
CERN UNIX User Guide
Version 1.02
CN/DCI/164

Tracey Appleby, Harry Renshall, Judy Richards, Alan Silverman

July 14, 1994

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25186758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGEMENTS

Much of the information in this Guide is not original; we are indebted to the authors of the "UNIX at
Fermilab Guide" and the authors of the "GSI UNIX Primer" for permitting us to include information lifted from
those two excellent publications. We also thank other CERN colleagues for helping us with particular sections
and with the numerous edits which were necessary to correct our initial drafts. Information in this Guide is not
copyright but any use in other documents should include not only acknowledgement to this source but also to
the FNAL and GSI guides as well.

This Guide is by no means guaranteed free from error, especially considering the range of UNIX architectures
and environments it is intended to cover. Readers are encouraged to send comments and error reports to Alan
Silverman at the e-mail address Alan.Silverman@cern.ch.

Copies of this Guide can be found as follows:

AFS - If your node is an AFS client in CERN - file usr/local/doc/unixguide.ps
Otherwise - file /afs/cern.ch/asis/share/usr.local/doc/unixguide.ps

Anonymous ftp - file asisftp.cern.ch:pub/doc/unixguide.ps

WWW - postscript - the full postscript file can be found under the DocumentsSection of the UNIX Workstation
Support Page, URL - http://wsspinfo.cern.ch/file/documents

WWW - html - the HTML version is also available at the URL
http://wsspinfo.cern.ch/file/documents and has options for selecting by contents pages or Index
entries. You will also find symbols defined to show footnotes and forward and backward references.

Paper copies - Document CN/DCI/164 at the self service shelves at the UCO, Building 513

Change Record

Version 1.00 1 July 1994 First general release
Version 1.01 11 July 1994 HTML address of Guide added
Version 1.02 14 July 1994 UCO Book List and purchase scheme updated.

