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Abstract

We review recent developments in the theory and phenomenology of polarized
structure functions. We summarize recent experimental data on the proton and
deuteron structure function g1, and their impact on the understanding of polarized
sum rules. Specifically, we discuss how accurate measurements of the singlet and
nonsinglet first moment of g1 test perturbative and nonperturbative QCD, and crit-
ically examine the way these measurements are arrived at. We then discuss how
the extraction of structure functions from the data can be improved by means of a
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tal information on this dependence can be used to pin down the polarized parton
content of the nucleon.
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1. The state of the art

The state of the knowledge of polarized structure functions measured in deep-inelastic
scattering has progressed during the last couple of years from the level of testing naive parton
model ideas to the point of probing QCD at leading order (LO) and next-to-leading order
(NLO). On the one hand, experiments at CERN and SLAC1−4) have accurately measured
the structure function g1, which determines the leading twist contribution to the longitudinal
polarization asymmetry, for proton and deuteron targets, over a reasonably wide range in x
and at a pair of values of Q2. On the other hand, the perturbative behavior of g1 in the (x,Q2)
plane can now be quantitatively studied at NLO5), thanks to the recent determination of the
full set of two-loop polarized anomalous dimensions6). This means that polarized structure
function data can now be used to test perturbative QCD and obtain detailed information
on the structure of polarized nucleons, while, conversely the data can be understood and
analyzed using accurate NLO methods.

Here we will review these recent developments, emphasizing the impact of the new data
on the theoretical understanding of polarized structure functions. As it often happens, quan-
tities that are easier to understand theoretically are the hardest to measure, and vice versa.
We will take a theorist’s viewpoint: we will start from the experimental results which have
the most direct theoretical interpretation, and discuss them without, at first, questioning the
procedure through which they have been obtained; we will then proceed to quantities whose
interpretation is more subtle, and eventually discuss the procedure which is used to extract
information from the data.

In Sect. 2 we will review the determinations of the first moment of g1 (as given by
the experimental collaborations) and discuss in particular the behavior of the isotriplet first
moment for which there is an absolute QCD prediction (the Bjorken sum rule). In Sect. 3 we
will turn to the singlet component of the first moment, discuss its extraction from the data
and its theoretical interpretation, which is complicated by the presence in this channel of the
axial anomaly. In Sect. 4 we will then turn to the full x,Q2 dependence of the structure
function g1; we will discuss how it is described in perturbative QCD, and how it may be used
to obtain information on the general structure of polarized parton distributions. Finally, we
will come full circle, and show how this information can be used to improve the precision of
the extraction from the data of quantities of simple and direct theoretical relevance, such as
the moments of parton distributions.

In this review we will concentrate on the physics of g1
7), the discussion of other polarized

structure functions being outside the scope of our treatment. It is however worth mention-
ing that first measurements of g2, the other structure function which contributes to the
deep-inelastic polarized cross section have been performed recently8). While the theoretical
interpretation of this structure function is worth studying for its own sake9), its contribution
to the longitudinally polarized cross-section, on which we will concentrate, vanishes asymp-
totically (as 1

Q2 ). In this contex, it is thus important mostly as a background: the recent
experiments find that g2 is rather small, and essentially compatible with zero within errors,
thus supporting the view that g1 may be accurately determined by simply neglecting g2.

2. The nonsinglet first moment and the Bjorken sum rule

The main outcome of the recent precise experiments1−4) is a set of determinations of the
first moment

Γ1(Q2) =

∫ 1

0

dx g1(x,Q2) (2.1)
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Ref. Target 〈Q2〉 Γ1 a0

1 p 10 0.136 ± 0.011 ± 0.011 0.22 ± 0.14
2 p 3 0.129 ± 0.004 ± 0.009 0.29 ± 0.10
3 d 10 0.034 ± 0.009 ± 0.006 0.20 ± 0.11
4 d 3 0.042 ± 0.003 ± 0.004 0.30 ± 0.06

Table 1: Summary of recent experimental determinations of Γ1 eq. (2.1) and a0 eq. (2.4) (as presented
by the experimental collaborations). The first error on Γ1 is statistical and the second systematic.
All results hold at the average scale 〈Q2〉 (in GeV2) of the respective experiments.

for proton and deuteron targets, displayed in table 1.* We will discuss later the theoretical
input that goes into these determinations. If we take them at face value, however, they
provide us directly with information that admits a simple theoretical interpretation, because
Γ1 measures the nucleon matrix element of the axial current:

M tat
is

µ ≡ 〈t; p, s|ψ̄iγµγ5ψi|t; p, s〉, (2.2)

Γt
1(Q2) =

1

2

nf
∑

i=1

e2iCi(Q
2)at

i =
1

2

[

〈e2〉CS(Q2)at
0(Q2) + CNS(Q2)at

NS(Q2)
]

, (2.3)

where t indicates the target hadron (proton or deuteron, in our case) with mass M t, mo-
mentum pµ and spin sµ, and the sum runs over all activated quark flavors; in the sequel
when dropping the label t we will tacitly refer to a proton target. In the last step we have
introduced the average quark charge 〈e2〉 = 1

nf

∑n
i=1 e

2
i , and the singlet and nonsinglet axial

charges

a0 =

nf
∑

i=1

ai (2.4)

aNS =

nf
∑

i=1

(

e2i − 〈e2〉
)

ai, (2.5)

exploiting the fact that the Wilson coefficient functions C(Q2) only distinguish between
singlet and nonsinglet currents.

The nonsinglet axial charge is particularly simple because the corresponding current is
conserved (neglecting quark masses) and can therefore be decomposed into a sum of scale–
independent contributions:

aNS(Q2) =

nf
∑

k=2

[

(

〈e2〉k−1 − 〈e2〉k
)

Θ(Q2 −Q2
k)

([

k−1
∑

i=1

ai

]

− (k − 1)ak

)]

=
1

6
(au − ad) +

1

18
(au + ad − 2as)

− 1

18
Θ(Q2 −Q2

c) (au + ad + as − 3ac) + . . .

(2.6)

* There exists also a direct determination of the neutron structure function and its first moment, obtained

from scattering on a 3He target10). We will not include this result in our discussion, because of its large statistical

and systematic uncertainties — partly due to the problems related to scattering on a nuclear target7)— and also

because a recent reanalysis of the same raw data has lead to a rather different determination of the corresponding

structure function11) .
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where 〈e2〉k is the average charge computed with nf = k flavors, Q2
c is the threshold for the

k-th flavor, and all the scale dependence comes from the function Θ(Q2−Q2
k), which vanishes

below threshold and is equal to 1 above threshold (having a nucleon target in mind in the

last step we explicitly displayed thresholds for the charm and heavier quarks).

