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HEAVY FLAVOUR PHYSICS

MATTHIAS NEUBERT

Theory Division, CERN, CH-1211 Geneva 23, Switzerland

E-mail: neubert@nxth04.cern.ch

ABSTRACT

The current status of the theory and phenomenology of weak decays of hadrons
containing a heavy quark is reviewed. Exclusive semileptonic and rare decays
of B mesons are discussed, as well as inclusive decay rates, the semileptonic
branching ratio of the B meson, and the lifetimes of b-flavoured hadrons. De-
terminations of αs from Υ spectroscopy are briefly presented.

1. Introduction

Studies of weak decays of heavy flavours play a key role in testing the Standard

Model and determining some of its parameters, which are related to flavour physics.

In these decays information about the quark masses and the Cabibbo–Kobayashi–
Maskawa (CKM) matrix can be obtained. A precise measurement of these parame-

ters is a prerequisite for testing such intriguing phenomena as CP violation, and for
exploring new physics beyond the Standard Model. On the other hand, weak decays

of hadrons serve as a probe of that part of strong interaction physics which is least
understood: the confining forces that bind quarks and gluons inside hadrons. In fact,

the phenomenology of hadronic weak decays is characterized by an intricate interplay
between the weak and strong interactions, which has to be disentangled before any

information about Standard Model parameters can be extracted.
The recent experimental progress in heavy flavour physics has been summarized

in the talks by T. Skwarnicki1, J. Kroll2 and S.L. Wu3 at this Conference. Here I
will present the theoretical framework for a description and interpretation of some

of the data presented there. Since the discovery of heavy-quark symmetry4−8 and
the establishment of the heavy-quark expansion9−25 this field has flourished. It is,

therefore, unavoidable that I have to be selective and focus on few topics of particular

interest. In this selection I was guided mainly by the relevance of a subject to current
experiments. I apologize to all those authors whose work will thus be omitted here.

In particular, I will not be able to report on theoretical progress in the areas of meson
decay constants26,27, exclusive nonleptonic decays of B mesons28,29, and inclusive de-

cay spectra in semileptonic and rare B decays30,31, although there was a large activity
devoted to these subjects. I will also have to leave out some formal developments,

such as the study of renormalons in the heavy-quark effective theory32−41.
This article is divided into two parts; the first covers exclusive semileptonic and

rare decays, the second is devoted to inclusive decay rates and lifetimes. At the end, I
will briefly discuss extractions of the strong coupling constant αs from Υ spectroscopy.
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2. Exclusive Semileptonic Decays

Semileptonic decays of B mesons have received a lot of attention in recent years.
The decay channel B → D∗ℓ ν̄ has the largest branching fraction of all B-meson decay

modes, and large data samples have been collected by various experimental groups.
From the theoretical point of view, semileptonic decays are simple enough to allow for

a reliable, quantitative description. Yet, the analysis of these decays provides much
information about the strong forces that bind the quarks and gluons into hadrons.

Schematically, a semileptonic decay process is shown in Fig. 1. The strength of the
b → c transition is governed by the element Vcb of the CKM matrix. The entries of

this matrix are fundamental parameters of the Standard Model. A primary goal of the
study of semileptonic decays of B mesons is to extract with high precision the values

of Vcb and Vub. The problem is that the Standard Model Lagrangian is formulated
in terms of quark and gluon fields, whereas the physical hadrons are bound states of

these degrees of freedom. Thus, an understanding of the transition from the quark to

the hadron world is necessary before the fundamental parameters can be extracted
from experimental data.

b c

q

V

cb

`

�

B D;D

�

Fig. 1. Semileptonic decay of a B meson.

In the case of transitions between two heavy quarks, such as b → c ℓ ν̄, heavy-

quark symmetry helps to eliminate (or at least reduce) the hadronic uncertainties
in the theoretical description. The physical picture underlying this symmetry is the

following4−8: In a heavy-light bound state such as a heavy meson or baryon, the
typical momenta exchanged between the heavy and light constituents are of order

the confinement scale Λ. The heavy quark is surrounded by a most complicated,
strongly interacting cloud of light quarks, antiquarks, and gluons. However, the fact

that 1/mQ ≪ 1/Λ, i.e. the Compton wavelength of the heavy quark is much smaller

than the size of the hadron, leads to simplifications. To resolve the quantum numbers
of the heavy quark would require a hard probe; soft gluons can only resolve distances

much larger than 1/mQ. Therefore, the light degrees of freedom are blind to the
flavour (mass) and spin of the heavy quark; they only experience its colour field,

which extends over large distances because of confinement. It follows that, in the
mQ → ∞ limit, hadronic systems which differ only in the flavour or spin quantum
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numbers of the heavy quark have the same configuration of their light degrees of
freedom. Although this observation still does not allow us to calculate what this

configuration is, it provides relations between the properties of such particles as the
heavy mesons B, D, B∗ and D∗, or the heavy baryons Λb and Λc. These relations

result from new symmetries of the effective strong interactions of heavy quarks at low
energies7. The configuration of light degrees of freedom in a hadron containing a single

heavy quark with velocity v and spin s does not change if this quark is replaced by

another heavy quark with different flavour or spin, but with the same velocity. For
Nh heavy quark flavours, there is thus an SU(2Nh) spin-flavour symmetry. Most

importantly, this symmetry relates all hadronic form factors in semileptonic decays of
the type B → D ℓ ν̄ and B → D∗ℓ ν̄ to a single universal form factor, the Isgur–Wise

function, and fixes the normalization of this function at maximum q2 (corresponding
to zero recoil or equal meson velocities). Heavy-quark symmetry is an approximate

symmetry, and corrections of order αs(mQ) or Λ/mQ arise since the quark masses are
not infinite. A systematic framework for analyzing them is provided by the heavy-

quark effective theory (HQET)14−16.

