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PERTURBATIVE EVOLUTION OF

POLARIZED STRUCTURE FUNCTIONS

R.D. BALL

Theory Division, CERN, CH-1211 Genève 23, Switzerland

and

Department of Physics and Astronomy,

University of Edinburgh, EH9 3JZ, Scotland

We review the perturbative evolution of the polarized structure functions
g1 and their associated parton distribution functions, with particular em-
phasis on the anomalous coupling of the first moment of the polarized
gluon distribution. We also describe the small x behaviour of polarized
parton distributions, contrasting it with that of the unpolarized distribu-
tions. We then explain how this theoretical analysis affects the extraction
of the singlet axial charge from experimental data on g1, and show that it
may be possible to use such data to infer the existence of polarized gluons
in the nucleon.

The publication of the EMC results1 for the polarized proton structure func-
tion gp

1 has been directly responsible for a renewed interest in polarized deep
inelastic scattering among the theoretical community. In particular the im-
plication that in the naive parton model the total helicity carried by quarks
and antiquarks in the proton was consistent with zero led to a rexamination of
the role played by the axial anomaly and polarized gluons in the perturbative
evolution of the first moment of polarized structure functions.2−7 Since then,
more precise measurements8−11 of both gp

1 and gd
1 over a wider range of both

x and Q2 have been made, and from them seemingly very precise values of
the first moments deduced.12,13 These first moments are generally obtained
by extrapolating the experimental data to a common scale (which is done in
practice by assuming that the asymmetries measured in the experiments are
Q2 independent), and further by extrapolating from the measured region to
small x (using Regge behaviour, and assuming that the small x contribution is
then Q2 independent). However if the polarized gluon distribution were large,
both of these approximations could turn out to be very poor,14 because of
the anomalously large coupling of polarized gluons to the first moment of g1.
It thus becomes necessary to examine in detail the theoretical errors implicit
in our present ignorance of the size of the polarized gluon distribution, and
conversely whether the x and Q2 dependence of existing or future structure
function data may be used to infer the existence of a large gluonic contribution
to the nucleon spin.
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1 Polarized Partons

We begin by reviewing the relation between polarized structure functions
and parton densities in the parton model, and its relation to the operator
product expansion and renormalization group approach. In the parton model15

the polarized structure function g1 is decomposed in terms of polarized quark
and gluon distributions ∆qi and ∆g according to

g1(x, Q2) =
〈e2〉
2

∫ 1

x

dy

y

{

CNS(x
y , αs(t))∆qNS(y, t)

+CS(x
y , αs(t))∆qS(y, t) + Cg(

x
y , αs(t))∆g(y, t)

}

+ O
(

1/Q2
)

,

(1.1)

where t ≡ ln Q2

Λ2 , the various coefficient functions C(x, αs) are directly related
to hard cross-sections calculable in perturbative QCD, and ∆qNS and ∆qS are
respectively the nonsinglet and singlet quark distributions:

∆qNS(x, t) ≡
nf
∑

i=1

e2

i −〈e2〉
〈e2〉 (∆qi(x, t) + ∆q̄i(x, t)),

∆qS(x, t) ≡
nf
∑

i=1

(∆qi(x, t) + ∆q̄i(x, t)),

(1.2)

where nf is the number of active flavours, each with electric charge ei, and
〈e2〉 ≡ ∑

e2
i /nf . Although they are themselves intrinsically nonperturbative,

the perturbative part of the x and t dependence of the polarized quark and
gluon distributions is given by Altarelli-Parisi equations:16 the nonsinglet quark
evolves independently as

d

dt
∆qNS(x, t) =

αs(t)

2π

∫ 1

x

dy

y
PNS

qq (x
y , αs(t))∆qNS(y, t), (1.3)

while the singlet quark and the gluon mix according to

d

dt
∆qS(x, t) =

αs(t)

2π

∫ 1

x

dy

y

[

P S
qq(

x
y , αs(t))∆qS(y, t) + Pqg(

x
y , αs(t))∆g(y, t)

]

,

d

dt
∆g(x, t) =

αs(t)

2π

∫ 1

x

dy

y

[

Pgq(
x
y , αs(t))∆qS(y, t) + Pgg(

x
y , αs(t))∆g(y, t)

]

.

