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Abstract

The status of gaugino condensation in low-energy string theory is reviewed.

Emphasis is given to the determination of the efective action below conden-

sation scale in terms of the 2PI and Wilson actions. We illustrate how the

different perturbative duality symmetries survive this simple nonperturbative

phenomenon, providing evidence for the believe that these are exact nonper-

turbative symmetries of string theory. Consistency with T duality lifts the

moduli degeneracy. The Bµν −axion duality also survives in a nontrivial way

in which the degree of freedom corresponding to Bµν is replaced by a massive

Hµνρ field but duality is preserved. S duality may also be implemented in

this process. Some general problems of this mechanism are mentioned and

the possible nonperturbative scenarios for supersymmetry breaking in string

theory are discussed.
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1 Introduction

In the efforts to extract a relation between string theory and physics, we find two

main problems, namely how the large vacuum degeneracy is lifted and how super-

symmetry is broken at low energies. These problems, when present at string tree

level, cannot be solved at any order in string perturbation theory. The reason is

the following: It is known that at tree-level, setting all the matter fields to zero

forces the superpotential to vanish, for any value of the moduli and dilaton fields.

The corresponding scalar potential vanishes implying flat directions for the moduli

and dilaton. Also, the F and D auxiliary fields, which are the order parameters

for supersymmetry breaking, vanish in this situation, implying unbroken supersym-

metry. Since the superpotential does not get renormalized in perturbation theory,

if it vanish at tree level it will also vanish at all orders of string perturbation the-

ory. Then the F-term part of the potential also vanishes perturbatively. The only

perturbative correction that could alter this situation is the generation of a Fayet-

Iliopoulos D-term by an ‘anomalous’ U(1), usually present in 4D strings. However,

in all the cases considered so far there are charged fields getting nonvanishing vev’s

which cancel the D-term, breaking gauge symmetries instead of supersymmetry.

Therefore these problems are exact in perturbation theory and the only hope to

solve them is nonperturbative physics. This has a good and a bad side. The good

side is that nonperturbative effects represent the most natural way to generate large

hierarchies due to their exponential suppression, this is precisely what is needed

to obtain the Weinberg-Salam scale from the fundamental string or Planck scale.

The bad side is that despite many efforts, we do not yet have a nonperturbative

formulation of string theory. At the moment, the only concrete nonperturbative

information we can extract is from the purely field theoretical nonperturbative effects

inside string theory. Probably the simplest and certainly the most studied of those

effects is gaugino condensation in a hidden sector of the gauge group, since it has the

potential of breaking supersymmetry as well as lifting some of the flat directions, as

we will presently discuss.

2 Gaugino Condensation

The idea of breaking supersymmetry in a dynamical way was first presented in

refs. [1]. In those articles a general topological argument was developed in terms of

the Witten index Tr(−)F , showing that dynamical supersymmetry breaking cannot
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be achieved unless there is chiral matter or we include supergravity effects for which

the index argument does not apply. This was subsequently verified by explicitly

studying gaugino condensation in pure supersymmetric Yang-Mills, a vector-like

theory, for which gauginos condense but do not break global supersymmetry [2] (for

a review see [3]). Breaking global supersymmetry with chiral matter was an open

possibility in principle, but this approach ran into many problems when tried to be

realized in practice.

The situation improved very much with the coupling to supergravity. The reason

was that simple gaugino condensation was argued to be sufficient to break super-

symmetry once the coupling to gravity was included. This works in a hidden sector

mechanism where gravity is the messenger of supersymmetry breaking to the ob-

servable sector [4]. Furthermore, string theory provided a natural realization of

this mechanism [7, 6] by having naturally a hidden sector especially in the E8 ×E8

versions. Also, it gave another direction to the mechanism by the fact that gauge

couplings are field dependent (as anticipated for supergravity models in ref. [5]).

This same fact raised the hope that gaugino condensation could lift the moduli and

dilaton flat directions, but soon it was recognized that it only changed flat to run-

away potentials, thus destabilizing those fields in the ‘wrong’ direction (zero gauge

coupling and infinite radius)1.

A simple way to see this is by setting the gaugino condensate 〈λαλα〉 ∼ Λ3 with

Λ ∼ M exp(−1/(bg2)), the renormalization group invariant scale. Here M ∼ 1019

Gev is the compactification scale, b the coefficient of the one-loop beta function of

the hidden sector group and g the corresponding gauge coupling. In string theory

we have that 4πg−2 ∼ 〈S + S∗〉 where S is the chiral dilaton field (including also

the axion and fermionic partner). Also, M−1 ∼ 〈T + T ∗〉 with T being one of

the moduli fields. Substituting naively 〈λαλα〉 into the lagrangian induces a scalar

potential for the real parts of S and T (SR and TR respectively), namely V (SR, TR) ∼
1

SRT 3

R

exp(−3SR/4πb). This potential has a runaway behaviour for both SR and TR,

as advertized.