2.1. Determination of | Vcb|

A model-independent determination of | Vcb| based on heavy-quark symmetry can

be obtained by measuring the recoil spectrum of D∗ mesons produced in B → D∗ℓ ν̄
decays42. In terms of the variable

w = vB · vD∗ =
ED∗

mD∗

=
m2

B +m2
D∗ − q2

2mBmD∗

, (1)

the differential decay rate reads

dΓ

dw
=

G2
F

48π3
(mB −mD∗)2m3

D∗

√
w2 − 1 (w + 1)2

×
[
1 +

4w

w + 1

m2
B − 2wmBmD∗ +m2

D∗

(mB −mD∗)2

]
| Vcb|2 F2(w) . (2)

The hadronic form factor F(w) coincides with the Isgur–Wise function up to symme-

try-breaking corrections of order αs(mQ) and Λ/mQ. The idea is to measure the
product | Vcb| F(w) as a function of w, and to extract | Vcb| from an extrapolation

of the data to the zero-recoil point w = 1, where the B and the D∗ mesons have a
common rest frame. At this kinematic point, heavy-quark symmetry helps to cal-

culate the normalization F(1) with small and controlled theoretical errors, so that
the determination of | Vcb| becomes model independent. Since the range of w values

accessible in this decay is rather small (1 < w < 1.5), the extrapolation can be done

using an expansion around w = 1,

F(w) = F(1)
{
1 − ̺̂2 (w − 1) + ĉ (w − 1)2 + . . .

}
. (3)
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Usually a linear form of the form factor is assumed, and the slope ̺̂2 is treated as a
parameter.

Measurements of the recoil spectrum have been performed first by the ARGUS43

and CLEO44 Collaborations in experiments operating at the Υ(4s) resonance, and

more recently by the ALEPH45 and DELPHI46 Collaborations at LEP. These mea-
surements have been discussed in detail by T. Skwarnicki1 at this Conference. The

weighted average of the results is

| Vcb| F(1) = (35.1 ± 1.7+1.4
−0.0) × 10−3 ,

̺̂2 = 0.87 ± 0.16 . (4)

The effect of a positive curvature of the form factor has been investigated by Stone47,

who finds that the value of | Vcb| F(1) may change by up to +4%. This uncertainty
is included by the second error quoted above.

2.1.1. Calculations of F(1)

Heavy-quark symmetry implies that the general structure of the symmetry-break-
ing corrections to the form factor at zero recoil must be of the form42

F(1) = ηA

(
1 + 0 · Λ

mQ

+ c2
Λ2

m2
Q

+ . . .
)

= ηA (1 + δ1/m2) , (5)

where ηA is a short-distance correction arising from a finite renormalization of the
flavour-changing axial current at zero recoil, and δ1/m2 parametrizes second-order (and

higher) power corrections. The absence of first-order power corrections at zero recoil

is a consequence of the Luke theorem16, which is the analogue of the Ademollo–Gatto
theorem48 for heavy-quark symmetry.

The one-loop expression for ηA is known since a long time49,6,50:

ηA = 1 +
αs(M)

π

(
mb +mc

mb −mc
ln
mb

mc
− 8

3

)
≃ 0.96 . (6)

The scale M in the running coupling constant can be fixed by adopting the prescrip-
tion of Brodsky, Lepage and Mackenzie51, where it is identified with the average virtu-

ality of the gluon in the one-loop diagrams that contribute to ηA. If αs(M) is defined
in the ms scheme, the result is52 M ≃ 0.51

√
mcmb. Several estimates of higher-order

corrections to ηA have been discussed. A renormalization-group resummation of mass

logarithms of the type (αs lnmb/mc)
n, αs(αs lnmb/mc)

n and mc/mb(αs lnmb/mc)
n

leads to53−57 ηA ≃ 0.985. On the other hand, a resummation of renormalon-chain

contributions of the form βn−1
0 αn

s , where β0 = 11 − 2
3
nf is the first coefficient of the

β-function, gives58 ηA ≃ 0.945. Using these partial resummations to estimate the

uncertainty, I quote
ηA = 0.965 ± 0.020 . (7)
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The accuracy of this result could be improved with an exact two-loop calculation.
An analysis of the power corrections δ1/m2 is more difficult, since it cannot rely

on perturbation theory. Three approaches have been discussed: in the “exclusive
approach”, all 1/m2

Q operators in the HQET are classified and their matrix elements

estimated59,60, leading to δ1/m2 = −(3± 2)%; the “inclusive approach” has been used
to derive the bound61 δ1/m2 < −3%, and to estimate that δ1/m2 = −(7 ± 3)%; the

“hybrid approach” combines the virtues of the former two to obtain a more restrictive

lower bound on δ1/m2 . The result is62

δ1/m2 = −0.055 ± 0.025 , (8)

which is consistent with previous estimates. To obtain a more precise prediction, one
should attempt to calculate this quantity using lattice simulations of QCD.

Combining the above results, adding the theoretical errors linearly to be conser-
vative, gives

F(1) = 0.91 ± 0.04 (9)

for the normalization of the hadronic form factor at zero recoil. This can be used to

extract from the experimental result (4) the model-independent value

| Vcb| = (38.6+2.4
−1.9 exp ± 1.7th) × 10−3 . (10)

After | Vud| and | Vus|, this is now the third-best known entry in the CKM matrix.

2.1.2. Bounds and predictions for ̺̂2

The slope parameter ̺̂2 in the expansion of the physical form factor in (3) dif-
fers from the slope parameter ̺2 of the universal Isgur–Wise function by corrections

that violate the heavy-quark symmetry. The short-distance corrections have been
calculated, with the result62

̺̂2 = ̺2 + (0.16 ± 0.02) +O(1/mQ) . (11)

The slope of the Isgur–Wise function is constrained by sum rules, which relate the
inclusive decay rate of the B meson to a sum over exclusive channels. At lowest order,

Bjorken and Voloshin have derived two such sum rules, which imply the bounds63−65

1

4
< ̺2 <

1

4
+

Λ̄

2E0

≃ 0.8 , (12)

where Λ̄ = mB − mb, and E0 = mB∗∗ − mB. Corrections to this result can be
calculated in a systematic way using the Operator Product Expansion (OPE), where

one introduces a momentum scale µ ∼ few × Λ chosen large enough so that αs(µ)
and power corrections of order (Λ/µ)n are small, but otherwise as small as possible to

5



suppress contributions from excited states66. The result is67 ̺2
min(µ) < ̺2 < ̺2

max(µ),
where the boundary values are shown in Fig. 2 as a function of the scale µ. Assuming

that the OPE works down to values µ ≃ 0.8 GeV, one obtains rather tight bounds
for the slope parameters:

0.5 < ̺2 < 0.8 ,

0.5 < ̺̂2 < 1.1 . (13)

The allowed region for ̺̂2 has been increased in order to account for the unknown

1/mQ corrections in the relation (11). The experimental result given in (4) falls inside
this region.

