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Abstract

The next-to-leading order QCD corrections to the production of a W -boson in associ-

ation with a jet containing a heavy quark are presented. The calculation is fully dif-

ferential in the final state particle momenta and includes the mass of the heavy quark.

We study for the case of the Tevatron the sensitivity of the cross section to the strange

quark distribution function, the dependence of the cross section on the heavy quark

mass, the transverse momentum distribution of the jet containing the heavy quark, and

the momentum distribution of the heavy quark in the jet.
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1. Introduction

The study of jet production in association with a vector boson at hadron colliders has been

succesful in the recent past. The advantage of this signal over pure jet production is that the

lepton(s) from the vector boson decay can be used as a trigger, such that jets can be studied

free from jet-trigger bias. Furthermore, the lower rate obviates the need for prescaling. On

the theory side, the recent progress in calculational techniques to construct next-to-leading

order (NLO) Monte-Carlo programs [1] has allowed a meaningful confrontation with data [2].

The tagging of heavy hadrons in the jet offers a unique possibility of studying the

hadronic structure inside the jet. By considering jets where the leading hadron is tagged,

a clear connection can be made with perturbative QCD. At the parton level, the tagging

of a heavy hadron corresponds to the tagging of a heavy-flavor quark. Experimentally, the

presence of a D or B meson is inferred through its decay products (e.g. CDF has recently

investigated γ + D∗± meson production, where the D∗± meson was fully reconstructed [3]).

Heavy flavor tagging has become much more efficient with the advent of secondary vertex

detectors [4] and its importance has been clearly demonstrated in the analysis that led

to the top quark discovery [5]. In the future, heavy flavor tagging will continue to be an

important analysis tool. It will provide more detailed information about the event, as well

as a test of the underlying QCD theory. See, e.g., the recently outlined program to extract

parton densities exclusively from collider data [6].

If one demands the presence of a charm quark in the jet recoiling against a W -boson,

the signal is directly sensitive to the strange quark distribution function in the proton, at a

scale of the order of the W -mass. A detailed investigation of this case has been performed

in [7] with the shower Monte-Carlo program PYTHIA [8].

Replacing the charm quark by a bottom quark, one could use this process as an al-

ternative calibration of the b-quark tagging efficiency. This will be useful at luminosities

achieved by the Main Injector. However, by far the dominant contribution to W+bottom

production is due to W + bb̄ production, where the heavy quark pair is produced by gluon

splitting. Here the inclusion of the gluon to B meson fragmentation function is probably

more important than the inclusion of NLO effects to the W+bottom process. This in turn

would imply that this reaction could be used to constrain this fragmentation function.

We present here the calculation of the QCD corrections up to O(α2
s) of the process

pp̄→W +Q where Q is an heavy quark. We keep the mass of the heavy quark explicit. In

this letter we study the basic aspects of this process. Full details of the calculation method

and more extensive phenomenological studies will be published separately [9].

This letter is organized as follows. In section 2, the method used to calculate the

QCD radiative corrections is briefly outlined and some consequences of their inclusion are

examined. The impact of the higher order corrections on the measurement of the strange

quark distribution is discussed in section 3. In section 4, we study several aspects of the

behavior of the heavy quark tagged jets. Finally, in section 5 our conclusions are presented.
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2. Method

In this section the method used to calculate the O(α2
s) QCD corrections to pp̄ → W + Q

is outlined. It consists of a generalization of the phase space slicing method of Ref. [10] to

include massive quarks. One of the strengths of this method is that it allows for the imple-

mentation of experimental cuts without the analytic recalculation of phase space integrals.

The leading order (LO) calculation is very simple and involves the two Feynman dia-

grams given in Fig. 1.

q

g

W

Q

Figure 1: The Born graphs for W +Q production in pp̄ collisions.