The simplest nonsinglet scale-independent currents are then those related to light quarks,

i.e. the isotriplet axial charge gA and the SU(3) octet charge a8

gA = au − ad; a8 = au + ad − 2as. (2.7)

Using isospin symmetry, knowledge of Γ1 for proton and neutron targets determines the

isotriplet combination:

ΓI=1
1 ≡ Γp

1 − Γn
1 =CNS(Q2)

1

6
(ap

u − ap
d)

=

[

1 −
(αs

π

)

−
(

55
12 − 1

3nf

)

(αs

π

)2

−
(

41.4399 − 7.6072nf + 115
648n

2
f

)

(αs

π

)3

+O(α4
s)

]

1

6
gA.

(2.8)

The only assumption that goes into the derivation of eq. (2.8) is that of exact isospin symme-

try, which implies ap
u = an

d , ap
d = an

u and ap
h = an

h, where h indicates strange or heavy quark

flavors. Furthermore, using isospin algebra again, gA in eq. (2.7) can be related to the matrix

element of the axial current which induces beta decay, and thus to the beta decay constant

of the same name, which is known rather accurately: gA = 1.2573 ± 0.0028. The relation

eq. (2.8) between the beta decay constant and the isotriplet first moment of g1 is known as

the Bjorken sum rule12). In practice, the neutron structure function can be extracted from

the deuteron one by using additivity of the deep-inelastic cross sections after correcting for

nuclear effects13):

Γd
1 = (1 − 1.5ωD)

Γp
1 + Γn

1

2
, (2.9)

where ωD ≈ 0.05 is the probability that the deuteron is in a D-wave state.

It thus looks as though the Bjorken sum rule (2.8) is an ideal place to test QCD in a

clean and simple way: in principle, with a pair of determinations of ΓI=1
1 at different scales

both its normalization and its scale dependence may be measured, and thus isospin symmetry

(which determines the value of gA) and perturbative QCD [which determines CNS(Q2)] may be

simultaneously tested. Now, isospin symmetry violation in QCD is expected to be suppressed

by powers of the current quark mass on a typical strong interaction scale; in particular in the

unpolarized quark distributions it is at most of a few per cent 14); the observation of larger

isospin violation in this channel would presumably be the sign of nonperturbative physics

and rather interesting per se 15).

On the other hand, CNS(Q2) is known up to order α3
s, i.e., at the four–loop order, thereby

allowing very precise tests of perturbation theory. In fact, at this order it might already be

possible to see16) manifestations of the fact that the perturbative expansion in powers of

αs of QCD observables diverges17). A detailed treatment of this issue is beyond the scope

of the present paper; its main implication for our purposes is that because of its divergent

nature the perturbative series is ambiguous, in that different resummations of the series may

differ by terms which are proportional to powers of
Λ2

QCD

Q2 . Because the values of physical
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observables are unambiguous, these ambiguities must cancel against corresponding ones in
other power-suppressed contributions, i.e. higher twist contributions.

Indeed, in general eq. (2.8) should read

ΓI=1
1 =

1

6

[

CNS(Q2)gA +
CHT

Q2
+O

(

1

Q4

)]

. (2.10)

The coefficient CHT can be computed once a prescription for the treatment of the perturbative
expansion is specified; the result for Γ1 is then unambiguous18). This program has never been
carried through explicitly (there exists a proposal19) based on an explicit cutoff scheme which

however would require a determination of CHT on the lattice). It is nevertheless possible to
estimate the size of CHT phenomenologically, for instance using QCD sum rules; this leads

to20) CHT ≈ −0.1 with an error of order 50% or more. Such a determination, however, is only
meaningful if the ambiguity is substantially smaller than the value of CHT. Even though a

qualitative argument17) suggests that this is the case, an estimate16) based on an analysis of
the known terms in the expansion of CNS with the method of Padé approximants indicates

instead that the ambiguity is of the same size as CHT.
Be that as it may, these estimates give an indication of the level of accuracy at which

perturbative QCD can be tested by comparing the Bjorken sum rule with the data. This
comparison is shown in fig. 1, where ΓI=1

1 is displayed as a function of Q2 at various pertur-

bative orders, with and without typical higher twist corrections, for different values of the
strong coupling, and compared with an experimental value obtained16) by averaging all the

data of table 1 (plus some less precise earlier data) evolved to a common scale (we will discuss
this evolution in the next section):

ΓI=1
1 (3 GeV2) = 0.164 ± 0.011. (2.11)

The comparison is striking: the result appears to be very sensitive to perturbative corrections
— it would disagree with the theoretical prediction if this were computed at LO rather than

NNLO — while being reasonably insensitive to higher twists and associated ambiguities. In
fact, the value of αs appears to be tested here to an accuracy comparable with the world

average of all other determinations21). In other words, if, rather than assuming isospin and
using eq. (2.8) to measure αs, we assign the value of αs and test isospin, then the uncertainty

due to the error on the value of αs is already larger than the experimental uncertainty on the
value of ΓI=1

1 quoted in eq. (2.11).

This determination of ΓI=1
1 , however, while being a theorist’s dream, is a phenomenol-

ogist’s nightmare, and should be taken with extreme care. Firstly, the inclusion of nuclear

effects in eq. (2.9) as a simple multiplicative correction factor may be an oversimplification:
in a more detailed treatment of the deuteron wave function the correction is actually x de-

pendent, and its effect on the first moment depends on the shape of the structure function
g1(x); the effect has been argued to be non–negligible at the level of present-day accuracy,

especially in the large–x region23). Other nuclear effects, such as shadowing, which has a
substantial effect14,24) on the unpolarized counterpart of ΓI=1

1 (the isotriplet first moment of

F2), have been pointed out in this context25), but not studied systematically.
Furthermore, it is clear that the reason why this test of perturbative QCD appears

to be so sensitive is that the measurement is performed at a low scale, which exponentially
magnifies the sensitivity to perturbative evolution. At such a low scale, however, other sorts of

higher twist corrections, besides those discussed above, could be relevant, in particular those
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Figure 1: Scale dependence of ΓI=1
1 eq. (2.10) [adapted from ref. 22)]. The dashed curve corresponds

to eq. (2.8) and the solid curve to eq. (2.10) with CHT = −0.1; the dotted curve displays the O(αs)
contribution to eq. (2.8), and the dotdashed is the asymptotic (αs = 0) value. The three sets of
curves correspond to the values αs(Mz) = 0.118 ± 0.007. The data point is as in eq. (2.11).

related to the nucleon mass: even assuming that corrections due to transverse polarization
(i.e. proportional to g2) are negligible, there are still kinematic higher twist corrections such
as target mass corrections26). Their effect on the first moment of ΓI=1

1 is27) comparable to
the uncertainty in eq. (2.11) (which does not include it) at that scale. Moreover, such effects
have never been studied systematically and could affect the extraction of all the first moments
of table 1 from the data: even determinations with large 〈Q2〉 have several data points at
low Q2. Finally, the result (2.11) is obtained by evolving the full first moment Γ1, which in
turn is obtained from data taken at various values of Q2. The corresponding uncertainty,
related to perturbative evolution, could also be rather large at low scales: this will be the
main subject of sect. 4.