The T dependence of the potential was completely changed after the consider-

ation of target space or T duality. In its simplest form, this symmetry acts on the

field T as an SL(2,Z) symmetry:

T →
a T − i b

i c T + d
, a d− b c = 1. (1)

1The possibility of a nonvanishing 〈Hijk〉 stabilizing the potential with vanishing cosmological

constant [6], was discarded after it was realized that this field was always quantized, breaking

supersymmetry at the Planck scale, also its incorporation does not seem consistent with T -duality.
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It was shown [8], that imposing this symmetry changes the structure of the scalar

potential for the moduli fields in such a way that it develops a minimum at T ∼ 1.2

(in string units), whereas the potential blows-up at the decompactification limit

(TR → ∞), as desired. The modifications due to imposing T duality can be traced

to the fact that the gauge couplings get moduli dependent threshold corrections

from loops of heavy string states [9]. This in turn generates a moduli dependence

on the superpotential induced by gaugino condensation of the form W (S, T ) ∼

η(T )−6 exp(−3S/8πb) with η(T ) the Dedekind function.

This mechanism however did not help in changing the runaway behaviour of

the potential in the direction of S. For stabilizing S, the only proposal was to

consider gaugino condensation of a nonsemisimple gauge group, inducing a sum of

exponentials in the superpotential W (S) ∼
∑

i αi exp(−3S/8πbi) which conspire to

generate a local minimum for S [10]. These have been named ‘racetrack’ models in

the recent literature.

It was later found that combining the previous ideas together with the addition

of matter fields in the hidden sector (natural in many string models)[11, 12], was

sufficient to find a minimum with almost all the right properties, namely, S and T

fixed at the desired value, SR ∼ 25, TR ∼ 1, supersymmetry broken at a small scale

(∼ 102−4 GeV) in the observable sector, etc. This lead to studies of the induced soft

breaking terms at low energies.

Besides that relative succes, there are at least five problems that assures us that

we are far from a satisfactory treatment of these issues.

(i) Unlike the case for T , fixing the vev of the dilaton field S, at the phenomenologi-

cally interesting value, is not achieved in a satisfactory way. The conspiracy of

several condensates with hidden matter to generate a local minimum at a good

value, requires certain amount of fine tunning and cannot be called natural.

(ii) The cosmological constant turns out to be always negative, which looks like

an unsourmountable problem at present. This also makes the analysis of soft

breaking terms less reliable, because in order to talk about them, a constant

piece has to be added to the lagrangian that cancels the cosmological constant.

It is then hard to believe that the unknown mechanism generating this term

would leave the results on soft breaking terms (such as small gaugino masses)

untouched.

(iii) The derivation of the effective theory below condensation is not completely

understood. There are several approaches to this and the exact relation among
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them is not completely clear.

(iv) There is an inherently stringy problem which is due to the fact that the S field

is not stringy. S is only the dual of another field, L which is the one created by

string vertex operators, having the dilaton and the antisymmetric tensor field

Bµν (instead of the axion) as the bosonic components. The problem resides in

the fact that, if there is not a Peccei-Quinn (PQ) symmetry S → S+i constant,

as in the many condensates scenario, it is not clear if the theory in terms of S

is any longer dual to the L theory. This sets serious doubts on whether the S

approach mentioned above is valid at all. Another way to express this problem

is to ask if it is possible to formulate directly gaugino condensation in terms

of the stringy field L.

(v) Finally, even if the previous problems were solved, there are at least two serious

cosmological problems for the gaugino condensation scenario. First, it was

found under very general grounds, that it was not possible to get inflation

with the type of dilaton potentials obtained from gaugino condensation [13].

Second is the so-called ‘cosmological moduli problem’ which applies to any

(nonrenormalizble) hidden sector scenario including gaugino condensation [14].

In this case, it can be shown that the moduli and dilaton fields acquire masses

of the electroweak scale (∼ 102 GeV) after supersymmetry breaking. Therefore

if stable, they overclose the universe, if unstable, they destroy nucleosynthesis

by their late decay, since they only have gravitational strength interactions.

In the next section, I will present a general description of the effective theory

below condensation scale, addressing the issue of problem (iii) above. Section 4 will

show the solution of problem (iv) whereas in section 5, I will discuss ideas towards

solving problems (i) and (v). The resolution of problem (ii) is left to the reader.

3 Wilson vs 2PI Actions

To study the effects of gaugino condensation we should be able to answer the fol-

lowing questions: Do gauginos condense? If so, is supersymmetry broken by this

effect? What is the effective theory below the scale of condensation? In order to

answer these questions, several ideas have been put forward [2, 5, 6, 15]. Let me

revise briefly the different approaches.