O
PE

 b
re

ak
s 

do
w

n Voloshin sum rule

Bjorken sum rule

excluded by

excluded by

0 0.5 1 1.5 2 2.5 3 3.5
µ  [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

ρ2

Fig. 2. Bounds for the slope parameter ̺2 following from the Bjorken and Voloshin sum rules.

These bounds compare well with theoretical calculations of the slope parameters.
QCD sum rules have been used to calculate the slope of the Isgur–Wise function; the

results obtained by various authors are ̺2 = 0.84 ± 0.02 (Bagan et al.68), 0.7 ± 0.1
(Neubert69), 0.70 ± 0.25 (Blok and Shifman70), and 1.00 ± 0.02 (Narison71). The

UKQCD Collaboration has presented a lattice calculation of the slope of the form

factor F(w), yielding72 ̺̂2 = 0.9+0.2+0.4
−0.3−0.2. I stress that the sum rule bounds in (13)

are largely model independent; model calculations in strong disagreement with these

bounds should be discarded.

2.1.3. Analyticity bounds and correlations between ̺̂2 and ĉ

A model-independent method of constraining the q2 dependence of form factors
using analyticity properties of QCD spectral functions and unitarity was proposed

some time ago73. This method has been applied to the elastic form factor of the B

meson74−76, which is related by heavy-quark symmetry to the Isgur–Wise function. It
has also been applied directly to the form factors of interest for B → D(∗)ℓ ν̄ decays77.
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Thereby, bounds have been derived for the slope and curvature of the function F(w)
in (3). These bounds are rather weak, however, due to the presence of Bc poles

below threshold. The lack of information about the residues of these poles reduced
considerably the constraining power of the method.

The problem of sub-threshold poles, which weaken the analyticity bounds, can be
avoided by using heavy-quark symmetry78. Instead of relying on model-dependent

predictions about the properties of Bc mesons, one can identify a specific B → D

form factor which does not receive contributions from the ground-state Bc poles.
Strong model-independent constraints on the slope and curvature of this form factor

can be derived, and heavy-quark symmetry can be used to relate this form factor to
the function F(w) describing B → D∗ℓ ν̄ decays. These relations receive symmetry-

breaking corrections, which can however be estimated and turn out to weaken the
bounds only softly.

For a more detailed discussion of the results of these analyses, I refer to the original
literature77,78.

2.2. Measurement of B → D∗ℓ ν̄ form factors

If the lepton mass is neglected, the differential decay distributions in B → D∗ℓ ν̄
decays can be parametrized by three helicity amplitudes, or equivalently by three

independent combinations of form factors. It has been suggested that a good choice for
such three quantities should be inspired by the heavy-quark expansion8,79. One thus

defines a form factor hA1(w), which up to symmetry-breaking corrections coincides
with the Isgur–Wise function, and two form factor ratios

R1(w) =
[
1 − q2

(mB +mD∗)2

]
V (q2)

A1(q2)
,

R2(w) =
[
1 − q2

(mB +mD∗)2

]
A2(q

2)

A1(q2)
. (14)

The relation between w and q2 has been given in (1). This definition is such that in

the heavy-quark limit R1(w) = R2(w) = 1 independently of w.
To extract the functions hA1(w), R1(w) and R2(w) from experimental data is a

complicated task. However, HQET-based calculations suggest that the w-dependence
of the form factor ratios, which is induced by symmetry-breaking effects, is rather

mild79. Moreover, the form factor hA1(w) is expected to have a nearly linear shape
over the accessible w range. This motivates to introduce three parameters ̺2

A1, R1

and R2 by

hA1(w) = F(1)
{
1 − ̺2

A1(w − 1) +O[(w − 1)2]
}
,

R1(w) = R1

{
1 +O(w − 1)

}
, (15)

R2(w) = R2

{
1 +O(w − 1)

}
,
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where F(1) = 0.91 ± 0.04 from (9). The CLEO Collaboration has extracted these
three parameters from a joint analysis of the angular distributions in B → D∗ℓ ν̄

decays80. The result is:

̺2
A1 = 0.91 ± 0.15 ± 0.06 ,

R1 = 1.18 ± 0.30 ± 0.12 , (16)

R2 = 0.71 ± 0.22 ± 0.07 .

Using the HQET, one obtains an essentially model-independent prediction for the

symmetry-breaking corrections to R1, whereas the corrections to R2 are more model
dependent. To good approximation8

R1 ≃ 1 +
4αs(mc)

3π
+

Λ̄

2mc

≃ 1.3 ± 0.1 ,

R2 ≃ 1 − κ
Λ̄

2mc
≃ 0.8 ± 0.2 , (17)

with κ ≃ 1 from QCD sum rules79. A quark-model calculation of R1 and R2 gives
similar results81: R1 ≃ 1.15 and R2 ≃ 0.91. The experimental data confirm the

theoretical prediction that R1 > 1 and R2 < 1, although the errors are still large.

There is a model-independent relation between the three parameters determined
from the joined angular analysis and the slope parameter ̺̂2 extracted from the

semileptonic spectrum. It reads62

̺2
A1 − ̺̂2 =

1

6
(R2

1 − 1) +
mB

3(mB −mD∗)
(1 − R2) . (18)

The CLEO data give 0.07 ± 0.20 for the difference of the slope parameters on the
left-hand side, and 0.22 ± 0.18 for the right-hand side. Both values are compatible

within errors.