AFS address of Guide modified

1

Contents

1 Introduction 7

1.1 Getting a UNIX Account � 7

1.2 Login, Logout, Setting Passwords � 8

1.2.1 Login � 8

1.2.2 Logout � 8

1.2.3 Setting Passwords � 9

2 UNIX Shells 10

2.1 Entering Commands � 11

2.2 Path � 12

2.3 Processes � 12

2.4 Standard Input, Output and Redirection � 13

2.5 Pipes � 14

2.6 Shell Scripts � 15

2.7 Filters � 15

2.8 Regular Expressions � 16

3 Working Environment 18

3.1 Environment Variables � 18

3.1.1 Setting Environment Variables � 19

3.1.2 Getting Values of Environment Variables � 19

3.1.3 A Summary of some useful Environment variables � � � � � � � � � � � � � � � � � � 20

3.1.4 Changing Your Command Prompt � 20

3.2 The Profile Files � 21

3.3 Terminal Characteristics � 23

2

3.3.1 Keyboards � 23

3.4 Alias � 24

3.5 Recalling Commands: history � 25

3.5.1 C Shell � 25

3.5.2 Korn Shell Command Line Editing � 26

3.5.3 Command Line Editing in Other Shells � 26

4 File System 27

4.1 File Structure � 27

4.1.1 Naming Directories and Files � 27

4.1.2 Rules for Naming and Accessing Files � 27

4.2 List of Simple File System Commands � 28

4.2.1 Displaying the contents of a directory: ls � 28

4.2.2 Changing the Working Directory: cd � 29

4.2.3 Determining Your Working Directory: pwd � 29

4.2.4 Creating a New Directory: mkdir � 29

4.2.5 Removing an Existing Directory: rmdir � 29

4.2.6 Renaming a Directory: mv � 30

4.2.7 Displaying the Contents of a File: cat,more, etc � 30

4.2.8 Renaming a File: mv � 30

4.2.9 Copying a File: cp � 31

4.2.10 Deleting a File: rm � 31

4.2.11 File and Directory Permissions � 31

4.2.12 Determining Permission: ls -l � 31

4.2.13 Changing Permission: chmod � 32

4.3 File Backup � 33

4.4 AFS Overview � 35

5 Communications 36

5.1 Internet Overview � 36

5.1.1 Internet addresses � 36

5.1.2 Internet Services � 36

3

5.2 Remote Login � 37

5.2.1 Remote Processing � 37

5.2.2 telnet � 38

5.2.3 rlogin � 38

5.3 Remote File Access � 39

5.3.1 ftp � 39

5.3.2 rcp � 41

5.4 Remote Shell � 42

5.4.1 rsh � 42

5.4.2 remsh � 43

5.4.3 rexec � 44

5.5 Mail � 44

5.5.1 Getting Started with mail � 44

5.5.2 Getting started with mailx � 45

5.5.3 Useful facilities � 46

5.5.4 The elm mail system � 46

5.5.5 The pine mail system � 47

5.5.6 How to get help with problems � 47

5.6 Printing � 47

5.6.1 Printing with lpr � 47

5.6.2 Some Useful Unix Print Functions � 49

5.6.3 Printing with lp � 49

5.6.4 Printing with LATEX � 50

5.7 Connecting to CERNVM � 50

5.7.1 Alphanumeric sessions - 3270 � 50

5.7.2 Access with graphics capabilities - x3270 � 50

5.7.3 Access via telnet - tagibm � 51

6 File Editing 52

6.1 vi � 52

6.1.1 Operating Modes � 52

4

6.1.2 Starting vi � 52

6.1.3 Exiting vi � 53

6.1.4 vi Command Mode � 53

6.1.5 ex Command Mode � 53

6.1.6 Basic vi Keystrokes � 54

6.1.7 The .exrc File � 56

6.1.8 More about vi � 56

6.2 GNU emacs � 56

6.2.1 Emacs Commands � 56

6.2.2 Starting emacs � 57

6.2.3 Exiting emacs � 57

6.2.4 Emacs Screen � 57

6.2.5 Emacs modes � 57

6.2.6 Basic emacs Keystrokes � 58

6.2.7 More information about emacs � 60

7 Software Development 61

7.1 Compiling and Linking Programs in Unix � 61

7.2 Compile, Link, Run � 61

7.3 Important Platform Dependant Differences � 62

7.4 Libraries � 62

7.4.1 The cernlib command � 63

7.5 Compiling and Linking Options � 63

7.5.1 man page for Fortran � 65

7.6 Creating and maintaining your own libraries � 65

8 Applications 66

8.1 ASIS � 66

8.2 CORE (CSF,SHIFT,PIAF) � 67

8.2.1 CSF � 68

8.2.2 SHIFT � 68

8.2.3 PIAF � 68

5

8.3 PaRC � 68

8.4 NQS, NQS++ � 68

9 Getting Help 69

9.1 man pages � 69

9.2 Vendor Online Help � 70

9.2.1 IBM � 70

9.2.2 HP � 70

9.2.3 DEC � 70

9.2.4 SUN � 70

9.3 Information Servers � 71

9.3.1 World Wide Web (WWW) � 71

9.3.2 phone � 72

9.3.3 emdir � 72

9.4 News � 73

9.4.1 NetNews � 73

9.4.2 Newsreaders � 74

Bibliography 76

A Commonly Used Unix Commands 77

A.1 Managing Directories � 77

A.2 Managing Files � 77

A.3 Managing Jobs � 78

A.4 On-line Help � 78

A.5 System Information � 78

A.6 Utility Programs � 78

A.7 Directory Identifiers � 79

A.8 Special Characters � 79

B Glossary 80

6

Chapter 1

Introduction

The objective of this guide is not to teach you basic UNIX, but to tell you about the aspects that are specific
to CERN. Nevertheless, Chapter 2 gives a brief overview of the main features of UNIX giving some examples
from the Ultrix Operating System while Chapter 3 goes into more detail about file handling. If you have little
or no experience with UNIX we recommend you get the book, "A Practical Guide to the UNIX System" by
Mark G. Sobell [1], available from the User Consultancy office in building 513, sold at 60 SFrs. Another book
which might be of interest is "UNIX for VMS Users" published by Digital Press and available from the UCO
for 55 SFr [17]. For users wishing to do some C programming, also available is "A Book on C" by Al Kelley
and Ira Pohl for 50 SFrs [2] and the "C++ Primer" by Stanley Lippman. For Fortran 90, the book "Fortran 90
Explained" by Metcalf and Reed [3] is also available there for 30 SFr. Anyone wishing to purchase any of these
should send a mail to UCOBOOKS@CERNVM stating which book they wish to purchase and on which budget
code; an electronic internal budget transfer (EDH) form will be generated and sent for approval. Alternatively,
you may make out a paper request, the so-called TID form, and take this to the UCO.

In the formats displayed in this manual, bold indicates characters to be typed as is, and bold italic indicates
arguments to be substituted. Examples are shown in typewriter font. Note that some examples are specific
to certain architectures and may not work across all platforms; consult the man pages of your local system for
full details.

We should also point out that work is currently in progress to define a default UNIX environment for new
users. This Guide tries to illustrate some of the implications of this work by giving examples of recommended
utilities. However, for more details on this work, the reader should consult the system manager of his or her
local system in order to determine which parts of that environment are implemented and hence which further
documentation it may be necessary to read.

1.1 Getting a UNIX Account

In order to obtain an account on any central system you must first contact your Group Administrator who will
register you on the necessary systems once you have read the Computer Rules and signed the registration form.
This form must then be sent or taken to the UCO in building 513 where your account(s) will be validated.
For UNIX accounts a User Identification Number (UID) will be given. This is a unique number that is given
to your account-name and is valid over all UNIX-type platforms at CERN. Even for those who have private
workstations only, it is advisable to see your Group Administrator and be granted a UID number, even without
being registered on the central services, so that this number is reserved for your use.