In ref. [2], a chiral superfield U was introduced representing the condensate

W αWα. The effective supersymmetric theory in terms of U was found by matching
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the anomaly of an original R-symmetry of the underlying supersymmetric Yang-

Mills action.

In refs. [6], [16], the same anomalous symmetry was used to reproduce the ef-

fective action below condensation scale, without the need of introducing U . That

gave rise to the superpotential W (S) ∼ exp(−3S/8πb) mentioned before. The ear-

lier approach of ref. [5] was based on the direct substitution of λαλα in the original

supergravity lagrangian. A more recent analysis of ref. [15], uses a Nambu-Jona-

Laisinio approach to describe the condensation mechanism.

Even though some of these approaches gave similar results, there are important

differences among them. In particular, following ref. [5], since they substitute λαλα

directly into the supersymmetric action in components, the effective lagrangian is

not explicitly supersymmetric unlike for instance the results of ref. [6]. 2 Also,

the approach of [15], even though it reproduces the results in [2] at tree-level, by

including quantum corrections, they find very different results, for instance, the

dilaton could be stabilized with a single condensing group. Finally the formalisms

of [2] and [6] have been compared in [11, 17]. They eliminate the field U by assuming

it does not break global supersymmetry, ie by using ∂W/∂U = 0 and find agreement

between the two methods. However this condition should not be imposed beforehand

and it is not well justified in the supergravity case.

We can see there is no satisfactory understanding of the effective theory below

condensation. Furthermore, the anomalous symmetry argument which is the most

solid description of the single condensing case, cannot be used for the interesting

case of several condensing groups.

We will now present a self contained discussion which will at the end identify

the main approaches with known field theory quantities, ie the 2PI and Wilsonian

effective actions [18], and mention how these two approaches are actually related in

a consistent manner.

3.1 Supergravity Basics

Since the fields S and T are expected to have very large vev’s, it is more convenient

to work with local supersymmetry without taking the Planck scale to ∞. The most

general action for chiral matter supermultiplets Σ coupled to supergravity can be

2These two approaches were shown to be equivalent in ref. [17], once the superconformal struc-

ture of the original supergravity action is considered in detail, giving rise an explicit supersymmetric

action as in [6]
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written as [19]:

I =
∫

d4x
{

−
3

4
[S0S

∗

0e
−K(Σ,Σ∗)/3]D+ (2)

[S3
0W (Σ)]F + [

1

4
fab(Σ)W αaW b

α]F + cc
}

where the Kähler potentialK(Σ,Σ∗), the superpotentialW (Σ) and the gauge kinetic

function fab(Σ) define a particular theory. The field S0 is an extra chiral superfield

called ‘the compensator’. Its existence is due to the fact that action (2) is not

only invariant under super Poincaré symmetries but under the full superconformal

symmetry. This simplifies the treatment of the theory in particular the calculation

of the action in components. Super Poincaré supergravity is easily obtained by

explicitly fixing the field S0 to a particular value, it is usually chosen in such a way

that the coefficient of the Einstein term in the action is just Newton’s constant.

Two symmetries of the superconformal algebra have a particular importance for

us: Weyl and chiral U(1) transformations. These two symmetries do not commute

with supersymmetry. The chiral U(1) group is at the origin of the R-symmetry

of Poincaré theories. Weyl and chiral transformations with parameters λ and θ

respectively, act on component fields with a factor ewjλ+injθ/2, wj and nj being the

Weyl and chiral weights of the component field. For a left-handed chiral multiplet

(z, ψ, f), one finds the following weights:

z : w, n = w,

ψ : w + 1
2
, n−

3

2
,

f : w + 1, n− 3. (3)

Chiral matter multiplets Σ have w = n = 0, except for S0 which has w = n = 1.

The chiral multiplet of gauge field strength W a has w = n = 3/2. The U(1)

transformations of (left-handed) gauginos and chiral fermions are therefore:

λa −→ e3iθ/4λa, ψ −→ e−3iθ/4ψ. (4)

These transformations generate a gauge-chiral U(1) mixed anomaly. This anomaly

can be cancelled by the ‘Green-Schwarz’ counterterm [20, 17] :

∆I = −c
{

∫

d4x [
1

4
TrW αWα logS0]F + cc

}

. (5)

where c = 3
2π

[C(G) −
∑

I C (RI)] , (C here represents the Casimir of the represen-

tation, for the case without matter we have that c = 8πb). This counterterm is
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claimed to cancel the anomaly to all orders in perturbation theory [17] and plays an

important role in what follows.

The action (12) has also a symmetry under Kähler transformations: K → K +

ϕ(Σ) +ϕ∗(Σ∗), W → e−ϕ(Σ)W since any such a transformation can be absorbed by

redefining S0: S0 −→ eϕ/3S0.