In my opinion the results of this analysis are very encouraging. Within errors,
the experiment confirms the HQET predictions, starting to test them at the level of

symmetry-breaking corrections.

2.3. Decays to charmless final states

Very recently, the CLEO Collaboration has reported a first signal for exclusive
semileptonic decays of B mesons into charmless final states in the decay modes B →
π ℓ ν̄ and B → ρ ℓ ν̄. The underlying quark process for these transitions is b → u ℓ ν̄.
Thus, these decays provide information on the strength of the CKM matrix element

Vub. The observed branching fractions are82:

B(B → π ℓ ν̄) =

{
(1.34 ± 0.45) × 10−4; ISGW,
(1.63 ± 0.57) × 10−4; BSW,

8



(19)

B(B → ρ ℓ ν̄) =

{
(2.28+0.69

−0.83) × 10−4; ISGW,
(3.88+1.15

−1.39) × 10−4; BSW.

There is a significant model dependence in the simulation of the reconstruction ef-

ficiencies, for which the models of Isgur, Scora, Grinstein and Wise83 (ISGW) and
Bauer, Stech and Wirbel84 (BSW) have been used.

The theoretical description of these heavy-to-light (b → u) decays is more model
dependent than that for heavy-to-heavy (b → c) transitions, because heavy-quark

symmetry does not help to determine the relevant hadronic form factors. A variety
of calculations for such form factors exists, based on QCD sum rules, lattice gauge

theory, perturbative QCD, or quark models. In Table 1, I give a summary of values
extracted for the ratio | Vub/Vcb| from a selection of such calculations. Clearly, some

approaches are more consistent than others in that the extracted values are compatible
for the two decay modes. With few exceptions, the results lie in the range

∣∣∣∣
Vub

Vcb

∣∣∣∣
excl

= 0.06–0.11 , (20)

which is in good agreement with the measurement of | Vub| obtained from endpoint

region of the lepton spectrum in inclusive semileptonic decays85,86:

∣∣∣∣
Vub

Vcb

∣∣∣∣
incl

= 0.08 ± 0.01exp ± 0.02th . (21)

Table 1. Values for |Vub/Vcb| extracted from the CLEO measurement of exclusive semileptonic B
decays into charmless final states, taking |Vcb| = 0.040. An average over the experimental results in
(19) is used for all except the ISGW and BSW models, where the numbers corresponding to these
models are used. The first error quoted is experimental, the second (when available) is theoretical.

Method Reference B → π ℓ ν̄ B → ρ ℓ ν̄

QCD sum rules Narison87 0.159 ± 0.019 ± 0.001 0.066+0.007
−0.009 ± 0.003

Ball88 0.105 ± 0.013 ± 0.011 0.094+0.010
−0.012 ± 0.016

Yang, Hwang89 0.102 ± 0.012+0.015
−0.013 0.184+0.020+0.027

−0.024−0.015

lattice QCD UKQCD90 0.103 ± 0.012+0.012
−0.010 —

APE91 0.084 ± 0.010 ± 0.021 —

pQCD Li, Yu92 0.054 ± 0.006 —

quark models BSW84 0.093 ± 0.016 0.076+0.011
−0.014

KS93 0.088 ± 0.011 0.056+0.006
−0.007

ISGW294 0.074 ± 0.012 0.079+0.012
−0.014

9



Clearly, this is only the first step towards a more reliable determination of | Vub|;
yet, with the discovery of exclusive b→ u transitions an important milestone has been

met. Efforts must now concentrate on more reliable methods to determine the form
factors for heavy-to-light transitions. Some new ideas in this direction have been dis-

cussed recently. They are based on lattice calculations95, analyticity constraints76,96,
or variants of the form-factor relations for heavy-to-heavy transitions97.

3. Exclusive rare radiative decays

Rare decays of B mesons play an important role in testing the Standard Model,
as they are sensitive probes of new physics at high energy scales. On the quark level,

rare decays involve flavour-changing neutral currents such as b → sγ or b → d ℓ+ℓ−.
In the Standard Model they are forbidden at the tree level, but can proceed at the

one-loop level through penguin or box diagrams, see Fig. 3.

b b

s s

t

t

W

W

 

Fig. 3. Penguin diagrams for the quark transition b → sγ.

The effective Hamiltonian describing the rare radiative decay b→ sγ is

Heff = −GF√
2
V ∗

ts Vtb c7(µ)
emb

8π2
s̄σµν(1 + γ5)b F

µν + . . . . (22)

The Wilson coefficient c7(µ) contains the short-distance physics of the heavy particles
in the loop (t and W in the Standard Model). Its value is sensitive to new physics,

such as the existence of charged Higgs bosons, which can in principle be probed by
measuring the inclusive decay rates for B → Xs,dγ. The uncertainty in the calcu-

lation of c7(µ) in the Standard Model is still of order98,99 ±15%, however, reducing
significantly the constraining power of such measurements.

The study of exclusive rare decays focuses on ratios such as

RK∗ =
Γ(B → K∗γ)

Γ(B → Xsγ)
, Rρ =

Γ(B → ρ γ)

Γ(B → Xdγ)
, (23)

which are no longer sensitive to new physics (since the coefficient c7(µ) cancels out),

but test some strong interaction matrix elements. The measurement reported by the
CLEO Collaboration100,

RK∗ = (19 ± 7 ± 4)% , (24)
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can be confronted with theoretical predictions, which have however a wide spread.
QCD sum-rule calculations lead to results in the range101−104 RK∗ = (17±5)%, while

quark model predictions range between105 4% and 30%. Lattice simulations of the
relevant form factors have been performed over a limited range in q2 only, and the

results for RK∗ depend rather strongly on the assumption about the q2 dependence
outside this region. Studies of the various groups90,106−108 have led to values between