(1.4)
The splitting functions P (x, αs) are again computable perturbatively in terms
of hard cross-sections. In the naive parton model CNS = CS = δ(1−x), Cg = 0,
so the gluons decouple. In LO perturbation theory the gluons couple through
the singlet evolution equations (1.4), while at NLO they also couple directly.
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Heavy quark contributions are generated radiatively as thresholds are crossed.
All this works in just the same way as in the unpolarized case.

Taking the Mellin transform of eq.(1.1) gives the leading twist component
of the operator product expansion of the moments of g1:

ΓN (Q2) ≡
∫ 1

0
dxxN−1g1(x, Q2)

= 〈e2〉
2

[

CNS
N ∆qNS

N + CS
N∆qS

N + Cg
N∆gN

]

+ O
(

1/Q2
)

.
(1.5)

Here CN (αs) ≡
∫ 1

0 dxxN−1C(x, αs) are the Wilson coefficients and ∆qN (t) ≡
∫ 1

0 dxxN−1∆q(x, t) may, for some values of N , be related to forward matrix el-
ements of local operators. In the unpolarized case moments of the distributions
qi + q̄i and g correspond to matrix elements of local twist two operators for
N = 2, 4, . . ., while for qi− q̄i suitable local operators exist for N = 1, 3, . . .: all
the other moments are well defined, but can only be obtained by analytic con-
tinuation in N (a good example17 being the Gottried sum qNS

1 ). Here however
the situation is reversed:18

sµpν1
. . . pνN−1

∆qNS
N (t) = 〈p, s|ONS,N

µ,ν1,...,νN−1
|p, s〉t, N = 1, 3, 5, . . .

sµpν1
. . . pνN−1

∆qS
N (t) = 〈p, s|OS,N

µ,ν1,...,νN−1
|p, s〉t, N = 3, 5, 7, . . .

sµpν1
. . . pνN−1

∆gN(t) = 〈p, s|Og,N
µ,ν1,...,νN−1

|p, s〉t, N = 3, 5, 7, . . . ,

(1.6)

where |p, s〉 is some hadronic state carrying momentum p, with polarization
vector sµ, and the twist two local operators Og

N are purely gluonic. Although
there exist local operators for even N = 2, 4, . . ., these have opposite charge
conjugation and thus correspond to moments of the valence distributions qi−q̄i.
Again all other moments are well defined, but can only be obtained by analytic
continuation. They are necessarily gauge invariant since the matrix elements
(1.6) are gauge invariant, but will in general be scheme dependent. The case
N = 1 in the singlet channel is peculiar, in that there is just one local operator,
the axial singlet current: the identification of matrix elements of this operator
with the first moments ∆qS

1 and ∆g1 is then rather subtle and will be discussed
in the next section.

Taking moments of the Altarelli-Parisi equations (1.3),(1.4) yields the
renormalization group equations for the matrix elements (1.6):

d

dt
∆qNS

N (t) = γqq,NS
N

(

αs(t)
)

∆qNS
N (t)

d

dt

(

∆qS
N (t)

∆gN(t)

)

=

(

γqq,S
N

(

αs(t)
)

γqg
N

(

αs(t)
)

γgq
N

(

αs(t)
)

γgg
N

(

αs(t)
)

) (

∆qS
N (t)

∆gN(t)

)

,
(1.7)

where γN (αs) ≡ αs

2π

∫ 1

0 dxxN−1P (x, αs) are the anomalous dimensions of the
various local operators.
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2 First Moments

Due to interest in the Bjorken19 and Ellis-Jaffe20 sum rules, much of the
literature on g1(x, Q2) has focussed on its first moment Γ1(Q