3.2 The Wilson Effective Action

Let us now restrict to a simple case that has all the properties we need to discuss

gaugino condensation, ie a single chiral multiplet S coupled to supergravity and a

nonabelian gauge group with K = Kp(S + S∗) arbitrary, W (S) = 0 and f(S) = S.

This is the case for the dilaton in string theory at the perturbative level. This defines

the effective (Wilson) action at scales M ≥ E ≥ Λ. We are interested in the Wilson

action at scales Λ ≥ E ≥ 102 GeV in which we expect that gauginos have condensed

and S is the only degree of freedom, that means we want to integrate out the full

gauge supermultiplet to obtain the effective action for S at low energies. This is

precisely the approach of ref. [6] mentioned above. We need to compute:

eiΓ(S,S0) ≡
∫

DV exp i
∫

d4x {[(S − c log S0)

Tr W αWα]F + cc} (6)

First of all we can observe that Γ(S, S0) depends on its arguments only through

the combination S0 exp(−S/c). Second, since the result of the integration has

to be superconformal invariant (because the anomaly is cancelled), we know that

Γ[S0 exp(−S/c)] has to be written in the form of equation (2) (plus higher derivative

terms) with f = 0 since there are no gauge fields. Since the powers of S0 are exactly

given by (2) and S0 only appears multiplying exp(−S/c) we can just read the super

and Kähler potentials to be:

W (S) = we−3S/c

e−K/3 = e−Kp/3 − k e−(S+S∗)/c (7)

where w and k are arbitrary constants (k > 0 to assure positive kinetic energy). The

superpotential is just the one found in [6]. The correction to the Kähler potential

is new [18]. Notice that both are corrections of order exp−1/g2 as expected. A

word of caution is in order. Unlike the superpotential which has no corrections in

perturbation theory, the Kähler potential can be corrected order by order in pertur-

bation theory, therefore in practice the perturbative part of the Kähler potential Kp
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is simply unknown and for weak coupling those corrections are bigger than the non-

perturbative correction found here. Our result could be useful, only after the exact

perturbative Kähler potential is known. It is still interesting to realize that such a

simple symmetry argument can give us the exact expressions for the nonperturbative

super and Kähler potentials, without the need of holomorphy!

3.3 The 2PI Effective Action

To answer the questions posed at the beginning of this chapter, ie whether gaugi-

nos condense and break supersymmetry, it is convenient to think about the case of

spontaneous breaking of gauge symmetries. In that case we minimize the effective

potential for a Higgs field, obtained from the 1PI effective action and see if the mini-

mum breaks or not the corresponding gauge symmetry. In our case, we are interested

in the expectation value of a composite field, namely λαλα or its supersymmetric

expression W αWα. Therefore we need the so-called two particle irreducible effective

action.

We start then with the generating functional in the presence of an external

current J coupled to the operator that we want the expectation value of, namely,

W αWα:

eiW [S,S0,J ] ≡
∫

DV exp i
∫

d4x {[(S − c log S0

+J) TrW αWα]F + cc} (8)

From this we have
δW

δJ
= 〈W αWα〉 ≡ U (9)

and define the 2PI action as

Γ[S, S0, Û ] ≡ W −
∫

d4x
(

ÛJ
)

(10)

To find the explicit form of Γ we use the fact that W depends on its three arguments

only thorugh the combination S + J − c logS0, therefore, we can see that δΓ/δ(S −

c logS0) = δΓ/δJ = Û . Integrating this equation determines the dependence of Γ

in S and S0:

Γ[S, S0, Û ] = Û (S − c logS0) + Ξ(Û) (11)

where Ξ(Û) can be determined using symmetry arguments as follows. First we

define a chiral superfield U by Û ≡ S3
0U . Therefore U is a standard chiral superfield

with vanishing chiral and conformal weight (w = n = 0). Then Γ[S, S0, US
3
0 ] can

be writeen in the form (2) with chiral fields S and U . Again the fact that the S0
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dependence of (2) is very restricted, allows us to just read again the corresponding

Kähler and superpotential. We find:

W [S, U ] = U [S +
c

3
logU + ξ]

e−K/3 = e−Kp/3 − a (UU∗)1/3 (12)

Here ξ is an arbitrary constant. We can see that the superpotential corresponds to

the one found in [2]. The Kähler potential is new, in [2] it was found for the global

case, to which this reduces in the global limit.