In conclusion, the fact that ΓI=1
1 is only measured at relatively low Q2 allows testing of

the Bjorken sum rule only to about 10% accuracy, due to the large sensitivity to the value of
αs. This could be turned around: assuming the validity of the sum rule (i.e. of exact isospin)
the value of αs can in principle be measured rather accurately. There is however a trade
off, in that the determination of ΓI=1

1 at a low scale is affected by substantial systematic
uncertainties, and the errors in table 1 may turn out to be over–optimistic, as we will see
explicitly in Sect. 4.

3. The singlet axial charge and the anomaly

The singlet component of Γ1 can be extracted from the data in several distinct ways: by
taking suitable linear combinations of different experiments, or by using SU(3) symmetry, or
by exploiting the fact that the scale dependence of the singlet first moment differs from that
of the nonsinglet. This scale dependence must also be taken into account when comparing
different experiments, and turns out to pose some interesting theoretical questions. We will
discuss the phenomenological and theoretical aspects of these issues in turn.
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3.1. The first moment and its scale dependence

The simplest way of getting a value for the singlet first moment and the associated
charge a0(Q2) [eq. (2.4)] is to subtract the nonsinglet contribution off each experimental
determination of Γ1. The axial charge is then found from eq. (2.3) by dividing out the singlet
coefficient function, which has been computed28) to NNLO:

CS(Q2) =

[

1 −
(αs

π

)

−
(

55
12 − 1.16248nf

)

(αs

π

)2

+O(α3
s)

]

. (3.1)

The values listed in table 1 were obtained in this way.
Neglecting all contributions from heavy quarks (we will come back to this assumption

later) the nonsinglet is given by

Γnonsing.
1 =

1

6
CNS(Q2)

(

gA +
1

3
a8

)

. (3.2)

Just as gA can be obtained from the nucleon beta decay constants using isospin, a8 can be
obtained from hyperon beta decay constants using SU(3) symmetry, with the result a8 =
0.579±0.025. This value is arrived at29) by a best fit based on the assumption of exact SU(3)
symmetry; it could therefore by significantly affected by SU(3) symmetry breaking. This of
course can only be introduced in a model-dependent way. One possibility is to introduce a
parametrization of the hyperon beta decay constants which includes a term proportional to
SU(3) breaking in the octet mass spectrum. A specific parametrization 30) then leads to the
value a8 = 0.40±0.19. An alternative option is to allow for current mixing effects, i.e. let the
singlet current have a nonvanishing SU(3) nonsinglet matrix element, whose size can then be
estimated within a model for the quark content of the octet baryons31), leading to a8 ≈ 0.4
(and an uncertainty not smaller than the above) when SU(3) breaking is maximal.

Even though the precise value of a8 is thus affected by a large uncertainty, this has a
rather small effect on the extraction of the singlet component, because its numerical coefficient
is one third of that of the triplet and one fourth of the singlet. In fact, using these values
of gA and a8 in the decomposition (2.3) of the first moment into its singlet and nonsinglet
components, it is easy to see that about 90% of the proton first moment comes from the
isotriplet component, and of the remaining 10% about two-thirds are singlet, the rest being
octet. For the deuteron the isotriplet contribution vanishes and the singlet and octet are
partitioned as in the proton. This trivial numerology has some important consequences for
the extraction of a0 from the data: a) if the singlet is extracted from the proton data the
uncertainty on a0 will be about ten times larger than that on Γ1; b) an uncertainty of about
50% in the knowledge of a8 has the same effect as an uncertainty of a few per cent on the
knowledge of the proton’s Γ1, i.e. it generates an uncertainty of about 10% in the proton or
deuteron a0; c) the deuteron is in principle a better probe of the singlet component. This is
reflected by the values of a0 in table 1, derived neglecting SU(3) breaking.

In order to meaningfully compare values of a0 obtained in different experiments, they
must be evolved to the same scale. Indeed, the singlet axial current is not conserved because
of the axial anomaly, as we will discuss more extensively in the next section, so its matrix
elements can acquire an anomalous dimension, which actually vanishes at LO, and has been
determined up to NNLO28):

a0(Q2) =

[

1 +
6nf

33−2nf

(αs

π

)

+
3087nf+138n2

f+4n3
f

12(33−2nf )2

(αs

π

)2

+O(α3
s)

]

a0(∞). (3.3)
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The full scale dependence of the singlet contribution to Γ1 [eq. (2.3)] is obtained by combining
this with the singlet coefficient function eq. (3.1).

It is then possible to determine a0 from a global fit to the data of table 1 (rather than
by simply averaging the determinations coming from each data set): if gA and a8 are fixed
using SU(3) symmetry as discussed above, a0(∞) is then the only free parameter. A global
fit (including also as older data which however carry little weight due to their poor accuracy)
with αs(Mz) = 0.118 ± 0.007 leads to32)

a0(∞) = 0.29 ± 0.04, (3.4)

where the error is almost entirely statistical, because of the magnification of the statistical
error on Γ1 when a0 is extracted.

Given the availability of independent determinations of Γ1 at different scales and for
different targets, it is actually possible to relax the assumptions that went into the determi-
nation eq. (3.4). First, it is possible to relax the assumption of SU(2) symmetry, and extract
simultaneously a0 and gA

32):

a0(∞) = 0.30 ± 0.04; gA = 1.12 ± 0.10+0.10
−0.04 . (3.5)

The error on gA has been decomposed in statistical and systematic; the latter is entirely
due to the uncertainty on αs, the uncertainty on a8 being essentially negligible. This shows,
consistent with the discussion in the previous section and fig. 1, that the Bjorken sum rule
can be tested at best to about 10% accuracy, due to the uncertainty on the value of αs.
Finally, it should in principle be possible to determine simultaneously gA, a8 and a0 from
the data: the proton–deuteron comparison fixes separately the isotriplet (i.e. gA) while the
contributions of a0 and a8 to the isosinglet could then be separated by their different scale
dependence. This is however not yet feasible in practice because this scale dependence is only
rather slight, while the sensitivity of the value of Γ1 to a8 is weak; the latter fact, however,
implies that even if we were to assume a 30% variation of a8 due to SU(3) violation the value
of a0 (3.4)-(3.5) would hardly be affected.

We now turn to polarized heavy quark contributions, which can be generated dynamically
by assuming that the corresponding current matrix elements vanish on threshold. This then
determines the various scale-independent nonsinglet contribution to eq. (2.6) in terms of the
singlet at each threshold: for instance, the charm contribution is

au + ad + as − 3ac = [au + ad + as](Q2
c) = a0(Q2

c). (3.6)

Thus, because of the small numerical value of a0, the error made neglecting heavy quark
contributions to the nucleon Γ1 is indeed rather small.

We can finally compare all the results of table 1 to one another and to the Bjorken
sum rule prediction of eq. (2.8) by evolving to a common scale. The result, shown in fig. 2,
demonstrates the mutual consistency of various experiments and the agreement with the
prediction of exact isospin as tested by the Bjorken sum rule.