2). The proper
interpretation2−5 of the singlet first moments is complicated by the presence
in this channel of the axial anomaly.21

Consider firstly the renormalization group equations (1.7) with N = 1.
While some elements of the matrix of anomalous dimensions are nonvanishing
at LO (one loop), this dependence turns out to be trivial, since the eigenvectors
of the evolution

∆qNS
1 , ∆qS

1 and a0 ≡ ∆qS
1 − nf

αs

2π ∆g1, (2.1)

only evolve at NLO (two loops).2 It follows that there must exist factorization
schemes in which both ∆qNS

1 and ∆qS
1 do not evolve at all, since multiplicative

renormalizations which only begin at NLO can always be removed by a change
of scheme. Thus in such schemes

d
dt∆qNS

1 = 0, d
dt∆qS

1 = 0 and d
dta0 = γsa0, (2.2)

where γs = −nf (α2
s/2π2)+ · · · has been calculated at two18 and three22 loops.

In the nonsinglet sector such schemes are essential in order to make the
usual identification (1.6) of ∆qNS

1 with forward matrix elements of (partially)
conserved nonsinglet axial currents, i.e. with the nonsinglet axial charges.
These may then be determined (assuming exact flavor symmetry) from weak
decays of hyperons: below the charm threshold

∆qNS
1 = 3

4gA + 1
4a8, (2.3)

where sµgA = 〈p, s|(J5
µ)3|p, s〉, etc. Above heavy quark thresholds nonsinglet

charges a15, a24, etc. must also be added. The nonsinglet combinations gA =
∆u − ∆d and a8 = ∆u + ∆d − 2∆s, etc. of the quark contributions to the
spin of the hadron are then both well defined and scale independent (above
threshold). The Bjorken sum rule19 follows immediately from eqn.(1.5).

Similarly in the singlet sector the conservation of ∆qS
1 makes it the natural

candidate2−15 for the singlet quark contribution ∆u + ∆d + ∆s + · · · to the
hadron spin. Individual quark contributions may then be disentangled, and
in particular the Zweig rule 0 ≃ ∆s ≃ ∆c ≃ · · · acquires a scale independent
meaning.23 In fact although there is no local gauge invariant conserved current
in the axial singlet channel, ∆qS

1 may still be formally identified with singlet
quark helicity.24 The other evolution eigenvector a0 may then be identified with
forward matrix elements 〈p, s|j5

µ|p, s〉t = sµa0(t) of the singlet axial current
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j5
µ, whose conservation is violated at one loop by the (purely gluonic) axial

anomaly,
∂µj5

µ = nf
αs

2π ǫµνρσtrGµνGρσ , (2.4)

which is thus directly responsible for the NLO evolution (2.2) of a0. Since the
anomaly (2.4) is unaffected by higher order perturbative corrections,25 it is
possible to find schemes in which both the decomposition (2.1) of a0 and its
evolution (2.2) hold to all orders in perturbation theory:2 in such schemes

−nf
αs

2π γgq
1 (αs) = γs(αs), γgg

1 (αs) = γs(αs) + β(αs), (2.5)

where β(αs) ≡ d lnαs/dt.
Now consider the Wilson coefficients in the operator product expansion

(1.5). When these are calculated in a factorization scheme in which first mo-
ments evolve according to (2.2), their first moments are

CNS
1 = 1 − αs

π + · · · , CS
1 = 1 − αs

π + · · · , Cg
1 = −nf

αs

2π + · · · , (2.6)

at NLO (in fact CNS
1 is known to26 O(α3

s), CS
1 to27 O(α2

s)). When combined
with (2.1), this implies that when N = 1 there are indeed only two terms on
the right hand side of (1.5):

Γ1(Q
2) = 〈e2〉

2

[

CNS
1 (αs)∆qNS

1 (t) + CS
1 (αs)a0(t)

]

, (2.7)

in accordance with the fact that there is only one local gauge invariant singlet
operator with twist two and spin one, the axial singlet current j5