Notice that we have identified the two main approaches to gaugino condensation

with the two relevant actions in field theory, namely the Wilson and 2PI effective

actions. Our approach to the 2PI action is a reinterpretation of the one in [2]. We

have to stress that in our treatment U is only a classical field, not to be integrated

out in any path integral. It also does not make sense to consider loop corrections

to its potential, this solves the question raised in [15] where loop corrections to the

U potential could change the tree level results. Furthermore, since U is classical we

can eliminate it by just solving its field equations:∂Γ/∂U = 0. (Since this implies

J = 0, it makes equations (11) and (9) reduce to (7).) These equations cannot

be solved explicitly but we find the solution in an 1/Λ expansion. We find that

the solution of these equations reproduce the Wilson action derived in the previous

subsection (obtaining both W (S) and K(S+S∗) as in equation (9)) plus extra terms

suppressed by inverse powers of the condensation scale. This shows explicitly the

relation between the two approaches.

We can also consider the case of several condensates. This case shows the power

of the techniques used previously. Following the original discussions of [6] it was

needed to use the PQ symmetry of S to cancel the U(1)R anomaly, however when

there are several condensing groups we would have neede several S fields to cancel

the anomaly (see [18]) but there is only one S field in string theory. In our approach

however, we use the counterterm (5) which in the case of several groups is a sum

of terms [17]. Therefore we have one counterterm for each group and so the path

integrals just factorize into products for each of the many condensates, implying

that the total superpotential (W ) and e−K/3 functions are the sum of the ones for

one single condensate. This is the first real derivation of this well used result!

By studying the effective potential for U we recover the previously known results.

For one condensate and field independent gauge couplings (no field S) the gauginos

condense (U 6= 0) but supersymmetry is unbroken. For field dependendt gauge

coupling, the minimum is for U = 0 (S → ∞) so gauginos do not condense (this
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is reflected in the runaway behaviour of the Wilsonian action for S). For several

condensing groups we find U 6= 0 and supersymmetry broken or not, depending on

the case [12].

4 Linear vs Chiral Formalisms

Here we report on the resolution of question (iv) of section 2 [21] : perturbative

4D string theory has in its spectrum a two-index antisymmetric tensor field Bµν .

Because it only has derivative couplings, Bµν is dual to a pseudoscalar field, the axion

a. We can transform back and forth from the Bµν and a formulations as long as

the corresponding shift symmetries are preserved. It is known that nonperturbative

effects break the PQ symmetry of a giving it a mass, then the puzzle is: what

happens to the stringy Bµν field in the presence of non-perturbative effects? Is the

duality symmetry also broken by those effects? Is it then correct to forget about

the Bµν field, as it is usually done, and work only with a? (Since, unlike the axion,

Bµν is the field created by string vertex operators). The answer to these questions

is very interesting: duality symmetry is not broken by the nonperturbative effects

but the Bµν field disappears from the propagating spectrum! Its place is taken by a

massive 3-index antisymmetric tensor field Hµνρ dual to the massive axion.

Here I will just sketch the main steps of the derivation and refer the reader

to [21] for further details. In 4D strings, the antisymmetric tensor belongs to a

linear superfield L (DDL = 0), together with the dilaton and the dilatino. For

simplicity we only consider the couplings of this field to gauge superfields in global

supersymmetry (the supergravity extension is straightforward), the most general

action is then the D-term of an arbitrary function Φ, LL = [Φ(L̂)]D, with L̂ ≡ L−Ω

and Ω the Chern Simons superfield, satisfying DDΩ = W αWα.

Since the gauginos appear in the lagrangian through the arbitrary function Φ,

the analysis of gaugino condensation is far more complicated in the linear case than

in the chiral case. Furthermore, the Wilson action is not well defined in this case,

because the field L is not gauge invariant, we cannot just integrate the gauge fields

out leaving an effective action for L alone as we did for S. Therefore we have to

consider the 2PI action, and to find it, we have to work in the first order formalism

where the gauge fields appear only through TrW αWα as in the S case. This will also

allow us to perform a duality transformation and show that the L and S approaches

are equivalent.

The duality transformation is obtained by starting with the first order system
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coupled to the external current J :

eiW(J) =
∫

DV DSDY exp i
∫

d4x (

L(Y, S) + 2ℜ[J TrW αWα]F ) (13)

Where V is the gauge superfield, Y an arbitrary vector superfield with the la-

grangian L(Y, S) = {Φ(Y )}D + {SDD(Y + Ω)}F , and S (the same S of of the

previous section!) starting life as a Lagrange multiplier chiral superfield.

Integrating out S, implies DD(Y + Ω) = 0 or Y = L − Ω ≡ L̂, giving back the

original theory. On the other hand integrating first Y gives the dual theory in terms

of S and V . This is the situation above the condensation scale. Below condensation,

however, we have to integrate first the gauge fields, after that we have the same two

options for getting the two dual theories, the difference now is that the integration

over V breaks the PQ symmetry (if there are at least two condensing gauge groups)

and we are left with a duality without global symmetries.