3.2. The “spin crisis” and the anomaly

The value of the singlet axial charge thus determined has attracted a good deal of
attention because of its smallness. Small here refers to the expectation, based on the Zweig
rule, that a0 ≈ a8, which the value in eq. (3.4) violates by several standard deviations.
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Figure 2: Values of the first moment Γ1 eq. (2.1) from table 1 evolved to the common scale of
Q2 = 5 GeV2. The solid lines correspond to the SMC experiments and the dashed lines to E143
experiments. The dotted line is the prediction of the Bjorken sum rule eq. (2.8)(as the solid lines in
fig. 1).

However, a8 is scale-independent, while a0 depends on Q2 according to eq. (3.3): this raises
immediately the question of the scale at which these two quantities should be compared.
Indeed, the Zweig rule is a phenomenological rule of the naive quark model. Matrix elements
of operators measured in hard processes should agree with the predictions of this model
at some typical low hadronic scale: it is however clear that, at a sufficiently low scale,
a0(Q2) [eq. (3.3)] grows as large as desired; in particular, it is of the same size as a8 around
0.5 GeV2. Whereas clearly perturbative evolution at such low scales cannot be trusted,
nonperturbative estimates33) suggest that this scale dependence may actually be even stronger
than perturbatively expected.

More specifically, one may take the point of view that naive constituent quark observables
are related to parton distributions measured in hard processes by a (generally x– and Q2–
dependent) renormalization. A simple way of modelling this is to assume that the nucleon
structure functions are given by combinations of constituent quark structure functions, each
of which in turn is the convolution of a parton density inside the constituent quarks times
the constituent quark density in the nucleon32,34). The constituent quark densities are then
scale independent but target-dependent, while the parton densities satisfy the Altarelli-Parisi
equations and should be universal. The model is tested by verifying this universality (for
instance, it allows predicting the second moment of the pion parton distributions in terms
of the proton ones) and seems to be in good agreement with experimental data35). The
violation of the Zweig rule, which is then by construction satisfied by constituent quarks, is
attributed to their partonic substructure: the apparent contradiction with the quark model
is thus removed, but the observed effect is not explained.

A deeper understanding of the meaning of observed violation of the Zweig rule, and
more in general of the first moment of g1, can be obtained in the QCD parton model. Matrix
elements of operators are endowed with a partonic interpretation by identifying them with
moments of parton distributions. The definition of the operators is however ambiguous since
a renormalized operator can always be redefined by a finite renormalization: given a specific

8



definition of, say, the isotriplet axial current jµ
5 I=1, we can define a new current

jµ
5
′
I=1 = Z(αs)jµ

5 I=1, (3.7)

where Z[αs(Q2)] = 1 + Z(1)αs(Q2) + . . .. The relation of the current to physical ob-
servables will be modified accordingly: for example if ΓI=1

1 = CNS(Q2)〈jµ
5 I=1〉, then

ΓI=1
1 = CNS(Q2)Z−1(Q2)〈jµ

5
′
I=1〉. This is, a priori, as good a definition of the axial cur-

rent as the original one, and the ensuing ambiguity (factorization scheme ambiguity) only
goes away at Q2 → ∞, or to all perturbative orders. It may, however, be fixed by physical
requirements, such as the preservation of physical symmetries. In particular, if a current is
conserved (as the nonsinglet axial current) it is protected against scale dependence: because

∂µj
µ
5

I=1
= 0 then necessarily Q2 d

dQ2 ∂µj
µ
5

I=1
= 0, hence jµ

5 (as a renormalized composite op-

erator) does not depend on Q2. It follows that the redefinition of eq. (3.7) is not allowed if one
imposes that chiral symmetry be preserved, because it would spoil this scale independence,
and there exists a “natural” normalization of the current, namely, that which preserves chiral
symmetry.

The current matrix element can then be identified with the first moment of the polarized
quark distribution: for instance the isotriplet charge is

aI=1 = gA =

∫ 1

0

dx∆qI=1(x) = ∆u(1, Q2) − ∆d(1, Q2), (3.8)

where ∆u(x,Q2), ∆d(x,Q2) are the polarized up and down distributions, whose N -th moment
is given by

∆qi(N,Q
2) =

∫ 1

0

dx xN−1∆qi(x,Q
2); (3.9)

and similarly for other nonsinglet charges. The conserved charge associated to jµ
5 I=1 is the

total (isotriplet) quark helicity, so aI=1 can be interpreted as the total (isotriplet) quark
polarization, in agreement with naive partonic expectation.

Things are more complicated in the singlet case; first, because there now are two parton
distributions rather than one, i.e. the gluon distribution ∆g(x,Q2) and the singlet quark
distribution

∆Σ(x,Q2) =

nf
∑

i=1

∆qi(x,Q
2), (3.10)

where ∆qi(x,Q
2) is the quark distribution of flavor i and nf is the number of flavors activated

at the scale Q2; and furthermore, because the current is no longer conserved, thus as a
renormalized operator it depends on scale, and there is no unique “natural” way to normalize
the quark singlet and gluon first moments, which will mix upon evolution.

Indeed, the classical conservation of the singlet axial current is spoiled at the quantum
level by the axial anomaly36):

∂µj
µ
5 = nf

αs

2π
trǫµνρσFµνFρσ. (3.11)

The singlet current is thus unprotected and requires an infinite renormalization, which induces
a multiplicative scale dependence of the renormalized current of the form37)

d

dt
jµ
5 = γ5(αs)jµ

5 , (3.12)
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where t ≡ ln(Q2/Λ2). The anomalous dimension γ5(αs) = γ
(2)
5 α2

s + . . . starts at two loops

(because the nonconservation of the current is a one–loop effect) and depends on the specific

choice of operator normalization; the scale dependence of a0 induced by it was given in the

MS scheme in eq. (3.3).

Once this choice is made, however, the remaining normalization ambiguities are fixed

by the anomaly equation. Indeed, eq. (3.11) holds as an equation between renormalized

composite operators38), and it therefore implies that the operator trǫµνρσFµνFρσ must mix

with the current in such a way as to compensate (to all orders in perturbation theory) its

scale dependence:
d

dt
nf
αs

2π
trǫµνρσFµνFρσ = γ5(αs)∂µj

µ
5 . (3.13)

This condition fixes the normalization of the singlet gluon operator that mixes with the axial

current, as well as the coefficient of this mixing — that there exists a scheme where eq. (3.13)

is satisfied is the content of the Adler–Bardeen theorem37) and modern versions thereof38).

However, there is still an obstacle in the identification of matrix elements of operators

with partonic quantities: namely, we cannot simply identify the first moments ∆Σ(1, Q2) and

∆g(1, Q2) of the quark and gluon distribution [defined in analogy to eq. (3.9)] with matrix

elements of two leading twist operators, because there is only one local leading twist (i.e.

twist 2) operator with spin corresponding to the first moment of g1 (i.e. spin 1). It follows

that while it is natural to identify ∆g(1, Q2) (up to an overall constant, still arbitrary at this

stage), with the quantity that mixes with the matrix element a0 of jµ
5 according to eq. (3.13),

i.e.