The virtual corrections consist of the interference between the lowest order diagrams

and their one-loop corrections. In order to regularize the various singularities in the inte-

grals over the loop momenta we performed the integration in d = 4 − 2ε dimensions. The

d-dimensional version [11] of the Passarino-Veltman reduction formalism [12] was used to

reduce tensor and vector integrals to scalar ones. We made use of the algebraic manipu-

lation program FORM [13] for much of the algebra. Some of the scalar integrals were not

yet available in the literature, they will be listed in Ref. [9]. The ultraviolet singularities

were absorbed through mass and coupling-constant renormalization. For the former we

used the on-shell scheme and for the latter the MS scheme modified such that the heavy

quarks decouple in the limit that small momenta flow into the heavy quark loops [14]. The

remaining soft and collinear singularities, appearing as 1/ε2 and 1/ε poles, factorize into a

universal factor multiplying the Born cross section.

The real corrections consist of the contributions from all the subprocesses i j →W Qk,

where i, j, k are massless partons, and the subprocess i j → W QQ̄ [15]. Some of these

contributions exhibit soft and/or collinear singularities. In this paper we treat the heavy

quark as extrinsic to the nucleon, hence we do not consider diagrams where the heavy

quark is in the initial state. The method we used to isolate the singularities consists of

slicing up the phase space and dividing it into a hard region, containing no singularities,

and a region in which the final state parton is either soft or emitted collinearly with one

of the initial state partons. Note that when a gluon is radiated from the heavy quark,

the collinear singularity is shielded by the presence of the heavy quark mass. The hard

region is defined by the condition that all invariants slm = 2Pl · Pm, constructed out of

the four-momenta of any two neighboring partons/parton-heavy quark pairs l and m in the

color-ordered subamplitudes [16], are larger than a cut-off value smin. The soft and collinear

region corresponds to the case where one or two of the sij are smaller than smin. In the

hard phase space region, one can work in four dimensions and perform the phase space
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integration numerically. In the soft and collinear region, the integration is done analytically

in d dimensions using soft and collinear approximations, which are valid in the limit that smin

is small. The cross section in this region again factorizes into a universal factor multiplying

the Born cross section. The initial state collinear singularities are factorized into parton

distribution functions in the MS scheme, using the formalism of crossing functions [1].

Note that the process i j → W QQ̄ is quite different from the other subprocesses: the

heavy quark does not originate from the W vertex, and it is independent of smin, because

it is free from singularities.

Adding the real and virtual corrections leads to the cancellation of all remaining sin-

gularities. We checked gauge invariance for both the virtual and real corrections. One is

finally left with a two-to-two particle contribution (consisting of Born, soft-plus-collinear-

plus-virtual, and crossing function contributions) and the two-to-three particle contribution

in the hard region.

Before showing any numerical results, we first list here the default choices we made

for parameters and cuts in producing the results of this paper. Any deviation from these

choices will be indicated explicitly. For the case of charm (bottom) we assumed three (four)

light flavors and no charm (bottom) quark distribution function. We used both at LO and

NLO the CTEQ3M [17] set of parton distribution functions, and the two-loop expression

for the running coupling constant with a four flavor, two-loop ΛQCD = 0.239 GeV, the value

supplied with the CTEQ3M set. We implemented continuity across heavy flavor thresholds

[18] using the parametrization of Ref. [19]. We used the Snowmass convention [20] for the

definition of a jet. Our conditions on the transverse energy and pseudorapidity of the jet

were ET (jet) > 10 GeV, |ηjet| < 3. We took a jet cone size of ∆R = 0.7, and implemented

no cuts on the W . We took the mass of the W -boson mW = 80.23 GeV, the heavy quark

mass m equal to 1.7 GeV for charm and 5 GeV for bottom. We used Vcs = 0.97 and

Vcd = 0.22 for the relevant Cabibbo-Kobayashi-Maskawa matrix elements. We chose the

factorization scale equal to the renormalization scale and denote it by µ, taking µ = mW .