To see this, we will concentrate on the 2PI effective action Γ(U, Y, S) obtained

in the standard way for U ≡ 〈TrW αWα〉 [18]. The important result is that since

W depends on S and J only through the combination S + J , we can see as in

eq. (12) that Γ(U, S, Y ) = US + Ξ(U, Y ), where Ξ(U, Y ) is arbitrary, therefore

S appears only linearly in the path integral and its integration gives again a δ-

function, but imposing now DDY = −U instead of the constraint DD(Y + Ω) = 0

above condensation scale. We can then see that there is no linear multiplet implied

by this new constraint. This is an indication that the Bµν field is no longer in the

spectrum.

The new propagating bosonic degrees of freedom in Y are, a scalar component,

the dilaton, becoming massive after gaugino condensation and a vector field vµ dual

to a, the pseudoscalar component of S. Instead of showing the details of this duality

in components, I will describe the following slightly simplified toy model which has

all the relevant properties:

Lvµ,a = −
1

2
vµvµ − a∂µv

µ −m2a2

If we solve for vµ we obtain vµ = −∂µa, substituting back we find

La =
1

2
∂µa∂µa−m2a2

describing the massive scalar a. On the other hand, solving for a we get a =

− 1
2m2 (∂µv

µ) which gives

L′
vµ = −

1

2
vµvµ +

1

4m2
(∂µv

µ)2.
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The lagrangian L′
vµ also describes a massive scalar given by the longitudinal, spin

zero, component of vµ. We can see that the only component that has time derivatives

is v0, so the other three are auxiliary fields. Notice that for m = 0, we recover the

standard duality among a massless axion and Bµν field. Therefore, after the gaugino

condensation process, the original Bµν field of the linear multiplet is projected out

of the spectrum in favour of a massive scalar field corresponding to the longitudinal

component of vµ or to the transverse component of the antisymmetric tensor Hµνρ ≡

ǫµνρσv
σ. Thus solving the puzzle of the axion mass in the two dual formulations.

Other interesting discussions of gaugino condensation in the linear formalism can

be found in [22].

5 Scenarios for SUSY Breaking

The results of the previous sections have shown us that the general results extracted

in the past years about gaugino condensation in string models, in terms of the field

S, are robust. We have seen how gaugino condensation can in principle lift the string

vacuum degeneracy and break supersymmetry at low energies (modulo de problems

mentioned before). But this is a very particular field theoretical mechanism and it

would be surprising that other nonperturbative effects at the Planck scale could be

completely irrelevant for these issues. In general we should always consider the two

types of nonperturbative effects:stringy (at the Planck scale) and field theoretical

(like gaugino condensation). Four different scenarios can be considered depending

on which class of mechanism solves each of the two problems:lifting the vacuum

degeneracy and breaking supersymmetry.

For breaking supersymmetry at low energies, we expect that a field theoretical

effect should be dominant in order to generate the hierarchy of scales. We are then

left with two preferred scenarios: either the dominant nonperturbative effects are

field theoretical, solving both problems simultaneously, or there is a ‘two steps’ sce-

nario in which stringy effects dominate to lift vacuum degeneracy and field theory

effects dominate to break supersymmetry. The first scenario has been the only one

considered so far, the main reason is that we can control field theoretical nonper-

turbative effects but not the stringy. In this scenario, independent of the particular

mechanism, we have to face the cosmological moduli problem.

In the two steps scenario the dilaton and moduli fields are fixed at high energies

with a mass ∼ MP lanck thus avoiding the cosmological moduli problem. It is also

reasonable to expect that Planck scale effects can generate a potential for S and T .
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The problem resides in the implementaion of this scenario [23], mainly due to our

ignorance of nonperturbative string effects.

5.1 S Duality

To approach nonperturbative string effects we may use the conjectured SL(2, Z)

S-duality in N = 1 effective lagrangians [24] :

S →
a S − i b

i c S + d
, a d− b c = 1. (14)

Even though there is mounting evidence for this symmetry in N = 4, 2 string back-

grounds, it is not yet clear how it will be extended to N = 1 and if so most probably

the lagrangian is not invariant under this symmetry since it usually exchanges ‘elec-

tric’ and ‘magnetic’ degrees of freedom. However, similar to the case of T duality, if

we restrict to the part of the action that depends only on S, (which is the relevant

part when looking for vacuum configurations) this is expected to be invariant under

S duality. Recall that if we do the same for the classical action, the continuous

SL(2, R) transformation is a symmetry of the truncated action, so the argument

that quantum effects break the continuous to the discrete S duality could actually

make sense in this case. As found in ref. [24], the superpotential should be a modular

form of weight −1 and can be written as:

W (S) = η(S)−2Q[j(S)] (15)

where Q is an arbitrary rational function of the absolute modular invariant function

j(S). Its arbitrariness forbids us to extract concrete conclusions, but there are

several general issues worth mentioning. Since the weight of W (S) is negative, it

necessarily has poles [25]. If we further impose that the scalar potential has to

vanish at SR → ∞ (zero string coupling)[27] there should be poles at finite values

of S which may need interpretation. The functions η(S) and j(S) can be expressed

as infinite sums of q ≡ e−2πS, thus encompassing the expected nonperturbative

instanton-like expansion. The selfdual points S = 1, exp iπ/6 are always extrema

of the potential and very often are minima. For those points supersymmetry is

unbroken, thus making the two steps scenario very plausible at least for the S field.