µ, which must
then be multiplicatively renormalized. Although (1.5),(2.6) and (2.1) only
imply (2.7) at NLO, in schemes in which the Adler-Bardeen theorem is satisfied
it must be true to all orders in perturbation theory: in such schemes

Cg
1 (αs) = −nf

αs

2π CS
1 (αs). (2.8)

In practice all of these results may be obtained by regularizing infrared
collinear divergences by putting external particles off-shell.18 Alternatively the
infrared divergences may regulated by giving the quarks a mass;2 this has the
disadvantage that chiral symmetry is broken, so a finite renormalization must
be performed to ensure that the quark helicities ∆qNS

1 and ∆qS
1 remain scale

independent. More seriously, if dimensional regularization alone is used, with
massless quarks and all external particles on-shell, Cg

1 vanishes, so ∆qS
1 is iden-

tified with the axial singlet charge and thus can no longer be related to quark
helicity. Such factorization schemes are inappropriate because soft contribu-
tions are included in the coefficient function, rather than being factorized into
the parton densities.3,6,7
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Finally we consider the implications of this analysis. Combining (2.1)
and (2.2), we see that ∆g1(t) ∼ t as t → ∞, so asymptotically the gluonic
contribution to a0(t) does not decouple, but may be as large as the quark
contribution.2 Thus even if ∆qS

1 ∼ a8 as suggested by the Zweig rule, a0(t)
may still be very different from a8, and the Ellis-Jaffe sum rule20 may fail.

To actually explain why experimentally1 a0(t) is small in the perturbative
region we would nevertheless require some nonperturbative mechanism. Vari-
ous attempts at natural expanantions exist, in which either ∆qS

1 is suppressed
by instantons,28 and thus the Zweig rule is strongly violated, or else the Zweig
rule holds but a0(t) is suppressed, either by strong evolution at low scales,29 or
due to the smallness of the first derivative of the topological susceptibility.30

The latter explanations are both target independent, so might be tested by
measuring g1 for other targets such as the photon. Meanwhile, it would be
useful to have some way of determining ∆qS or ∆g independently.

Since the gluonic contribution to the first moment of g1 is effectively LO, it
might be reasonable to expect that if ∆g were indeed large the scale dependence
of g1(x, Q2) might also be anomalously large in certain regions of x.14 If this
were so it might be possible conversely to determine ∆g by studying scaling
violations of g1. We will return to this idea in section 4, but first will discuss
another way of arriving at the same conclusion.

3 Small x Evolution

The behaviour of structure functions at small x is governed both by the
qualitative form of the non-perturbative input at some scale t0 ≡ lnQ2

0/Λ2,
given in principle by Regge theory, and the structure of the perturbative evo-
lution to Q2 > Q2

0, which can then often overwhelm it. Indeed the form
and evolution of structure functions at small x depends on the outcome of a
competition between Regge behaviour, LO evolution and higher order pertur-
bative evolution. We will begin by describing how this works for unpolarized
distributions, and then consider the polarized distributions.

According to Regge theory the behaviour as x → 0 of the unpolarized
singlet distributions is controlled by the pomeron intercept, so xqS(x, t0) ∼
xg(x, t0) ∼ x−λ, with λ ≃ 0.08. However this essentially flat (or ‘soft’) be-
haviour is substantially modified by perturbative evolution, determined by the
leading singularity which for singlet anomalous dimensions is at N = 1. At one
loop, γgg

N ∼ γgq
N ∼ αs/(N −1) as N → 1, while γqg

N and γqq
N are both regular. It

follows that in the double limit x → 0 and t → ∞ the gluon distribution grows
in a precisely determined way, faster than any power of ln 1/x but slower than
any power of x:31

xg(x, t) ∼ Nσ−1/2 exp(2γσ − δζ), (3.1)

6



where if ξ ≡ ln x0

x , ζ ≡ ln
αs(Q2

0
)