− d

dt
nf
αs

2π
∆g(1, Q2) = γ5(αs)a0(Q2), (3.14)

there is no unique way to identify a0(Q2) itself. Indeed, if the quark singlet and gluon

anomalous dimensions are computed for higher moments, where a tower of quark and gluon

operators (for all odd n ≥ 3) are naturally identified with the corresponding moments of quark

and gluon distributions39), and then analytically continued to the first moment, the result de-

pends on the adopted regularization: if dimensional regularization is used throughout6), then

the anomalous dimension of ∆Σ(1, Q2) coincides with γ5(αs); if instead infrared collinear

singularities are regulated by means of an explicit regulator39) (such as putting the incoming

particle off-shell) then the anomalous dimension of ∆Σ(1, Q2) = ∆Σ(1) vanishes. Note that

in either case eq. (3.14) is satisfied, thereby fixing the constant of proportionality between

∆g(1, Q2) and the operator which mixes with a0 . These two results correspond, respec-

tively, to identifying the first moment of the quark distribution with the two eigenvectors

of perturbative evolution: in the former case the singlet quark distribution is identified as

∆Σ(1, Q2) = a0(Q2), and in the latter case it is identified with the scale-invariant combination

∆Σ(1) = a0(Q2) + nf
αs

2π ∆g(1, Q2).

This ambiguity can be pinned down only on the basis of physical requirements on parton

distributions. Now, it may be shown40) that, in schemes where a0 = Σ(1, Q2), soft con-

tributions are partly included in the hard coefficient function, rather than being properly

factorized in the parton distributions: this explains why these contributions are removed by

an infrared regulator, which instead yields schemes where the quark is identified with the

conserved eigenvector. Furthermore, in the latter schemes ∆Σ(1) can be directly shown41)

to coincide with the nucleon matrix element of the canonical, conserved quark helicity oper-

ator, the scale-dependence of a0 then being due to a contribution to it from particle creation

induced by the axial anomaly. In these schemes the Zweig rule expectation acquires a precise
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meaning42), since it predicts the approximate equality of two scale–independent quantities:
a8 ≈ ∆Σ(1). The (scale–dependent) deviation of a0 from this value would then be explained
by the gluon contribution to it42). Of course, whether this is actually the case rests with

experiment: we will discuss this in sect. 4.2.
The choice of factorization scheme in the definition of polarized quark and gluon distri-

bution, besides affecting the physical interpretation of the singlet first moment of g1, has a

significant effect in a finite-order computation of the scale dependence of Γ1, and may thus
substantially affect the extraction of this quantity from the data. Indeed, in the class of
schemes where ∆Σ(1) is scale-independent, the singlet Γ1 is given by

Γsing.
1 =

1

2
〈e2〉CS(Q2)

(

∆Σ(1) − αs

2π
nf ∆g(1, Q2)

)

(3.15)

=
〈e2〉

2

[

Cq(Q2)∆Σ(1) + 2nfCg(Q2)∆g(1, Q2)
]

, (3.16)

where the quark and gluon coefficient functions are given by

Cg(Q2) = −αs

4π
Cq(Q2) = −αs

4π
CS(Q2) (3.17)

to all orders in perturbation theory. This is to be contrasted to schemes where ∆Σ(1, Q2) =

a0(Q2), so Cg(Q2) = 0.
If the coefficient functions are determined at any finite perturbative order, eq. (3.15)

implies that a0(Q2) is not simply found, as in sect. 3.1, dividing Γsing.
1 by the coefficient

function CS(Q2): indeed, using the expression of Cq and Cg to order αk
s in eq. (3.16) one gets

2
CS(Q2)〈e2〉Γsing.

1 − a0(Q2) = −nf

(

C
(k)

S

2π

)

αk+1
s ∆g(1, Q2) +O(αk+2

s ), (3.18)

where C
(k)
S is the coefficient of αk

s in the perturbative expansion of CS(Q2). Thus all determi-

nations of a0 discussed so far are affected by an error of this size, and could only be improved
by extracting ∆Σ(1) and ∆g(1, Q2) directly from the data (for example fitting eq. (3.16) to
the data) and then computing a0(Q2) =

(

∆Σ(1) − α
2π

2nf ∆g(1, Q2)
)

. A more conservative

point of view is that this is an intrinsic and unavoidable ambiguity of the computation. The
size of the ambiguity of course depends crucially on the size of the gluon and decreases rapidly
as the scale and the perturbative order increase. At order αs, assuming that the quark re-

spects the Zweig rule and the gluon makes up for the difference, and taking the value of a0

from table 1, the correction at 3 GeV2 is around 15% of the value if a0 ≈ 0.5, and around
50% if a0 ≈ 0.15. Note that this uncertainty is not included in the errors given in table 1.

The scale dependence of a0 induced by the axial anomaly is determined perturbatively
by the anomalous dimension γ5(αs), which is a universal (i.e. target–independent) property
of the axial current. It has been shown recently43) that this universality actually persists

beyond perturbation theory: the singlet axial charge satisfies a Goldberger-Treiman equation
which relates it to the decay constant FΦ and irreducible coupling to the nucleon gΦB̄B of a
singlet pseudoscalar state Φ (defined in analogy to the π coupling and decay constant in the

usual Goldberger–Treiman relation): a0(Q2) = gΦB̄B FΦ(Q2). This pseudoscalar meson is
however not a physical state of the theory due to the presence of the anomaly in this channel,
so these couplings could only be measured on the lattice. However, the decay constant can be

expressed in terms of the topological susceptibility, which is a property of the QCD vacuum.
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Furthermore, all the scale dependence of a0 comes from this quantity, and is thus contained
in a universal, target-independent factor. It follows that if the explanation of the observed

Zweig rule violation is in this scale dependence, i.e. in the smallness of the scale-dependent

term FΦ, the effect will be universal, and not specific of the nucleon. It is interesting to
compare this possibility with an alternative proposal44) where the effect is instead related

to a small value of the coupling gΦB̄B due to instantons. The effect would then be strongly

target dependent, and have a different scale dependence. More data could thus shed light on
our understanding of the QCD vacuum beyond perturbation theory.