This way of fixing the vev of S is much more elegant than the racetrack scenario

with several condensing gauge groups. It is similar to the way we understood the

fixing of T . A general question to be addressed to this scenario is that usually the

vev of S is very close to SR ∼ 1 because the nontrivial structure of the potentials is

always close to the selfdual points. This is far from the phenomenologically required
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value where we want 4π/g2 ∼ 25. However, as emphasized in [26] the gauge coupling

is S only at tree level, it is expected to get nonperturbative corrections and we may

have a situation with SR = 1 but with a larger value of f(S) at the minimum leading

to the desired gauge coupling at the string scale.

Let us mention as an aside that the gaugino condensation process can be made

consistent with S-duality [27, 26, 28]. A way to do it is to write the gaugino con-

densation superpotential W ∼ exp−3S
c

as the first term in an infinite expansion

of the form (15). Another approach is to try to derive the effective superpotential

from nonperturbative corrections to the gauge kinetic function f(S). The problem

with this approach is that we do not know how f(S) should transform under S

duality (we cannot forget the gauge fields as we did for finding W (S)). In ref. [26],

it was assumed that f is invariant, but then the gaugino condensation-induced su-

perpotential W ∼ exp−3f
c

would also be invariant instead of a weight −1 form as

required by S-duality. An extra factor η(S)−2Q[j(S)] has to be put in by hand

without justification, losing the connection with the condensation process.

A probably better way to derive an S duality invariant effective theory after

gaugino condensation, may be to assume a noninvariant f(S) [29], after all that is

precisely what happens in T duality for which f(T ) ∼ log η(T ). If for instance we

take,

f(S) =
C

π
log

{

η(S) (j(S)− 744)(C−12)/24C
}

(16)

nonperturbatively (here C is the Casimir of the corresponding gauge group, see dis-

cussion below equation (5)), we can see that it has the right limit for large S (ie

f → S) and induces a gaugino condensation superpotential W (S) ∼ η(S)−2(j(S)−

744)(12−C)/12C which has the right transformation properties under S duality and

reduces to the gaugino condensation superpotential in the large S limit. The non-

invariance of f(S) may probably be related with S-duality anomalies [29] as it

happened in the T duality case. A problem with this approach is that if we are

considering nonperturbative corrections to the f function, we should also include

those corrections for W and K. This may diminish the importance of the gaug-

ino condensation-induced superpotential above, because it would be just an extra

contribution to the original nonperturbative superpotential which we do not know.

There may still be situations, as argued in [30], for which gaugino condensation

superpotentials could nevertheless be dominant.
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5.2 Two Steps Scenario

In the two steps scenario, after we have fixed the vev of the moduli by stringy effects,

it remains the question of how supersymmetry is broken at low energies. Notice that

we would be left with the situation present before the advent of string theory in which

the gauge coupling is field independent. In that case we know from Witten’s index

that gaugino condensation cannot break global supersymmetry. Since there are

no ‘moduli’ fields with large vev’s, the supergravity correction should be negligible

because we are working at energies much smaller than MP lanck.

In fact we can perform a calculation by setting S to a constant in eq. (12), it

is straightforward to show that supersymmetry is still unbroken in that case [23],

as expected. A more general way to see this is computing explicitly the 1/MP lanck

correction to a global supersymmetric solution Wφ = 0, and see that it coincides

with the solution ofWφ+WKφ/M
2
p = 0 which is always a supersymmetric extremum

of the supergravity scalar potential.

As mentioned in section 2, there seems to be however a counterexample in the

literature. In ref. [4] a modification of the Kähler potential (12) was considered:

e−K/3 = 1 − a (UU∗)1/3 − b (UU∗) (17)

with the same superpotential. For a = −9b supersymmetry was found to be broken

with vanishing cosmological constant. But also for this choice of parameters the

global limit is such that KUU∗ vanishes, and so the kinetic energy for U . This

makes the corresponding minimum in the global case ill defined, since there may

be other nonconstant field configurations with vanishing energy. This is then not a

counterexample, because the global theory is not well defined in the minimum. In

any case, in our general analysis, there are no such extra corrections to the Kähler

potential for U .

We are then left with a situation that if global supersymmetry is unbroken, we

cannot break local supersymmetry, unless there are moduli like fields. This can

bring us further back to the past and reconsider models with dynamical breaking of

global supersymmetry (for a recent discussion with new insights see [31] ).