5% and 35%. More work is needed to reduce the systematic uncertainties in these

calculations.
In the theoretical analyses described above, it is assumed that B → K∗γ de-

cays are short-distance dominated. This assumption has been questioned recently
by Atwood, Blok and Soni109, who pointed out the possibility of large long-distance

contributions in the decay B → K∗γ, and even more so in the decay B → ρ γ. Exam-
ples of such long-distance contributions are shown in Fig. 4. The first graph shows a

“long-distance penguin” diagram, in which the c-quark in the loop is close to its mass
shell. The cc̄ pair forms a virtual vector meson state ψ∗, which then decays into a

photon. The second graph shows the “weak annihilation” of the quark and antiquark
in the B meson. For B → K∗γ, this process is CKM suppressed with respect to the

penguin diagram, but this suppression is not operative for B → ρ γ.

b s



c c

q

B K

�

u

ub

s



u

B

K

�

Fig. 4. Long-distance contributions to rare radiative decays.

Estimates of these long-distance contributions are difficult and currently contro-

versial110−116. For B → K∗γ, predictions for the ratio of the long- and short-distance
amplitudes, |Ald/Asd|, range from 15–50% to < 10%. In B− → ρ−γ decays, most

authors expect long-distance effects at a level of 10–30%, whereas the effects are
much smaller, ∼ 1–10%, in the neutral channel B0 → ρ0γ. Further investigation of

this important subject is necessary before a conclusion can be drawn. A clarification
of this issue is also important with regard to a determination of the ratio of CKM

elements | Vtd/Vts| from the comparison of the decay rates for B → ρ γ and B → K∗γ.

4. Inclusive decay rates

Inclusive decay rates determine the probability of the decay of a particle into

the sum of all possible final states with given quantum numbers. The theoretical
framework to describe inclusive decays of heavy flavours is provided by the 1/mQ
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expansion17−25, which is a “Minkowskian version” of the OPE. This means that the
theoretical treatment of inclusive rates has a solid foundation in QCD, however with

one assumption: that of quark–hadron duality. In the description of semileptonic
decays (e.g. B → ℓ ν̄ + hadrons), where the integration over the lepton and neutrino

phase space provides a “smearing” over the invariant hadronic mass, so-called “global”
duality is needed117, whereas the treatment of nonleptonic decays (e.g. B → hadrons),

for which the total hadronic mass is fixed, requires the stronger assumption of local

duality. It is important to stress that quark–hadron duality cannot be derived from
QCD, although it is a common assumption in QCD phenomenology.

The main results of the 1/mQ expansion for inclusive decays are that the free
quark decay (i.e. the parton model) provides the first term in a systematic 1/mQ

expansion, and the nonperturbative corrections to it are suppressed by (at least) two
powers of the heavy quark mass, i.e. they are of relative order (Λ/mQ)2. The generic

expression of any inclusive decay rate of a hadron HQ containing a heavy quark into
some final state with quantum numbers f is of the form18−20,118,119

Γ(HQ → Xf ) =
G2

Fm
5
Q

192π3
|KM|2

{
cf3

(
1 − 〈Q̄(i ~D)2Q〉H

2m2
Q

)

+ cf5
〈Q̄gsσµνG

µνQ〉H
m2

Q

+
∑

i

cf6,i

〈Q̄Γiqq̄ΓiQ〉H
m3

Q

+ . . .
}
, (25)

where |KM| is a combination of CKM matrix elements, cfn are calculable coefficient
functions, and 〈On〉H are the (normalized) forward matrix elements of local operators

between HQ states. The matrix elements of the dimension-five operators are59

〈Q̄(i ~D)2Q〉H = −λ1 = µ2
π ,

〈Q̄gsσµνG
µνQ〉H = 2dHλ2 , (26)

where dP = 3, dV = −1 and λ2 = 1
4
(m2

B∗ −m2
B) ≃ 0.12 GeV2 for the ground state

pseudoscalar (PQ) and vector (VQ) mesons, and dΛ = 0 for the ΛQ baryon. The
matrix element of the “kinetic energy operator”, µ2

π = −λ1, has been estimated by

several authors120−122; below I shall use the value −λ1 = (0.4 ± 0.2) GeV2 with a
conservative error. Meson matrix elements of the dimension-six operator in (25) can

be related, in the vacuum saturation approximation123, to the decay constant fB of
the B meson. I shall now discuss the most important applications of this general

formalism to inclusive decays of b-flavoured mesons and baryons.

4.1. Determination of | Vcb| from inclusive semileptonic decays

The extraction of | Vcb| from the inclusive semileptonic decay rate of the B meson

is based on the expression18−20

Γ(B → Xcℓ ν̄) =
G2

Fm
5
b

192π3
| Vcb|2

{(
1 +

λ1 + 3λ2

2m2
b

)
f(mc/mb)
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− 6λ2

m2
b

(
1 − m2

c

m2
b

)4

+
αs(M)

π
g(mc/mb) + . . .

}
, (27)

where mb is the pole mass of the b quark (defined to a given order in perturbation

theory), and f(x) and g(x) are phase space functions given elsewhere124. The the-
oretical uncertainties in this determination of | Vcb| are quite different from the ones

entering the analysis of exclusive decays. In inclusive decays there appear the quark
masses rather than the meson masses. Moreover, the theoretical description relies on

the assumption of global quark–hadron duality, which is not necessary for exclusive

decays. I will now discuss the theoretical uncertainties in detail.

4.1.1. Nonperturbative corrections

The nonperturbative corrections are very small; with −λ1 = (0.4±0.2) GeV2 and
λ2 = 0.12 GeV2, one finds a reduction of the parton model rate by −(4.2 ± 0.5)%.

The uncertainty in this number is below 1% and thus completely negligible.