4. The structure function in the (x,Q2) plane

We have seen in the previous sections that the scale dependence of Γ1 [eq. (2.3)] driven
by the Wilson coefficient functions as well as by the anomalous dimension of the singlet axial

current is quite large, that it substantially affects the extraction of current matrix elements

from the data, and that it is actually responsible for a large part of the uncertainty on

their determination. This suggests that a detailed understanding of the evolution of the
full structure function g1 in the (x,Q2) plane is necessary in order to accurately assess this

uncertainty, and pin it down as much as possible. Indeed, experimental data are taken

within a limited range in x (0.003 ≤ x ≤ 0.7 for SMC and 0.03 ≤ x ≤ 0.75 for E143) and at
different scales in each x bin, with the lowest x points being taken at low Q2 and conversely

(1.3 ≤ Q2 ≤ 48.7 GeV2 for SMC and 1.3 ≤ Q2 ≤ 9.2 GeV2 for E143). The determination of

moments of g1 requires thus both extrapolation in x and evolution to a common scale. The
two problems are closely related because g1(x,Q2) is determined in terms of polarized parton

distributions

g1(x,Q2) = 1
2

[

CNS ⊗ ∆qNS + 〈e2〉 (CS ⊗ ∆Σ + 2nfCg ⊗ ∆g)
]

, (4.1)

(where ⊗ denotes the usual convolution with respect to x). These evolve perturbatively

according to the Altarelli–Parisi equations, so parton distributions at (x0, Q0) are causally
determined from their values at x > x0, Q < Q0.

The values of the first moments in table 1 are arrived at by assuming the scattering

asymmetry A1 to be scale–independent, i.e. by approximately evolving the data to a common

scale on the assumption that the scale dependence of the polarized structure function g1 is
the same as that of the unpolarized one F2, and extrapolating to small (and large) x by fitting

a phenomenological shape to the last few data points. In order to critically examine these

assumptions, we must study the small x behavior and scale dependence of g1 in perturbative
QCD.

4.1. The small x behavior of polarized parton distributions

Whereas the extrapolation of the structure function g1 from the measured range to x = 1

is under theoretical control and amounts to a small uncertainty, the extrapolation to small x

is more subtle. This is due to the fact that g1 must vanish identically for kinematic reasons
at x = 1; moreover, the form of its drop is already constrained by available data and agrees

with expectations based on QCD counting rules 45). On the contrary, the observed small x

behavior has thwarted several times theoretical prejudice. In fact, at least in principle, the

associated uncertainty is infinite, since the x→ 0 limit can never be attained (it corresponds
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to infinite energy) and, because perturbative evolution proceeds from larger to smaller x, it
is a priori impossible to exclude a growth in the unexplored small x region.

The traditional expectation for the small x behavior of structure functions is embodied

in Regge theory, which at some low scale should provide the small x behavior of parton distri-
butions that are input to perturbative evolution . Dominance of Regge poles would predict46)

that both the singlet and nonsinglet contributions to g1 decrease or are at most constant as

x → 0. Notice that in the unpolarized case Regge theory would have the singlet contribu-
tion to F2 behave like a constant (or perhaps grow slightly, for a supercritical Pomeron) and

the nonsinglet drop as
√
x; both the nonsinglet47) and singlet48) predictions are in excellent

agreement with available experimental data. Because in LO F2 ∝ xq(x), while g1 ∝ ∆q(x),
the Regge expectations for the singlet can be made consistent with the expectation45) (partly

based on QCD) that ∆q
q ∼

x→0
x, if one assumes that both F2 and g1 are constant or almost

constant at small x at a low scale. The SMC data on gp
1 , however, seem to indicate a rapid

growth of g1 as x → 0 (see fig. 3a). One might have thought this to be due to a stronger

increase of the singlet at small x, perhaps due to Regge cuts, but this is belied by the SMC
data on gd

1 , which should then look like the proton in the small x region, whereas in actual
fact it is negative there (fig. 3b).

Now, even if at some low scale parton distributions behave according to Regge expec-
tations, they will be modified by perturbative evolution. In particular, it has been known
for long that LO perturbative evolution eventually leads to a rise of g1 at small x49,50) of

the same form as the rise of the unpolarized structure function F2
51); the main difference is

that whereas F2 is positive–definite g1 is not, so the rise may correspond to g1 growing either

large and positive or large and negative. A closer look reveals both analogies and differences
between the polarized and unpolarized cases50). The small x behavior of parton distributions
is dominated by the rightmost singularity of perturbative anomalous dimensions in the space

of moments. In the polarized case, this singularity is located at N = 0 for the nonsinglet as
well as for all entries in the matrix of singlet anomalous dimensions, and it is already present
at LO. In the unpolarized case it is located at N = 1 for the nonsinglet and at N = 0 for the

singlet; in the latter case the singularity is present at LO in the gluon anomalous dimensions,
but only starts at NLO in the quark ones [defining the moment variable N according to
eq. (3.9)].

As a consequence, both the singlet and nonsinglet polarized distributions grow according
to50)

∆f(x,Q2) ∼ 1√
σ
e2γfσ, (4.2)

where σ ≡
√
ξζ, ρ ≡

√

ξ/ζ, ξ ≡ ln x0

x
, ζ ≡ ln

αs(Q2
0)

αs(Q2)
, and x0 is a reference value of x such

that the approximate small x form of the anomalous dimensions is applicable for x ∼< x0 and
Q2

∼> Q2
0. In the nonsinglet case, ∆f = ∆qNS and

γ2
NS =

8

33 − 2nf
. (4.3)

In the singlet case the quantities that display this growth are the linear combinations of quark
and gluon v± = ∆Σ + C±∆g, with

C± = 2

(

1 ±
√

1 − 3nf

32

)

; γ2
± = γ2

NS

(

5 ± 4

√

1 − 3nf

32

)

. (4.4)
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Notice that this is a scheme independent result. The behavior of the unpolarized nonsinglet

is the same as that of the polarized singlet (but with different γ), while the behavior of the

unpolarized singlet differs, first because the quantity which grows according to eq. (4.2) is

xg(x,Q2) rather than ∆g(x,Q2), and furthermore because the growth is driven by the gluon,

i.e. the unpolarized quark is proportional to the unpolarized gluon (and of order αs with

respect to it).

This implies that eventually the singlet distributions indeed dominate g1 at small x.

In both singlet eigenvectors the quark and gluon have opposite sign, and asymptotically

∆Σ > 0 if ∆Σ(x0, Q0) > −C+∆g(x0, Q0): hence, for most plausible starting quark and gluon

∆Σ grows large and negative and ∆g large and positive. As a consequence, asymptotically

g1 at small x must be large and negative. The nonsinglet distribution however also grows

asymptotically; the growth has the same form as for the singlet distributions, only with a

smaller value of γf , its sign is the same as that of the starting distribution. Therefore, the

value of x where the singlet actually does dominate could in practice be extremely small.

This is to be contrasted to the unpolarized case, where the growth of eq. (4.2) is down by a

power of x in the nonsinglet compared to the singlet, so that the singlet already dominates

around x ∼ 10−3.