6 Conclusions

(i) Gaugino condensation provides a simple example of how supersymmetry can

be broken dynamically with partial succes. Some of the problems may be
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solved after having better control of the supergravity lagrangian. In partic-

ular, in the single hidden sector group case we have seen that the gauginos

do not condense, but this situation may be changed after perturbative and

nonperturbative corrections to the Kähler potential are considered [30]. The

cosmological problems may be more generic, however.

(ii) The gaugino condensation process is also an interesting laboratory to test non-

perturbative properties of string and field theories. In particular duality sym-

metries survive this simple, but nontrivial, nonperturbative test.

(iii) The different approaches to describe the effective theory underlying the con-

densation process correspond simply to the use of the Wilson or 2PI effective

actions, therefore there is a well defined relation among them. Even though

the Wilson action is usually simpler to work with, the 2PI action is more suit-

able to follow the condensation process, it also is the only one that could be

used to describe the condensation of gauginos in the ‘linear formalism’. The

Wilson action cannot be used without previously identifying the low energy

degrees of freedom. We needed the 2PI action to find out that the axion degree

of freedom is represented by a massive Hµνρ tensor.

(iv) The linear and chiral descriptions are equivalent, even in the absence of PQ

symmetries. Which formulation is more convenient depends on the situation.

In the linear description, the stringy Bµν field is replaced by the massive Hµνρ

field. We believe, this will also be the case in more general nonperturbative

effects. We may conjecture that this result could be related with the claims

that ‘stringy’ nonperturbative effects are not well described by strings but

better by membranes, which couple naturally to Hµνρ or five-branes, which

provide the 10D origin of the field S. A (massless) field Hµνρ also appears

naturally in 11D supergravity.

(v) There is not a compelling scenario for supersymmetry breaking and the field re-

mains open, but we have a much better perspective on the relevant issues now.

The nonrenormalizable hidden sector models of which the gaugino condensa-

tion is a particular case, may need a convincing solution of the cosmological

moduli problem to still be considered viable. Hopefully, this will lead to in-

teresting feedback between cosmology and string theory [32]. Furthermore,

the recent progress in understanding supersymmetric gauge theories can be

of much use for reconsidering gaugino condensation with hidden matter, the
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discussion in the string literature is far from complete. The understanding

of models with chiral matter could also provide new insights to global super-

symmetry breaking, relevant to the two steps scenario mentioned above. In

any case the techniques found to be useful in the simplest gaugino condensa-

tion approach discussed here, will certainly help in understanding those more

complicated models.

I thank the organizers for the invitation to participate in such an exciting con-

ference.
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[8] A. Font, L.E. Ibáñez, D. Lüst, F. Quevedo, Phys. Lett. 245B (1990) 401; S.

Ferrara, N. Magnoli, T. Taylor, G. Veneziano, Phys. Lett. 245B (1990) 409;

H.P. Nilles, M. Olechowski, Phys. Lett. 248B (1990) 268; P. Binetruy, M.K.

Gaillard, Phys. Lett. 253B (1991) 119.

[9] L. Dixon, V. Kaplunovsky, J. Louis, Nucl. Phys. B329 (1990) 27.

[10] N. Krasnikov, Phys. Lett. 193B (1987) 37; L. Dixon, in The Rice Meeting, B.

Bonner, H. Miettinen, eds, World Scientific (1990); J.A. Casas, Z. Lalak, C.
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18



[13] R. Brustein, P. Steinhardt, Phys. Lett. B302 (1993) 196.

[14] T. Banks, D. Kaplan, A. Nelson, Phys. Rev. D49 (1994) 779; B. de Carlos, J.A.

Casas, F. Quevedo, E. Roulet, Phys. Lett. B318 (1993) 447.

[15] A. de la Macorra, G.G. Ross, Nucl. Phys. B404 (1993) 321; R. Peschanski, C.

Savoy, hep-ph/9504243.

[16] C. Kounnas, M. Porrati, Phys. Lett. 191B (1987) 91.

[17] V. Kaplunovsky and J.Louis, Nucl. Phys. B422 (1994) 57.

[18] C.P. Burgess, J.-P. Derendinger, F. Quevedo, M. Quirós, hep-th/9505171.

[19] E. Cremmer, S. Ferrara, L. Girardello, A. van Proeyen, Nucl. Phys. B212 (1983)

413.

[20] J.-P. Derendinger, S. Ferrara, C. Kounnas F. Zwirner, Nucl. Phys. B372 (1992)

145;Phys. Lett. 271B (1991) 307.

[21] C.P. Burgess, J.-P. Derendinger, F. Quevedo and M. Quirós, Phys. Lett. 348B

(1995) 428.

[22] J.-P. Derendinger, F. Quevedo, M. Quirós, Nucl. Phys. B428 (1994) 282;I.
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