_]:=pr0[m,b]+pro[m,c];
angle variables and an averaging operator:
Also, we should construct an operator which projects out terms with a particular dependence on

g[0,t]=(Pi*Sign[t]-t)/2Pi.
g[m,t]=Cexp[I*m.q*(Pi*Sign[t]-t)]/(2I*Sin[Pi*m.q]);

where the operator ti[m,a]=Integrate[a*g[m, t-t'], {t', 0, 2Pi}] was introduced with Green function

tInt[0]:=O;

ti[m_,a_*b_]:=a*ti[m,b] /; NumbexQ[a];

tInt[f[e_,m_]*a_]:=f[e,m]*ti[m,a] ;

tInt[b_+c_]:=tInt[b]+tInt[c];
generalized azimuth

D=d/d(theta)+q[i]*d/d(d[i]), where q[i] are unperturbed tunes, theta=2Pi*s/Circumference is
containing basis vectors. This operator is the inverse to directional (Lie) derivative operator

Now we can define action of the trajectory integration operator tInt=l/D on the functions

f[e_,m_]An_ A:= f[n*e, n*m];

f[e1_,m1_]*f[e2_,m2_] “:= f[e1+e2,m1+m2];
employed:

To deal with products of the basis functions Mathematicds notion of upvalues can be
I/2*(e2[[2]]*m1[[2]]—e1[[2]]*m2[[2]])*f[e1+e2-{0,2],m1+m2];

I/2*(e2[[1]]*m1[[1]]—e1[[1]]*m2[[1]])*f[e1+e2-{2,0],m1+m2]+

pb[ f[e1_List,m1_List], f[e2_List,m2_List]]:

pb[a_*b_,c_]:=a*pb[b,c] /; FxeeQ[a,f[e_,m_]];

pb[¤-.¤-]==0; pb[a-,b_]==0 /: FreeQ[a.f[e-,m-1l:

pb[¤-,b-l==—pb[b,a]: pb[a-+b-,c_]==pbla,cl+pb[b,¤l:

with them but first the Poisson brackets themselves should be introduced:

We will not use this explicit defmition until necessary. It is sufficient to define the Poisson brackets
f{e_List, m_List]:= Pr0duct[ J [i]"(e[[i]]/2), {i,1,nd}]*Cexp[ I*Sum[ d[i]*m[[i]], {i,1,nd}]];
phase space the basis functions may be chosen in the form:

With action-angle variables (,I[i], d[i]), i = 1,nd (nd = 2 presently) as the coordinates in the
I Basis functions of dynamical variables

for example in the thin lens approximation.
Having found the desired expressions in a general form, one can use them for subsequent analysis,

zold = znew+Sum[eps"n*zo[0,n]/n!, {n,nmax}].
into the original ones (in the nonresonant case) in the following way

If the phase space trajectories are of interest one can map from the new dynamic variables
manipulations.
It is advisible at this point to extract from K (or rhs[n]) the interesting terms for further

K = Sum[eps"n*k[0,n]/nl, {n,nmax}],

normalized Hamiltonian is then found as

containing this coefficient. Lower order coefficients are evaluated and stored in the process. The
normalize it up to the order nmxrx (not related to nh) by evaluating k[0,nmax] or any expression
(it is not necessary to introduce the small parameter eps explicitly, it may be set to 1), one can

H = Sum[eps"n*h[n]/n!, {n,nh}]
specified the original Hamiltonian
of basis functions (see hereafter a simple example of a normal octupole nonlinearity). Having
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x1=-I*Sqrt[beta[1]/2]*(Exp[I*psi[1]]*f[{1,0},{1,0}]-Exp[-I*psi[l]]*f[{1,0},{—l,0}]]
relation

We may express now xl, x2 through the basis functions of action—angle variables according to the
the factor R/Bro was included in the coefficients cf[ml,m2].
so that n=l corresponds to sextupolar field, n=2 — to octupolar, and so on. For the sake of brevity

h[n]=Sum[ cf[m,n+2-m]*x1"m*x2*(n+2-m), {m,0, n+2}]
order the perturbative part of the Hamiltonian as follows

If no particular nonlinear term dominates, it is convenient (but by no means necessary) to
I Perturbing Hamiltonian