Of course, the perturbatively generated growth of eq. (4.2) is only visible provided it

dominates over a possible growth of the starting parton distributions: even though Regge

theory does not favor such a growth, it cannot be firmly ruled out. For instance, if parton

distributions rise as ∆f(x,Q0) ∼ x−λ, then the evolved distributions will behave according

to eq. (4.2) only for ρ ∼<
γf

λ , but for smaller values of x they will behave as50)

∆f ∼ x−λ

(

αs(Q2
0)

αs(Q2)

)

γ2
f

λ

, (4.5)

i.e. they reproduce the boundary condition up to an x–independent correction; in the singlet

case if the starting quark and gluon have different small x–behavior the most singular one

dominates asymptotically. In such case, the onset of the asymptotic small x behavior of

eq. (4.5) will be yet slower52): firstly, because the small x solution to the evolution equations

is then dominated by the singularity of the boundary condition rather than the singularity

at N = 0 in the anomalous dimension, therefore, approximating the anomalous dimension

with this singularity is less accurate; also, the two singlet eigenvectors only mix due to the

x-independent correction in eq. (4.5), thus the dominance of the most singular behavior only

sets in rather slowly.

It is interesting to see how these LO predictions are modified at higher orders. At NLO

all polarized anomalous dimensions have a 1
N3 singularity. This leads to a correction to the

LO of the form5)

∆fNLO(x,Q2) =
[

1 + ǫf
(

ρ
γf

)3 (
αs(Q2

0) − αs(Q2)
)

]

∆fLO(x,Q2), (4.6)

where ∆fLO(x,Q2) is given by eq. (4.2), and the coefficients ǫ are explicitly

ǫNS = 8
3πβ0

; ǫ± = 112
3πβ0

[

(1 − nf

14 ) ± 13
14 (1 − 11nf

104 )
/

√

1 − 3nf

32

]

, (4.7)
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Figure 3: Plot of g1(x) for (a) proton and (b) deuteron. The crosses are SMC data and the diamonds E143

data. The curves correspond to a fit50)to the proton data only with valence-like nonsinglet and (i) “maximal”

gluon and steep input quark singlet or (ii) “minimal” gluon and flat input quark singlet.

corresponding to a further rise proportional to ξ3/2 of the parton distributions at small x,

with coefficient ǫNS/γ
3
NS ≈ ǫ+/γ

3
+ ≈ 1

2 . Notice that the form of the small x eigenvectors is

unaltered, and that these results are scheme–independent.

At NLO the Mellin transforms of the quark singlet and nonsinglet and gluon coefficient

functions also acquire a singularity at N = 0, which is however only of order 1
N2 and therefore

does not contribute to the asymptotic small x behavior eq. (4.2). This singularity corresponds

to a ln 1
x

rise (with positive sign) of the functions C(x,Q2) in eq. (4.1). At small x, this leads

to a rise of g1 even when the various parton distributions are flat. Even though this rise is

weaker than that induced by perturbative evolution, it could dominate at low scale where

evolution effects are small; its precise form is scheme–dependent, however.

At yet higher orders, the expected generic behavior of anomalous dimensions is γ ∼
N→0

(αn
s /N

2n−1). The small N behavior of the NLO coefficient functions suggests that these

might instead behave as C ∼
N→0

(

αs/N
2
)n−1

, which would guarantee scheme independence

of the coefficients of the singularities in the anomalous dimensions at least in the nonsinglet

case. Indeed a resummation of these singularities in the nonsinglet anomalous dimensions

has been proposed long ago53). In the absence of appropriate factorization theorems, it is

unclear whether this resummation, which reproduces 54) the known NLO leading singularity,

correctly reproduces the leading singularities of the nonsinglet anomalous dimensions to all

orders. If it does, it implies that the polarized and unpolarized nonsinglet quark distributions
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will display the same small x–behavior, in contradiction to Regge theory. More generally, one
would expect55) the summation of logarithmic effects in ln 1

x
induced by these singularities

to lead to a rise of parton distributions, which should be asymptotically power-like; this rise

should set in significantly faster than in the unpolarized case, due to the stronger nature of the
singularity, and thus, contrary to the unpolarized case55), it could set in before perturbation

theory breaks down.

The combination of all these effects makes it rather hard to infer the asymptotic small

x behavior of polarized parton distributions from present-day data: a HERA-like kinematic

coverage would be necessary to disentangle the various effects. The only firm prediction at
this stage is that parton distributions at small x will certainly grow (positive or negative) at

least as fast as eq. (4.2), including the nonsinglet distributions, and that therefore a simple

phenomenological extrapolation based on Regge expectations is not adequate at least in
principle. More detailed statements can be made by studying the structure of the data in the

(x,Q2) plane.

4.2. The evolution of g1(x,Q2)

The only way of arriving at a precise and reliable determination of the moments of g1
is to describe its evolution in the (x,Q2) plane in terms of the evolution of polarized parton

distribution. The fact that these evolution effects are large not only implies that they must
be included in the data analysis, but also that they might provide useful information on

the polarized parton content of the nucleon, and specifically on its gluon content. In fact,

one would expect g1 to be a very sensitive probe of ∆g — much more than the unpolarized
structure function F2 is a probe of g — since, even though the coupling of the gluon to g1 is

formally NLO, thanks to the anomaly it does not decouple asymptotically42). In comparison

to the unpolarized case, however, the analysis is complicated by the fact that the singlet

and nonsinglet display a similar perturbative behavior in the small x region: this implies
that only combining proton and neutron (or deuteron) data is it possible to disentangle the

contributions of the various parton distributions to g1, at least using data with the current

relatively restricted kinematic coverage.

Thanks to the recent determination6)of the full matrix of two-loop anomalous dimensions,
it is possible to study the evolution of parton distributions at NLO. The computations of

ref. 6) are performed in the MS scheme, where the gluon decouples from the first moment of

g1 and thus is not properly factorized, as we discussed in sect. 3.2. However, since the quark

and gluon coefficient functions are known39,42) in schemes where the gluon does contribute
to g1, the corresponding anomalous dimensions may be determined5) from those of ref. 6).

A determination of parton distributions can then be made by fitting to the data, provided

one makes some simplifying assumptions on the form of the starting parton distributions.*
Specifically, a simple polynomial parametrization of parton distributions may be adopted,

which entails the assumption that the asymptotic small x behavior of parton distributions

starts setting in at the values of x explored at present:

∆f(x,Q2
0) = N (αf , βf , af ) ηfx

αf (1 − x)βf (1 + afx) (4.8)

* For a review of LO polarized parametrizations see ref. 56). A NLO fit has been presented in ref. 57), but

in a scheme where the gluon does not couple to g1. Approximate NLO fits (prior to the full determination of

NLO anomalous dimensions) in properly factorized schemes are in refs. 58,50). A full NLO computation in a

variety of physical schemes is in ref. 5).
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Figure 4: Plot of (i) g1(x) and (ii) xg1(x) for (a) proton and (b) deuteron. The crosses are SMC data and the

diamonds E143 data. The curves correspond to a NLO fit5)to all data.