αs(Q2) ∼ ln t
t0

, σ ≡ √
ξζ, and γ and δ are (known)

numerical constants. This growth in xg drives a similar ‘double scaling’ be-
haviour in xqS, which has recently been confirmed by measurements of F p

2 at
small x and large t at HERA.32

Two loop corrections to double scaling are small33 essentially because
the singularity in the two loop singlet anomalous dimensions is of the form
α2

s/(N − 1), and thus no stronger than that at one loop. Naively one expects
that at l loops γgg

N ∼ αl
s/(N − 1)2l−1 because at each order there is both an

extra mass singularity and an extra collinear singularity,34 which would wreck
double scaling by inducing a strong power-like growth. However many of the
singularities cancel,35,36 so that the true behaviour at l loops is γgg

N ∼ (αs/(N−
1))l. The (scheme independent) coefficients of these remaining singularities can
be calculated37 and in fact turn out to be very small; indeed the coefficients
at 2, 3 and 5 loops actually vanish. This means that although the higher
singularities may eventually produce a power-like growth in the Regge limit
like x−λS , where λS = 12 ln 2αs/π is the radius of convergence of the sum of
singularities, no indication of such behaviour has yet been seen at HERA.32,38

The behaviour of nonsinglet unpolarized parton distributions at small x
is rather different, however. To begin with, the leading singularity in γqq,NS

N is
not at N = 1 but at N = 0: all singularities at N = 1 cancel. According to
Regge behaviour as x → 0 qNS(x, t0) ∼ x−λ, with λ ≃ 0.5, which now counts
as a ‘hard’ boundary condition. So instead of the double scaling behaviour
(3.1), we now have

qNS(x, t) ∼ Ñ exp(λξ + (γ̃2/λ − δ̃)ζ), (3.2)

for ρ ≡
√

ξ/ζ >∼ γ̃/λ, γ̃ and δ̃ constants. It follows immediately that at small
x qNS is considerably smaller qS , and thus F p

2 −Fn
2 will be much more difficult

to measure than F p
2 alone. The two loop correction is now rather larger since

to O(α2
s) γqq,NS

N behave as α2
s/N

3 as N → 0, and indeed at l loops there is now

no cancellation of double logarithmic singularities,39 so γqq,NS
N ∼ αl/N2l−1.

Again the coefficients of the singularities can be computed,40 and turn out
to be large.a It follows that even if qNS(x, t0) had been soft, asymptotically
qNS(x, t) will eventually grow as x−λNS , where39 λNS =

√

8αs/3π ∼ 1
2 . As

it is, this behaviour should set in very quickly, and indeed it seems to be in
agreement with existing NMC and CCFR data.

a Although there is now no factorization theorem to gaurantee that the resulting leading

singularity anomalous dimension is scheme independent, the results at two loops (both un-

polarized and polarized41) are correct,42 and the behaviour of the MS coefficient functions at

O(αs) and43 O(α2
s) is not so singular as to introduce scheme dependence into the anomalous

dimension (at least at NNLO). It thus seems that the implications of ref.39 deserve to be taken

seriously.
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Polarized distributions, both nonsinglet and singlet, have a soft Regge
behaviour:44,45 ∆qNS(x, t0) ∼ ∆qS(x, t0) ∼ x−λ, with −0.5 <∼ λ <∼ 0 while
again all perturbative singularities at N = 1 cancel. Indeed at LO all anoma-
lous dimensions behave as αs/N , and thus one might expect a double scaling
growth for both nonsinglet and singlet distributions:14,46−49

∆qNS(x, t) ∼ NNSσ−1/2 exp(2γNSσ − δNSζ),

v±(x, t) ∼ N±σ−1/2 exp(2γ±σ − δ±ζ),
(3.3)

where γNS, γ±, δNS and δ± are all (known) constants, and v±(x, t) are eigen-
vectors of the evolution: v± = (∆q±S , ∆g±), ∆q±S = −c±∆g±, with c± both
positive constants. Thus rather than the gluon driving the singlet quark, as
happens in the unpolarized case, here both gluon and singlet quark grow to-
gether, but with opposite signs. It follows that in general while ∆qNS and
∆g become large and positive as x → 0 and t → ∞, ∆qS becomes large and
negative, and g1(x, Q2) can then exhibit strong fluctuations due to interference
between the various contributions.14 Furthermore gp