4.1.2. Dependence on quark masses

Although Γ ∼ m5
b f(mc/mb), the dependence on mb becomes milder if one chooses

mb and ∆m = mb −mc as independent variables. This is apparent from Fig. 5, which
shows that Γ ∼ m2.3

b ∆m2.7. Moreover, these variables have essentially uncorrelated

theoretical uncertainties. Whereas mb = mB − Λ̄ + . . . is mainly determined by the
Λ̄ parameter of the HQET125, the mass difference ∆m obeys the expansion59

∆m = (m̄B − m̄D)
{
1 +

(−λ1)

2m̄Bm̄D

+ . . .
}

= (3.40 ± 0.03 ± 0.03) GeV , (28)

i.e. it is sensitive to the kinetic energy parameter λ1. Here m̄B = 5.31 GeV and
m̄D = 1.97 GeV denote the “spin-averaged” meson masses, e.g. m̄B = 1

4
(mB +3mB∗).

I think that theoretical uncertainties of 60 MeV on ∆m and 200 MeV on mb are
reasonable; values much smaller than this are probably too optimistic. This leads to

(
δΓ

Γ

)

masses
=

√(
0.10

δmb

200 MeV

)2

+
(
0.05

δ∆m

60 MeV

)2

≃ 11% . (29)

4.1.3. Perturbative corrections

This is the most subtle part of the analysis. The semileptonic rate is known

exactly only to order124 αs, though a partial calculation of the coefficient of order α2
s

exists126. The result is

Γ

Γtree
= 1 − 1.67

αs(mb)

π
− (1.68β0 + . . .)

(
αs(mb)

π

)2

+ . . . . (30)
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Fig. 5. Dependence of the inclusive semileptonic decay rate on mb and ∆m = mb − mc.

The one-loop correction is moderate; it amounts to about −11%. Of the two-loop

coefficient, only the part proportional to the β-function coefficient β0 = 11 − 2
3
nf

is known. For nf = 3 light quark flavours, this term is 1.68β0 ≃ 15.1 and gives

rise to a rather large correction of about −6%. One may take this as an estimate
of the perturbative uncertainty. The dependence of the result on the choice of the

renormalization scale and scheme has been investigated, too, and found to be of
order127 6%.

Yet, the actual perturbative uncertainty may be larger than that. A subset of
higher-order corrections, the so-called renormalon contributions of the form βn−1

0 αn
s ,

can be summed to all orders in perturbation theory, leading to41 Γ/Γtree = 0.77±0.05,

which is equivalent to choosing the rather low scale M ≃ 1 GeV in (27). This estimate
is 12% lower than the one-loop result.

These considerations show that there are substantial perturbative uncertainties
in the calculation of the semileptonic decay rate. They could only be reduced with a

complete two-loop calculation, which is however quite a formidable task. At present,
I consider (δΓ/Γ)pert ≃ 10% a reasonable estimate.

4.1.4. Result for | Vcb|

Adding, as previously, the theoretical errors linearly and taking the square root,
I find

δ| Vcb|
| Vcb|

≃ 10% (31)

for the theoretical uncertainty in the determination of | Vcb| from inclusive decays,
keeping in mind that in addition this method relies on the assumption of global

duality. Taking the result of Ball et al.41 for the central value, I quote

| Vcb| = (0.0398 ± 0.0040)
(

BSL

10.77%

)1/2 (
τB

1.6 ps

)
−1/2

. (32)
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Using the new world averages for the semileptonic branching ratio1, BSL = (10.77 ±
0.43)%, and for the average B meson lifetime2, τB = (1.60 ± 0.03) ps, I obtain

| Vcb| = (39.8 ± 0.9exp ± 4.0th) × 10−3 , (33)

which is is excellent agreement with the measurement in exclusive decays reported

in (10). This agreement is gratifying given the differences of the methods used,
and it provides an indirect test of global quark–hadron duality. Combining the two

measurements gives the final result

| Vcb| = 0.039 ± 0.002 . (34)

4.2. Semileptonic branching ratio and charm counting

The semileptonic branching ratio of the B meson is defined as

BSL =
Γ(B → X e ν̄)

∑
ℓ Γ(B → X ℓ ν̄) + ΓNL + Γrare

, (35)

where ΓNL and Γrare are the inclusive rates for nonleptonic and rare decays, respec-
tively, the latter being negligible. The main difficulty in calculating BSL is not in the

semileptonic width, but in the nonleptonic one. As mentioned above, the calculation
of nonleptonic decays in the 1/mQ expansion relies on the strong assumption of local

quark–hadron duality.
Measurements of the semileptonic branching ratio have been performed in vari-

ous experiments, using both model-dependent and model-independent analyses. The
situation has been summarized by T. Skwarnicki1 at this Conference. The new world

average is
BSL = (10.77 ± 0.43)% . (36)

An important aspect in understanding this result is charm counting, i.e. the measure-
ment of the average number nc of charm hadrons produced per B decay. The CLEO

Collaboration has presented a new result for nc, which is1,128

nc = 1.16 ± 0.05 . (37)

In the naive parton model, one finds129 BSL ∼ 15–16% and nc ≃ 1.15–1.20.

Whereas nc is in agreement with experiment, the semileptonic branching ratio is

predicted too large. With the establishment of the 1/mQ expansion, the nonpertur-
bative corrections to the parton model could be computed and turned out too small

to improve the prediction. This lead Bigi et al. to conclude that values BSL < 12.5%
cannot be accommodated by theory, thus giving rise to a puzzle referred to as the

“baffling semileptonic branching ratio”130. The situation has changed recently, how-
ever. Bagan et al. found indications that higher-order perturbative corrections lower
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the value of BSL significantly131. The exact order-αs corrections to the nonleptonic
width have been computed for mc 6= 0, and an analysis of the renormalization scale

and scheme dependence has been performed. In particular, it turns out that radiative
corrections increase the partial width Γ(b→ cc̄s). This has two effects: it lowers the

semileptonic branching ratio, but at the price of a higher value of nc. The results in
two popular renormalization schemes are132

BSL =

{
12.1 ± 0.7+0.9

−1.2%; on-shell scheme,
11.7 ± 0.7+0.9

−1.3%; ms scheme,

(38)

nc = 1.21 ∓ 0.04 ∓ 0.01; both schemes.