At least one heavy quark was required to be inside of the jet, with the sign of its electric

charge correlated with the W charge, as in the LO diagram.

We first examine how the cross section changes when we vary the arbitrary parameters

smin and µ. The dependence of the cross section and its two-to-two and two-to-three

components on the choice of smin is shown in Fig. 2a for a wide smin range. It is clear from

Fig. 2a that each of the two components depends strongly on the theoretical cut-off smin,

but at low smin the cross section does not, see also Fig. 2b1. At high smin the cross section

varies because the soft and collinear approximations used are no longer reliable. We actually

verified the smin independence in each order in the expansion in 1/Nc, where Nc = 3 is the

number of colors. The results shown in the remainder of this paper are averaged over smin

between 1 and 10 GeV.

In Fig. 3 we show the renormalization/factorization scale dependence of the inclusive

1Note that in this figure we used for 0.1 GeV < smin < 10 GeV larger statistics and smaller bins than

for smin > 10 GeV.
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Figure 2: smin-dependence of pp̄ → W+ + exclusive charm-tagged one-jet production. a)

Solid histogram is for the total cross section, dashed histogram is for its two-to-two compo-

nent, and the dotted one is for its two-to-three component. b) Total cross section; the error

bars represent the statistical errors from the Monte-Carlo integration.

cross section, minus the W +cc̄ contribution, along with the LO contribution. As expected,

the inclusion of the NLO corrections reduces the scale sensitivity, albeit slightly. We show

the W + cc̄ contribution separately, because, as alluded to earlier, this contribution is

technically of leading order. It therefore exhibits a strong scale dependence, as can be seen

in Fig. 3.

3. The Strange Quark Distribution in the Proton

In this section we discuss the effect that the inclusion of the NLO QCD corrections to W

+ charm-tagged jet production has on constraining the strange quark distribution function

s(x, µ) in the proton. Here x is the momentum fraction of the strange quark in the proton,

and µ is the factorization scale. For the sake of clarity we briefly summarize the study done

in Ref. [7] using the shower Monte-Carlo program PYTHIA. At low scale µ, the strange

quark distribution function can on the one hand be inferred from the appropriate linear

combination of F2 structure functions in neutrino and muon deep inelastic scattering [21].

On the other hand, it can also be determined from di-muon events in neutrino deep-inelastic

scattering (DIS) [22]. Using current experimental data sets, the two methods yield a dif-

ference of about a factor of two for the strange quark distribution function at low µ. It

was suggested in [7] that the strange quark distribution function can also be constrained by

determining the charm content of W + 1 jet events at the Tevatron, since the leading order

subprocess, sg → Wc, is directly proportional to the strange quark distribution function.

In this measurement the strange quark will effectively be probed at a larger scale µ 'MW .
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Figure 3: µ-dependence for pp̄ → W+ + inclusive charm-tagged one-jet production. The

solid line represents the NLO production (minus the W + cc̄ contribution), the dashed line

the LO production, and the dotted line the W + cc̄ contribution.

set mass (GeV) LO WQQ̄ NLO

CTEQ1M mc=1.7 96 20 161

MRSD0’ mc=1.7 81 20 138

CTEQ3M mc=1.7 83 20 141

CTEQ3M mb=5.0 0.17 9.09 9.33

Table 1: The W + charm-tagged one-jet inclusive cross section in pb for LO, W + QQ̄,

and NLO (including the W + QQ̄ contribution) using different sets of parton distribution

functions. The statistical uncertainty from the Monte-Carlo integration is less than 1%.

At this higher scale, the difference between the two strange quark distribution functions is

smaller due to QCD evolution. When relevant backgrounds are included and standard cuts

are used, the factor of two evolves into a difference of about 14% in the W + c production

cross section. The charm tagging efficiency required to distinguish the two cases at the one

standard deviation level was found to be about 10% for 6000 W + 1 jet events.