Sum[Bin¤mial[m—l,j-ll*pb[Sljl.z¤[m—j,nll,{j,l,mll/:m=!=0:
z0[m_Integex,n_Integex]:

Sum[Bin0mial[n—l,m]*zo[m,n—m], [m,1,n—l}];

z0[0,n_Integex]:=z0[0,n]=adz[s[n]]

zo[0,l]:=adz[s[1]];

Attributes[pb]=[Listable};
Poisson bracketing on lists):

parameter, zo[0,n], may then be found from the following relations (first we take care to extend the
Derivatives of the phase space vector in the old coordinates with respect to the small

adz[0]:=[0,0,0,0];

e[[2l]/2*f[e—{0,2},m], —I*m[[2ll*f[e.m]} ;

a*{€[[1ll/2*fle-{2,0},ml . —I*m[ [1]]*f[€,m] ,

adz[a_*f[e_List, m_List]]:

adz[b_+c_]:=adz[b]+adz[c];

action on the basis functions (adz[f]=pb[z,f]):
The phase space vector z={d[1], J [1], d[2], J [2]} can be introduced via its adjoint operator

I The phase space transformation

s[n_Integer]:=s[n]=tInt[ Expand[xhs[n] —k[0,n] ]];

k[0,u_Iuteger]:=k[0,n]=aver[ pro[[0,0},Expand[xhs[n]]]];

xhs[n_I¤teger]:=rhs[n]=h[n]+sh[n]-sk[n];

[ j r 1 r n' 1 } 1 F

sh[n_Integex]:=Sum[Biu0mia1[n-1,j-1]*pb[h[n-j],s[j]],
sk[u_Iutegex]:=Sum[Binomia1[n-1,j-1]*k[j,n-j], {j,l,n-ll];

pblsljl.k[m-j.¤ll,lj.l.mll /: m>0;

k[m_Integer,n_Integer]:=Sum[Bin0mial[m—l,j—l]
functions are interrelated by Deprit's equations:
generator of transformation from the new canonical variables back to the original ones. These
some small parameter, k[0,n] be that of the new (normalized) Hamiltonian K and S be the Lie
Let h[n] be the n-th derivative of the perturbation part in the initial Hamiltonian H with respect to
I Deprit's equations

aver[ ti[[0,0], a_]]:=0;

aver[ ti[m_, a_]]:=avex[a]/(I m.q) /;m=!=0;
From the particular form of the Greenfunction follow simplifying relations

px0[m_,0]:=O

avex[a_*aver[b_]]:=avex[a]*aver[b];

avex[a_]:=a /; NumbexQ[a];

ti[m_, avex[a_]*b_]:=avex[a]*ti[m,b];

avex[ f[e_,m_]*b_]:=f[e,m]*aver[b] ;
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transmutations of the m index of the adjoint basis function and can be easily restored if necessary.
at f[e_,m_] contain exponentials Exp[ -I m.q*theta] which may be omitted since they follow

Let us retum to the original Hamiltonian expansion in terms of basis functions. Coefficients

locations.

strengths. All functions entering integrands should be given as lists of values at the multipole
In the thin lens approximation, the multipole arrangement can be represented by a list of integrated
I Thin octupoles

cb[m_List]:=cf[m] Pxoduct[ (—I Sqxt[beta[i]/2])Am[[i]], [i,l,2]];

(—1)A((n+1)/2)*a[m+n—1]]*(n+m—2)!;

If[M0d[n,2]==0, (—l)“(n/2)*b[m+n—l],
cf[[m_Integex,n_Integex}]:= Binomial[m+n,n]/(m+n)
Michelotti we use the "Fermilab convention" for them) and beta-functions;

Now it is a good time to express cb's through the multipole coefficients (following

disz=Sum[z0[O,n]/nl,{n,4]];

kxes2m4=pr0[{2,—4}, Expand[xhs[4]]]/24;

ddq2dw2dw2=Coefficient[ k[O,4], f[[0,6},{0,0}]]/8;

ddq2dw1dw2=C0efficient[ k[O,4], f[[2,4},[0,0}]]/48;

ma :

ddg2dwldw1=C0efficient[ k[O,4], f[[4,2},[0,0}]]/48;
Courant-Snyder invariants, 6th order difference resonance driving term and nonlinear part of the