The errors in the two quantities are anti-correlated. The first error reflects the un-

certainties in the input parameters, whereas the second one shows the dependence on
the renormalization scale, which is varied in the range mb/2 < µ < 2mb. Lowering

µ decreases the value of BSL and vice versa. Note that using a low renormalization

scale is not unnatural; Luke et al. have estimated that µ ≃ 0.3mb is an appropriate
scale in this case126. Values BSL < 12% can thus easily be accommodated. Only a

complete order-α2
s calculation could reduce the perturbative uncertainties.

9 10 11 12 13 14
BSL (%)

1

1.1

1.2

1.3

1.4

n c

Fig. 6. Correlation between the semileptonic branching ratio and charm counting. The dark area
is the theoretically allowed region in the on-shell scheme, whereas the light area refers to the ms

scheme132. The dash-dotted lines indicate the allowed region if the calculation of Γ(b → cc̄s) is
ignored and this partial rate is treated as a free parameter133. The data point shows the world
average for BSL and the new CLEO result for nc presented at this Conference.

The above discussion shows that it is the combination of a low semileptonic

branching ratio and a low value of nc that constitutes a potential problem. This is
illustrated in Fig. 6, which is an updated version of a figure shown in a recent work of

Buchalla et al.133. With the new experimental and theoretical results for BSL and nc,
only a small discrepancy remains between theory and experiment. It has been argued

that the current experimental value of nc may depend on model assumptions about
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the production of charm hadrons, which are sometimes questionable133,134. Another
possibility, which has been pointed out by Palmer and Stech135 and others136−138,

is that local quark–hadron duality could be violated in nonleptonic B decays. If
so, this will most likely happen in the channel b → cc̄s, where the energy release,

E = mB −mX(cc̄s), is of order 1.5 GeV or smaller. If the discrepancy between the-
ory and experiment persists, this possibility should be taken seriously before a “new

physics” explanation139,140 is advocated.

For completeness, I briefly discuss the semileptonic branching ratio for B decays
into a τ lepton, which is suppressed by phase space. The ratio of the semileptonic

rates for decays into τ leptons and into electrons can be calculated reliably. The
result is141

B(B → X τ ν̄τ ) = (2.32 ± 0.23)% × BSL

10.77%
= (2.32 ± 0.25)% . (39)

It is in good agreement with the new world average1

B(B → X τ ν̄τ ) = (2.60 ± 0.32)% . (40)

4.3. Lifetime ratios of b-hadrons

The 1/mQ expansion predicts that the lifetimes of all b-flavoured hadrons agree

up to nonperturbative corrections suppressed by at least two powers of 1/mb. This
prediction can be tested with new high precision data, which have been summarized

by J. Kroll2 at this Conference.

4.3.1. Lifetime ratio for B− and B0

The lifetimes of the charged and neutral B mesons differ at order 1/m3
b in the

heavy quark expansion. The corresponding corrections arise from effects referred
to as interference and weak annihilation142,143. They are illustrated in Fig. 7. In

the operator language, these spectator effects are represented by hadronic matrix
elements of local four-quark operators of the type

〈b̄Γqq̄Γb〉B ∼ f 2
B mB ∼ Λ3 , (41)

where the vacuum insertion approximation123 has been used. It turns out that in-
terference gives rise to the dominant corrections (weak annihilation is strongly CKM

suppressed), which decrease the decay rate for B−, i.e. enhance its lifetime. The
result is119

∆Γint(B
−) =

G2
Fm

5
b

192π3
| Vcb|2 16π2 f

2
B mB

m3
b

ζQCD , (42)
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where

ζQCD = 2c2+(mb) − c2
−
(mb) =

{
1; at tree level,

−0.6; with QCD corrections.
(43)

After including short-distance corrections to the four-fermion interactions the inter-

ference becomes destructive. The numerical result is

τ(B−)

τ(B0)
≃ 1 + 0.04

(
fB

180 MeV

)2

, (44)

consistent with the experimental value2

τ(B−)

τ(B0)
= 1.02 ± 0.04 . (45)

b

c

u

u

u

d
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u
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�
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Fig. 7. Interference and weak-annihilation contributions to the lifetime of the B− meson. The
interference effect in the first diagram arises from the presence of two identical ū quarks in the final
state.

The theoretical prediction depends on the vacuum saturation assumption123, which

has been criticized. Chernyak has estimated that nonfactorizable contributions can
be as large as 50% of the factorizable ones144. Another important observation is the

following one: in nonleptonic decays, spectator effects appearing at order 1/m3
b are

enhanced by a factor 16π2 resulting from the two-body versus three-body phase space.

In fact, the scale of the correction in (42) is unexpectedly large:

16π2 f
2
B mB

m3
b

≃
(

4πfB

mb

)2

≃ 0.2 . (46)

The presence of this phase-space enhancement factor leads to a peculiar structure of
the 1/mQ expansion for nonleptonic rates, which can be displayed as follows:

Γ ∼ Γ0

{

1 +
(

Λ

mQ

)2

+
(

Λ

mQ

)3

+ . . .+ 16π2
[(

Λ

mQ

)3

+
(

Λ

mQ

)4

+ . . .
]}

. (47)

Numerically, the terms of order 16π2 (Λ/mQ)3 are more important than the ones of
order (Λ/mQ)2. I draw two conclusion from this observation: it is important to

include this type of 1/m3
b corrections to all predictions for nonleptonic rates; there

is a challenge to calculate the hadronic matrix elements of four-quark operators with
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high accuracy. Lattice calculations could help to improve the existing estimates of
such matrix elements.

4.3.2. Lifetime ratio for Bs and Bd

The lifetimes of the two neutral mesons Bs and Bd differ by corrections that
are due to spectator effects referred to as W exchange. They are smaller than the

interference effects discussed above. The theoretical prediction is119

τ(Bs)

τ(Bd)
= 1 ±O(1%) , (48)

consistent with the experimental value2

τ(Bs)

τ(Bd)
= 1.01 ± 0.07 . (49)

Note that τ(Bs) denotes the average lifetime of the two Bs states.