In Table 1 we give the NLO cross section for the parton distribution function sets

CTEQ1M and MRSD0’. The MRSD0’ set derives its strange quark distribution from the

di-muon data, whereas the CTEQ1M set uses the DIS data. Also shown is the result

obtained with the more recent CTEQ3M set, which uses the same assumption about the

strange quark distribution as MRSD0’. Comparing the CTEQ3M and MRSD0’ sets, we

see that the difference due to using more recent data sets in the global fit for the parton

distribution functions is small. This is also reflected in the cross section for W + cc̄, which
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is the same for all three sets. We can conclude that the difference between CTEQ1M

and MRSD0’ of 15.4 % is due to the strange quark distribution function. This difference

becomes 14.5% when one includes the W + b background (9 pb, almost all of it coming

from the gluon splitting contribution, see Table 1), and assuming conservatively that each

bottom quark is mistagged as a charm quark. This shows that the conclusions reached

in Ref. [7] are still valid at NLO. In both the NLO calculation and the PYTHIA analysis

about 50% of the contributions are initiated by strange quarks. One major difference is

that PYTHIA suggests that the gluon splitting contributes about 35%, whereas in the

NLO calculation it is only about 15%. We found this number however to be quite sensitive

to the choice of factorization and renormalization scale (recall we took MW ) in the gluon

splitting contribution. Further phenomenological study of this question and others requires

the inclusion of the W leptonic decay in our calculation.

4. The Mass Dependence of Jet Production

Figure 4: Ratio of W + charm-tagged inclusive one-jet production over W + inclusive

untagged one-jet production as function of the jet transverse energy. The solid line is the

NLO ratio and the dashed line the LO ratio. The W + cc̄ contribution to the NLO ratio is

also shown (dotted line).

A comparison can be made between W + untagged jet production2 [1] and W + charm-

tagged jet production. The most obvious quantity to study in this regard is the jet transverse

energy (ET (jet)) distribution. In Fig. 4 we present the ratio of the charm-tagged jet over

the untagged jet ET (jet)-distribution for the LO and NLO cases. At LO the charm-tagged

jet is simply represented by a charm quark. The ratio in Fig. 4 has a characteristic shape

which can readily be understood at tree level. At low ET (jet) the charm-tagged jet rate is

2For the untagged process we take five massless quark flavors.
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suppressed relative to the untagged-jet rate due to its fermionic final state. The untagged-

jet rate is dominated by the gluonic final state which has a soft singularity, that is absent

for the fermionic final state. At high ET (jet) we again observe a relative suppression of the

charm-tagged jet because at LO this process has a gluon in the initial state. At high ET (jet)

the dominant scattering in the untagged-jet rate is due to quark-antiquark collisions, again

favoring the gluonic final state. Apart from an approximate overallK-factor, the NLO cross

section retains these features although the identification with the LO parton model is lost.

Also shown in Fig. 4 is the W + cc̄ contribution. At low ET (jet) its suppression is more

pronounced due to the charm quark pair production threshold. At high ET (jet) there is no

suppression for this process because it is instigated by a quark-antiquark collision.

Thus we see that the ET (jet) behaviour of tagged jets is basically as expected. We now

turn to the mass dependence of the cross section. In the LO calculation, one may take the

charm mass to zero, and, within Monte-Carlo errors, obtain a result which is identical to

the massive case. However, we will now show that there are important mass effects at NLO,

especially when we look in detail at the tagged jets. In fact, taking the heavy quark mass

to zero in the NLO calculation leads to a divergence.