Now compute the second derivatives of the vertical tune with horizontal and vertical
dq2dw2=C0efficient[ k[0,2], f[[0,4},[0,0]]]/2;

dq2dw1=C0efficient[ k[0,2], f[[2,2},[0,0}]]/4;

dq1dw1=Coefficient[ k[0,2], f[[4,0],[0,0}]]/2;

Hamiltonian

Let us first have a look at the detuning (first order in octupole strength) terms in the new
cb[[3,1}]=0; cb[[1,3}]=O; (* no skew—octupoles *)

cb[ [m_, n_}] :=0 /; m+n= ! =4 (* only octupoles present *)
Let us consider for example the case of a normal octupole field:
I Second Order Effects Due to Octupolar Field

kres=pro[{nx,ny}, Expandl rhs[nr]]]/nr!;
transform and adding complex conjugate kept in mind)
fish out terms which drive resonance nx*qx+ny*qy=p with the help of projection operator (Fourier
to k[0,nr], which requires a more sophisticated algorithm. All we can do with the present one is to
resonance is encountered. To proceed further. the corresponding term in rhs[rn·] should be relegated
The above iterative procedure may be continued up to the order nr in which a "sufficiently close"

I Resonance coefficients

where cb[m]=cf[m]* Product[(-I*Sqrt[beta[i]/2])"m[[i]],{i,1,2}]
[mr Or ¤+2]] 1;

Expl-I*psi[2l1*f[{0.l}.{0,-111>“(¤+2—m>.
<E¤p[I*pSi[2l]*f[{0.1}.{0,111

E¤p[—I*pSi[1]]*f[{1,0}.{-1.0}]>“m
(EXP[I*PSi[l]]*f[{lr0}»[l»0}]

h[n_Integex]:=Expaud[ Sum[ cb[[m,n+2—m}]
phase advances and tunes.
and the analogeous one for x2, where psi[i]=phi[i]-q[i]*theta, phi[i] and q[i] are the betatron
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64 Pi

btx bty k3L Cos[4 phx — 2 Pi qx] Csc[2 Pi qx]

256 Pi

btx bty k3L C0t[2 Pi (qx + qy)]

2 2 2

64 Pi

btx bty k3L C0t[2 Pi qy]

2 2 2

256 Pi64 Pi

btx bty k3L Cot[2 Pi qx] btx bty k3L C0t[2 Pi (qx · qy)]

2 2 2

ddq=Simplify[ Expand[ C0mplexExpand[ddq2dwldw1]]]

8 Pi

(btx bty k3L)

dq2dw1

16 Pi

btx k3L

dqldwl
First let us check detunings:

pSil2]={phy,2Pi*qy—phy}:

pSi[11=iphx,2Pi*qx—phxl;

b[3]=[k3L,k3L}/6;

beta[2]=[bty,bty];

beta[1]={btx,btx];

q={qx.qy};

us=2:

phase shifts is in effect!)
Consider one pair (per superperiod) of symmetrically excited octupoles (the convention on

avex[a_List]:=App1y[P1us,a]/(2Pi);

ti[m_List,a_List]:=Expand[ tKern[m].a];
[i,¤S].{j,¤S}]/(2Pi>:
tKexn[[0,0}]:=Tab1e[Sigu[i-j]*Pi-th[[i]]+th[[j]],

(2I*Sin[Pi*m.q]);

Exp[-I*Pi*m.q]*Table[If[i<j,1,0],{i,ns},[j,ns}])/
Exp[ I*Pi*m.q]*Tab1e[If[i>j,1,0],[i,ns],{j,ns]]+
tKeru[m_List]:=(C0s[Pi*m.q]*IdentityMatxix[ns]+
following sums:

With this convention the integral operators for ns thin multipoles are reduced to the
resonance driving temr one should then take a simple average instead of Fourier transform.
In the ‘shear’ (alias ‘detuning’) terms in the Hamiltonian they completely cancel out. In the
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Csc[2 Pi (qx + qy)]) / (256 Pi)

(btx bty k3L C0s[4 phx + 4 phy - 2 Pi qx - 2 Pi qy]

2 2 2

64 Pi

btx bty k3L C0s[4 phy - 2 Pi qy] Csc[2 Pi qy]

2 2 2

Csc[2 Pi (qx — qy)]) / (256 Pi)

(btxbtyk3LC0s[2 (2 phx — 2 phy · Pi qx + Pi qy)]

2 2 2