4.3.3. Lifetime ratio for Λb and B0

Although differences between the lifetimes of heavy mesons and baryons start at
order 1/m2

b , the main effects come again at order 1/m3
b . However, here one encounters

the problem that the matrix elements of four-quark operators are needed not only
between meson states (where the vacuum saturation approximation may be used),

but also between baryon states. Very little is known about such matrix elements.
Bigi et al. have adopted a simple nonrelativistic quark model and conclude that119

τ(Λb)

τ(B0)
= 0.90–0.95 . (50)

The experimental result for this ratio is significantly lower2:

τ(Λb)

τ(B0)
= 0.76 ± 0.05 . (51)

In my opinion, a dedicated theoretical effort to understand this result is desirable. In
view of the above discussion, one should first question (and improve) the calculation

of baryonic matrix elements of four-quark operators, then question the vacuum satu-
ration approximation, and finally question the validity of local quark–hadron duality.

5. Determinations of αs from Υ spectroscopy

Before summarizing, I want to touch upon a topic not related to B decays. The
large mass of the b quark makes it possible to describe the spectrum and properties
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of (bb̄) bound states with high accuracy, using the heavy-quark expansion. From
a comparison with experiment, it is then possible to extract the strong coupling

constant αs. Analyses of this type have been performed based on lattice calculations
and QCD sum rules. The current status of the determination of αs from calculations

of the Υ spectrum in lattice gauge theory has been summarized by C. Michael145

at this Conference. When translated into a value of αs(mZ) in the ms scheme, a

conservative result is146,147

αs(mZ) = 0.112 ± 0.007 . (52)

A more precise value, αs(mZ) = 0.115 ± 0.002, has been reported by the NRQCD
Collaboration148; the small error has been criticized, however146,147.

Voloshin has performed an analysis of the Υ spectrum using QCD sum rules,
including a resummation of large Coulomb corrections to all orders in perturbation

theory149. He quotes αs(1 GeV) = 0.336 ± 0.011, which translates into

αs(mZ) = 0.109 ± 0.001 . (53)

The very small error may have been underestimated. It is important to understand

better the sources of theoretical uncertainty before this result can be trusted.
Despite such reservations, it looks promising that ultimately the Υ system may

provide one of the best ways to measure αs with high precision at low energies.

6. Summary and conclusions

I have reviewed the status of the theory of weak decays of heavy flavours, concen-

trating on topics relevant to current experiments. Weak decays play a unique role in
testing the Standard Model at low energies. Ultimately, a precise determination of the

parameters of the flavour sector (elements of the Cabibbo–Kobayashi–Maskawa ma-
trix and quark masses) will help to explore such intricate phenomena as CP violation,

and is crucial in searches for new physics beyond the Standard Model.
Exclusive semileptonic decays mediated by the heavy-quark transition b → c ℓ ν̄

are of particular importance, as they allow for a model-independent description pro-
vided by heavy-quark symmetry and the heavy-quark effective theory. These con-

cepts can now be tested with detailed measurements of the form factors in the decay
B → D∗ℓ ν̄. The most striking result of the analysis of this decay is a very precise

determination of the strength of b→ c transitions: | Vcb| = (38.6±2.5)×10−3. In the

future, studies of the related decays B → D ℓ ν̄, Bs → D(∗)
s ℓ ν̄ and Λb → Λcℓ ν̄ may

provide further tests of heavy-quark symmetry and teach us about the dependence

of the Isgur–Wise function on the flavour and spin quantum numbers of the light
degrees of freedom in a heavy hadron.

The discovery of exclusive semileptonic decays into charmless final states is a mile-
stone on the way towards a precise determination of | Vub|. Currently, new theoretical
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ideas are being discussed, and existing approaches are being refined, which may help
to get a better handle on the calculation of heavy-to-light transition form factors.

These form factors also appear in the description of rare radiative decays, which are
mediated by flavour-changing neutral currents and in the Standard Model proceed

through loop (penguin) diagrams.
The second part of my talk was devoted to inclusive decays of b-flavoured hadrons.

The theoretical description of inclusive rates is based on the 1/mQ expansion, which

is a “Minkowskian” version of the operator product expansion. It can be derived from
QCD if one accepts the hypothesis of quark–hadron duality. Duality is an important

concept in QCD phenomenology, which however cannot be derived yet from first
principles, so it needs to be tested. The measurement of the inclusive semileptonic

decay rate of the B meson provides an alternative way to determine | Vcb|, which leads
to | Vcb| = (39.8 ± 4.1) × 10−3, in excellent agreement with the value obtained from

exclusive decays. This agreement provides an indirect test of global quark–hadron
duality. The theoretical calculation of the semileptonic branching ratio, BSL, suffers

from a sizable renormalization-scheme dependence, which does not allow to state a
discrepancy between the data and theory for BSL alone. However, the combination of

a low value of BSL and a low value of nc, the number of charm hadrons per B decay,
remains a problem that deserves further investigation.

A particularly clean test of the heavy-quark expansion is provided by the study
of lifetime ratios of b-flavoured hadrons. This tests the assumption of local quark–

hadron duality, as well as our capability to evaluate the hadronic matrix elements of

the operators appearing in the 1/mb expansion. For the lifetime ratios τ(Bd)/τ(Bs)
and τ(B−)/τ(B0) there is good agreement between theory and experiment, although

the data have not yet reached the precision required to perform a stringent test of the
theoretical predictions. However, in the case of the lifetime ratio τ(Λb)/τ(B

0) there

are indications for a significant discrepancy; the data indicate much larger power
corrections than anticipated by theory. A better understanding of this discrepancy,

if it persists, is most desirable.
Given the limitations in space and time, the material covered in this talk is only

a selection of current topics in heavy flavour physics. With continuous advances on
the theoretical front, and with ongoing experimental efforts and the construction of

new facilities (B factories), this field will remain of great interest and will continue
to provide us with new exciting results in the future.
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