Let us first consider the W + QQ̄ contribution. Because the mass of the heavy quark

regulates the collinear singularity, it is expected that the strongest mass dependence will

come from the collinear region. In this region the cross section factorizes into the cross

section for W + gluon production multiplied by a universal factor. After integration over

the invariant mass of the heavy quark pair we find that the mass dependent part of this

universal factor has the following form:

αs
Nc

8π
Pqq→g(z) ln

(
M2

m2

)
dz (1)

where M is the upper limit of the heavy quark pair invariant mass defining the collinear

region, and Pqq→g(z) is the massless Altarelli-Parisi [23] splitting function:

Pqq→g(z) =
2

Nc
(z2 + (1− z)2). (2)

There is some ambiguity in the definition of z. Here, we choose the following:

z =
E + P‖

Ejet + Pjet
(3)

where E and P‖ are the heavy quark energy and momentum projected on the jet direction,

and Ejet and Pjet are the jet energy and momentum. We have checked that other choices,

such as z = ET (Q)/ET (jet), do not change any of the conclusions in what follows. In the

strictly collinear limit M is much smaller than the energy of the gluon, but in a leading

logarithmic approximation one may take M to be of the order of ET (jet). The behavior

of Eq. (1) can be seen qualitatively in Fig. 5a, where the ratio of the W + cc̄ cross section

over the W + gluon cross section is shown as a function of the transverse energy of the jet.

One can see an approximate logarithmic enhancement with increasing ET , as predicted by

the leading logarithmic approximation. On the other hand, the z-distribution, plotted in
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Fig. 5b, does not conform with the z-dependence described by Eq. (1). First, the peak at

z = 1 is due to events where the Q̄ is not inside of the jet, such that the whole jet is formed

by the lone Q. Second, the cross section is suppressed near z = 0 and z = 1 (excluding the

peak) due to terms in the collinear region that depend strongly on z, but not on M . One

Figure 5: a) Ratio of the W + cc̄ component of the charm-tagged one-jet inclusive cross

section to the W + gluon cross section, as a function of the jet tranverse energy. b) The

z-distribution of the W + cc̄ component.

way to enhance the effect of the leading logarithm term of Eq. (1) in the z distribution is

to lower the mass of the heavy quark in our calculation. This is done in Fig. 6a, where we

show the z-distribution for the case m = 0.01 GeV. Clearly it now resembles the functional

form of Eq. (2) much closer.

The ln(m2) term in Eq. (1) diverges in the limit of vanishing quark mass, and is not

cancelled by any other contribution 3. In principle, any observable should be “collinear

safe”, i.e. if the mass is taken to zero, the observable should be finite and approach the

massless result. This is needed to describe situations where the relevant scale is much

larger than the heavy quark mass. In the present case we are dealing with a final state

divergence in ln(m2) that should be factorized into the fragmentation function of the gluon

into a heavy hadron. It is only after the proper introduction of the fragmentation function

in the calculation that the massless limit will be finite. The evolution of fragmentation

functions will resum the large logarithms ln(E2
T ). This problem is the final state version of

the problem of heavy quark distribution functions [24]. It is beyond the scope of this short

letter, but we will discuss it in more detail in [9]. Some studies in this regard were done in

Ref. [25]. Here, we simply keep the mass finite.

3In the W +1 jet calculation, this singularity is cancelled by a companion collinear singularity in the

quark-loop correction to the outgoing gluon in the Born diagram. In our calculation this diagram is not

present.
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Figure 6: The z-distribution of the charm-tagged one-jet inclusive cross section, with m =

0.01 GeV. a) Wcc̄ component. b) Total contribution minus the Wcc̄ component.

Let us now turn to the NLO single charm contribution (excluding the W + cc̄ contribu-

tion). In the collinear region, the cross section again factorizes, leading, after integration

over the invariant mass of the collinear partons, to the universal factor:

αs
Nc

8π
Pqg→q(z) ln

(
M2

m2

)
dz (4)

where Pqg→q(z) is the splitting function:

Pqg→q(z) = lim
δ→0

2(1−
1

N 2
c

)

((
1 + z2

1− z

)
θ(1− z − δ) + (

3

2
+ 2 ln δ) δ(1− z)

)
. (5)