1 and gn
1 can behave rather

differently, since ∆qNS grows on the same footing as ∆qS.
However, these results must be interpreted with great care since at small

enough x higher order singularities can quickly become important. All the two
loop anomalous dimensions behave as α2

s/N
3, and although the two loop cor-

rections are still numerically small in the small x region accessible currently,49

and in particular leave the singlet eigenvectors unchanged at NLO, at yet
smaller x they soon become comparable to the LO term. Just as in the non-
singlet unpolarized case, there is no evidence that the double logarithmic sin-
gularities cancel: indeed the leading singularities in the nonsinglet polarized
channel have already been computed,39 and the resulting power behaviour
of ∆qNS(x, t) turns out to be even stronger50 than that of qNS(x, t). The
same seems to be true in the polarized singlet channel,51 though the matrix of
anomalous dimensions is not yet known.

To summarise, as 1/x and Q2 increase |g1(x, Q2)| grows rapidly due to
perturbative evolution, and may go negative if ∆g is large enough. The precise
details of the behaviour at very small x have yet to be calculated, but will
probably involve rather complicated fluctuations in the (x, Q2) plane. However
what is already clear is that the small x contribution to the first moment of g1

may have a strong Q2 dependence. Since the scale dependence of the complete
first moment (2.7) is perturbatively rather weak, this would necessarily imply
a compensating Q2 dependence at larger x driven by ∆g, which may be visible
in existing data.

4 Polarized Gluons?

Fixed target experiments with a fixed beam energy measure the polariza-
tion asymmetries, and thus indirectly g1(x, Q2), along a curve Q2

exp(x). For

8



Figure 1: The SMC8,9 (crosses) and E14310,11 (diamonds) data for (a) gp
1 and (b) gd

1 plotted

against x. The curves correspond to (i) maximal gluon and (ii) minimal gluon fits.14

the SMC experiments8,9 this curve goes from (0.7, 50GeV2) to (0.003, 1GeV2),
while for the E143 experiments the beam energy is lower, so the Q2 is lower
for all x, the curve reaching from (0.7, 9GeV2) to (0.03, 1GeV2). Combining
both experiments thus gives us two values of Q2 for each value of x, making it
possible to search for purely evolutionary effects.

Several fits to the available data have been made, by evolving a standard
parameterization of ∆qNS(x, t0), ∆qS(x, t0) and ∆g(x, t0) from the starting
scale (usually taken to be Q2

0 = 1GeV2) up to the data. Until recently the
evolution was performed at LO52,53 or in some hybrid ‘nLO’ approximation54,14

in which the one loop anomalous dimensions are used together with one loop
coefficient functions in some sensible scheme (one in which the first moments
are given by (2.6)), in an effort to assess the effect of the direct coupling of ∆g
to g1. The calculation41 of the two loop anomalous dimensions has now made
complete NLO calculations49 possible.

At LO the effects of evolution are generally small, and in particular the
asymmetries are reasonably scale independent.52 However at nLO the direct
gluon coupling can have a dramatic effect, especially if ∆g is large. In fig. 1a

9



Figure 2: The asymmetries corresponding to the four fits in fig. 1, plotted against Q2. From

top to bottom the curves correspond to x = 0.5, 0.35, 0.25, 0.175, 0.125, 0.08, 0.05, 0.035.

we show the result of two nLO fits14 to the proton data8,10 alone, one (the
‘minimal gluon’) in which ∆g1(t0) = 0, while ∆qS

1 (t0) is fitted, the other
(the ‘maximal gluon’) in which ∆qS

1 (t0) = a8 (as expected from the Zweig
rule) while ∆g1(t0) = 0 is fitted.b The minimal gluon fit shows that there
is considerable evolution from the E143 data up to the SMC data, but below
the crossover (at x ∼ 0.3) this is fairly uniform in x. The maximal gluon
fit is much more dramatic: there is a second crossover at x ∼ 0.03 while at
yet smaller x gp

1(x, Q2) becomes increasingly negative as Q2 increases. The
evolution between the two crossovers is then correspondingly larger. This is
particularly evident in the corresponding asymmetries (fig.2a), which are fairly
flat for the minimal gluon but rise quite steeply with Q2 for the maximal gluon.