(where N(α, β, a) is a normalization factor, fixed e.g. as N(α, β, a)
∫ 1

0
dx xα(1−x)β(1+ax) =

1).
Two fits50) to the proton data only of parton distributions of this form are displayed in

fig. 3, together with the corresponding predicted deuteron structure function. The nonsinglet
is assumed to be valence-like (αNS = +0.2); the gluon is assumed to be flat (αg = 0) and the
singlet quark is either steep (αq = −0.5, fig. 3i) or flat (αq = 0, fig. 3ii). The starting gluon
is fixed either by requiring ∆Σ(1) to satisfy the Zweig rule, so that the fit then forces a large
gluon component to compensate (“maximal gluon”, fig. 3i), or by symply taking the gluon
distribution to vanish at the starting scale (“minimal gluon”, fig 3ii). The quality of these
two fits does not differ in a statistically significant way: while a larger gluon corresponds to
stronger evolution effects, the proton data alone do not allow us to fix its size, or the small

x behavior of the various parton distributions. Notice, however, that in order to obtain a
satisfactory description of the data it is necessary to introduce a gluon coupling to g1. This
is due to the fact that the SMC and E143 experiments measure g1 at different values of Q2

for equal values of x. The two data sets can then be made consistent with each other only if
there is a sufficient amount of perturbative evolution, and this can hardly be obtained in a
LO computation59), or if schemes where the gluon decouples from g1 are adopted.

Inspection of the deuteron predictions (fig. 3b), however, clearly shows that more definite
conclusions may be reached by combining the two sets of data: for instance the “minimal
gluon” case seems to be excluded. This is a consequence of the fact that the deuteron is a
more sensitive probe of the singlet and thus of the gluon, as explained in sect. 3.1. The results
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Q2 ∆Σ(N = 1) ∆g(N = 1) Γp
1 Γd

1 a0

3 0.5 ± 0.1 2.3 ± 1.2 0.118+0.016
−0.014 0.022+0.015

−0.013 0.15+0.17
−0.12

5 0.5 ± 0.1 2.6 ± 1.4 0.120+0.016
−0.014

0.023+0.015
−0.013

0.14+0.16
−0.11

10 0.5 ± 0.1 3.0 ± 1.6 0.122+0.018
−0.014

0.023+0.016
−0.013

0.14+0.16
−0.11

Table 2: Next-to-leading order determination5) of polarized first moments.

of a full NLO determination5) of g1 (displayed in fig. 4) indeed confirm that all the parameters

in eq. (4.8) may then be determined with reasonable accuracy. In particular, it is possible

to disentangle the singlet and nonsinglet contributions, and thus determine independently

the small x behavior of the various parton distributions. This turns out to be steep for the

nonsinglet (∆qNS ∼
x→0

xαNS with αNS = −0.7 ± 0.2), and valence-like for the singlet (with

large error). The result is quite suggestive in view of the discussion in the previous section:

it seems consistent with the expectation, based on the resummations of ref. 53), that the

polarized and unpolarized nonsinglets should behave in the same way, despite the prediction

of Regge theory. However, the asymptotic small x behavior is only starting to set in at the

smallest values of x covered by present–day data, which, in this respect, are to be compared

with the NMC unpolarized data 47): a kinematic coverage comparable with that available

at HERA for determining 48) the small x behavior of F2 would be required to determine

precisely the small x behaviour of polarized parton distributions.

Present–day data are however sufficient to determine the singlet first moments ∆Σ(1, Q2)

and ∆g(1, Q2) with reasonable accuracy (see table 2), assuming isospin [and SU(3)] to be

exact. Even though the first moment of Γ1 at each Q2 determines only the linear combina-

tion eq. (3.15) of ∆Σ(1, Q2) and ∆g(1, Q2), their different scale dependence is sufficient to

determine them independently: the large evolution effect already observed requires a large

gluon component. Equation (3.15) then forces a large value of ∆Σ(1, Q2), consistent with

the Zweig rule. Notice that the direct gluon contribution to g1 is essential in order to get

good agreement with the data. Thus current data support the proposal of ref. 42) that the

smallness of a0 is due to a large gluon contribution to it.

The first moment of the quark and gluon distribution then determine both the axial

charge and the first moment of Γ1. These determinations turn out to be significantly smaller,

and with significantly larger error, than the corresponding determinations from the exper-

imental collaborations (table 1): as discussed in sect. 3.1, a difference of the order of 10%

in the value of Γp
1 results in a variation of a factor of about 2 in the value of a0. We may

actually understand in detail the origin of this discrepancy50), which is due to the approx-

imate treatment of both scale dependence and extrapolation at small x used in refs.1−4).

Firstly, the data points which provide the bulk of Γ1 are taken at a scale Q2 larger than the

nominal average scale of either experiment: for example in refs.1,3) Q2
exp(x) is always larger

than 20 GeV2 for x above 0.1, while 〈Q2〉 = 10 GeV2 for this experiment. Since in this region

g1 increases as the scale increases the substantial underestimate of evolution effects due to

their approximate treatment in refs.1−4) leads to an overestimate of Γ1. Furthermore, the flat

small x extrapolation based on Regge theory overestimates the corresponding contribution,

because it is obtained by extrapolating the smallest–x data points, which are taken at very

low Q2 (∼ 1 GeV2) but assumed to apply at larger values of Q2 where perturbative evolution,

as explained in sect. 4.1, leads rapidly to negative values of g1 and thus to a small (or even

negative) contribution to Γ1 from the small x region.
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The presence of large corrections due to perturbative evolution then inevitably implies
sizable uncertainties related to insufficiently precise knowledge of the polarized gluon distribu-
tion, which drives this evolution at least at the level of the first moment, and to the unknown
higher order corrections (scheme ambiguities). These are indeed the dominant sources of the
error on Γ1 and thus a0 in table 2. It is interesting to notice that even though the values of
table 2 are obtained by assuming isospin [i.e. the Bjorken sum rule eq. (2.8)] to be exact, the
values of a0, ∆Σ(1) and ∆g(1, Q2) are essentially insensitive to SU(2) [or SU(3)] violations.
This suggests that if the isotriplet first moment Γ1 were also determined by a global NLO
analysis, rather than being fixed using the Bjorken sum rule, its value might not differ much
from that found by combining values of Γ1 from table 1. Such an analysis would however be
required in order to test the Bjorken sum rule in a reliable way.

5. Outlook

Polarized structure functions determined in deep-inelastic scattering are clearly the pre-
ferred source of information on the polarized structure of the nucleon at high energy, since the
availability of renormalization group methods and factorization theorems that characterizes
fully inclusive processes allows a determination of physical observables which is free from the
ambiguities due to our ignorance of the low–energy dynamics. In particular, due to the axial
anomaly, polarized deep-inelastic scattering provides an ideal probe of the polarized gluon
distribution and allows us to get a handle on quantities that have direct relevance for our
understanding of the chiral structure of the QCD vacuum.

The new generation of experiments1−4) has allowed us to confirm these expectations, by
providing us with surprisingly accurate information on polarized parton distributions. The
analysis of these data, however, requires sophisticated theoretical and phenomenological tools.
A future generation of experiments with a wider kinematic coverage in x and Q2, such as
those that would be possible with a polarized proton beam at HERA60), could lead to a full
understanding of the small x behavior and scale dependence of polarized parton distributions,
thereby testing our understanding of QCD in perturbation theory and beyond.
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