In Fig. 6b we show for the single charm quark contribution the z-distribution, with the

contribution of Eq. (4) enhanced by taking m = 0.01 GeV. Note that it resembles the

functional form in Eq. (5). From Eq. (5) one derives∫ 1

0
Pqg→q(z)dz = 0 , (6)

which must hold for the probability to find a quark in a quark of the same flavor to be one

[23]. From Eqs. (6) and (4) we can now make the important observation that as long as the

cuts on the heavy quark-tagged jet are such that all z-values are allowed to contribute, there

are no large logarithms ln(E2
T/m

2). However, if the cuts are such that the z-integration is

restricted, or convoluted with a z-dependent function, some ln(E2
T/m

2) terms will remain.

An example of such a convolution is the ET distribution of the heavy quark itself. All this

is illustrated in Fig. 7a, where two cases of z-restrictions (z > 0.9 and z < 0.9) are plotted

in addition to the all-z case. Note that for the all-z case the ratio is indeed essentially

independent of ET (jet), but that for the z-restricted cases the logarithmic dependence is
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Figure 7: a) ET distribution ratio of NLO charm-tagged one-jet inclusive cross section to

LO one. Solid line has no restrictions on the z-integration, the dotted and dashed line have

restrictions of z < 0.9 and z > 0.9 respectively. b) z-distribution of NLO charm-tagged

one-jet inclusive cross section. The W + cc̄ component is not included in these plots.

apparent. For completeness we show in Fig. 7b the z-distribution for the single charm

contribution for m = 1.7 GeV.

Thus care must be taken when calculating tagged cross sections in determining whether

or not there are large logarithms present due to restrictions on the z-integration. Such re-

strictions would also necessitate the introduction of the appropriate fragmentation function

to absorb the ln(m2) terms, as in the WQQ̄ case.

Note that for the example of the jet transverse energy distribution given in Fig. 4 there

is no constraint on the z-integration, so that the only logarithmic mass term is due to the

Wcc̄ contribution.

5. Conclusions

We have completed the first calculation of the QCD corrections to O(α2
s) of the reaction

pp̄ → W + Q. In this short paper we briefly summarized the method of calculation. We

demonstrated that the inclusion of the NLO corrections does not change the conclusions of

Ref. [7] about constraining the strange quark distribution function usingW + charm-tagged

jet events at the Tevatron. However, since we now have a NLO calculation, this procedure

will be able to constrain the NLO strange quark distribution, once a reasonable data sample

is collected. Finally we studied the ET distribution of the jet containing the heavy quark

and the mass dependence of the cross section. We noted the need to include the leptonic

decay of the W and the heavy hadron fragmentation functions in our calculation, in order

to be able to do more extensive phenomenological studies.

10



References

[1] W.T. Giele, E.W.N. Glover, and D.A. Kosower, Nucl. Phys. B403 (1993) 633.

[2] S. Abachi et al (D0 collaboration), Phys. Rev. Lett. 75 (1995) 3226.

[3] R. Blair for the CDF collaboration, FERMILAB-CONF-95/245-E. Presented at 10th

Topical Workshop on Proton-Antiproton Collider Physics, Batavia, IL, 9-13 May 1995.

[4] F. Abe et al (CDF Collaboration), Nucl. Instrum. Meth. A289 (1990) 388; Nucl. Phys.

B27 (1992) 246 (Proc. Suppl).

[5] F. Abe et al (CDF collaboration), Phys. Rev. Lett. 74 (1995) 2626; S. Abachi et al (D0

collaboration), Phys. Rev. Lett. 74 (1995) 2632.

[6] W.T. Giele. and E.W.N. Glover, FERMILAB-CONF-95-168-T. Presented at 10th Top-

ical Workshop on Proton-Antiproton Collider Physics, Batavia, IL, May 1995.

[7] U. Baur, F. Halzen, S. Keller, M.L. Mangano and K. Riesselmann, Phys. Lett. B318

(1993) 544.
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