Although on the basis of these fits to the proton data alone it was not
possible to distinguish between minimal and maximal gluon, the correspond-
ing predictions fig 1b for the deuteron structure function are more distinct,
essentially because the deuteron is predominantly singlet, and a large direct

b In both cases ∆qS
1 is fixed by eqn.(2.3). Other details of the fits may be found in ref.14.
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Figure 3: The structure functions xgp
1(x, Q2) and xgd

1(x, Q2) plotted against x. The notation

of the data points8−11 and fitted curves49 is the same as in fig. 1.

gluonic contribution to g1 thus tends to make gd
1 negative at small x. The

data9,11 seem to prefer a maximal gluon. The strong growth in the deuteron
asymmetry which this generates is apparent in fig. 2b.

This conclusion has recently been confirmed by a complete NLO cal-
culation, with both proton and deuteron data8−11 included in the fit.49

The parton distributions turn out to be surprisingly well determined, with
∆qS

1 (t0) = 0.5 ± 0.1, ∆g1(t0) = 1.5 ± 0.8. The Zweig rule expectation ∆s ≃ 0
is thus confirmed experimentally, while the discrepancy in the Ellis-Jaffe sum
rule20 is accounted for almost entirely by a direct polarized gluon contribution,
just as was conjectured in ref.2. The behaviour of the parton distributions at
large x is roughly consistent with quark counting rules. At small x the non-
singlet distribution is singular (behaving as x−λ, λ = 0.7 ± 0.2) while the
singlet quark and gluon distributions are generally either flat or valencelike, as
expected from the theoretical considerations reviewed in the previous section.

Using this fit (displayed in fig. 3) to determine the first moments Γp
1, Γd

1

and a0 (as defined in eqn.(2.1)) we find49

Γp
1 = 0.122± 0.013 (exp.)+0.011

−0.005 (th.),

Γd
1 = 0.025± 0.013 (exp.)+0.012

−0.004 (th.),

a0 = 0.14 ± 0.10 (exp.)+0.12
−0.05 (th.),

(4.1)

at Q2 = 10GeV2. The central values are lower than those given by the experi-
mental collaborations because of the scale dependence both of the asymmetries
in the measured region and of the small x extrapolations: the experimental
uncertainty is larger because of the uncertainty in the size of the polarized
gluon distribution which drives this evolution. There is also a theoretical error
which is predominantly due to an estimate of NNLO corrections: these can be
large because the two loop coupling of ∆g1 to Γ1 is effectively NLO (compare
(2.7) with (1.5) when N = 1).
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5 Desiderata

In conclusion, the effects of perturbative evolution have to be taken into
account when extracting axial charges from polarization asymmetries, since
they may be large due to the anomalous coupling to polarized gluons. Con-
versely, the structure of the evolution seen in the combined proton and deuteron
data sets indicates that the polarized gluon distribution may indeed be large,
making a substantial contribution to the nucleon spin. In order to make this
conclusion more definite, more data over a range of Q2 at moderate values of
x from one experiment are needed. Polarization of the protons at HERA,55

enabling a measurement of Ap
1 (and perhaps eventually Ad

1) would further pin
down the small x contribution and the size of the gluon. Data for moderately
small x (say 0.001 <∼ x <∼ 0.01) but over a wide range of Q2 would be most use-
ful. Indeed the behaviour of polarized structure functions at small x promises
to be a very rich subject, for both theorists and experimentalists alike.
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