7

1.2 Login, Logout, Setting Passwords

1.2.1 Login

Once you have an account on a central machine you may login from any connected terminal. If you have to
buy a terminal for your office first refer to the "CN Terminal Co-ordination Service - A User Guide" available
at the UCO. This will help you choose the type of terminal you might wish to purchase. Note that at the present
time, the use of X terminals is recommended rather than simple dumb ASCII terminals.

The following are some ways that you can access a UNIX system:

� Log into the workstation console directly (in other words, it is on or under your own desk). Consult the
instructions for your workstation.

� Connect to it from another UNIX platform or from a VMS platform with Multinet or similar TCP/IP
support installed:

telnet host or
rlogin host

� Access the system from a terminal server that supports IP or LAT; at CERN it will almost certainly be a
DECserver. This means when you power up your terminal you have a prompt of some sort, for example
Local�. Enter SHOW SERVICES to tell if the system you want to connect to is known by that terminal
server. By simply typing

c dxcern

you will be connected and be able to login (to node dxcern in this example).

� Access a UNIX system from an X terminal: for this discussion, it is assumed that you have successfully
initialised and booted your X terminal. For help in this, see the CERN X Terminal Admnistrators Guide
available at the UCO Self Service or via WWW (see entry UNIX Workstation Support on the CERN
Computing Home Page). From an NCD X Terminal as normally installed at CERN, call up a Telnet
window (Option Terminals on the Option Menu) and enter the name of the desired UNIX system and
then select Connect.

The system will prompt for your login name and password.

Remember that UNIX is a case sensitive environment and so MYFILE, Myfile and myfile are three different
filenames and FRED, Fred and fred are three different login names. Note, if you do use upper case to log in,
UNIX may assume you have an upper case only terminal and you will have very limited capability. If you do
so, either logout and log back in again or enter the command "stty -lcase".

1.2.2 Logout

The logout procedure is both shell- as well as system- (eg: DXCERN, ULTRIX, SUN etc..) dependent.

You can logout of the C shell (see Chapter 2) within DXCERN with:

logout

8

To logout of the Bourne shell use:

exit

If you have any other processes (which may have been created by mistake) you will be informed that you
have stopped jobs. You can continue to enter logout repeatedly until each of these processes is terminated.

1.2.3 Setting Passwords

A CERN pre-requisite is a password that prevents others using your account and should thus be regularly
changed. For the Computer Centre services, users who forget their passwords should contact the UCO (tel
4952), otherwise contact your system administrator. In order to change your password on UNIX use the
command

passwd

This will prompt for your current password and then ask for two copies of your new password (the second just
for verification in order to avoid typing errors). If your node has NIS (previously called Yellow Pages, NIS
is a method of sharing access among a cluster of nodes to some central files, such as the password file), the
command is yppasswd. If AFS (see Section 4.4) is installed, the command is kpasswd.

Your password must be at least 6 characters longand should not be your login name or any simple permutation
of it. It is advisable to mix letters and digits in your password. See the article in the CERN Computer Newsletter
number 210 (available from the UCO or via WWW) on tips for choosing good passwords.

9

Chapter 2

UNIX Shells

Once you have successfully logged in, you are in an environment called a shell. This is a process which has
been started (spawned) at the end of the login process. A new shell is also started for each invocation of a
terminal window. A shell is the interface between the operating system and the user. It interprets the commands
you type and the keys you press in order to direct the operating system to take an appropriate action.

There are two families of shell: one is based on the Bourne Shell (sh) and includes also the Korn Shell
(ksh), the Bourne Again Shell (bash) and the superKorn Shell (zsh); the other family is based on the Berkeley/C
Shell (csh) and includes also tcsh which is an enhanced csh. This Guide will not try to distinguish the different
features of these shells; if you are interested in deciding which shell has the features you prefer, we recommend
reading the document "A Shell Comparison" by Arnaud Taddei, reference CN/DCI/162, available from the Self
Service shelves of the UCO in Building 513; this presents an excellent comparison of features between the
shells. Also you might wish to get a copy of "tcsh and zsh for Pedestrians", CN/DCI/163, also from the UCO
which presents an introduction to these two shells.

On most platforms, you will find that the Bourne, C and Korn shells are provided with the system while you
will have to install the others yourself.� The choice of which shell to use will depend on what type of work is
being carried out. It has been found that the Bourne flavour is often better-suited for shell script programming
whereas one of the more modern shells is better for interactive use. However, often the use of a particular shell
is a highly personal choice.

Not all UNIX systems offer the same shell for their default. You can determine which shell you are in with
the echo $SHELL command. Under the C shell this will give you the following lines:

echo $SHELL
/bin/csh

The env and printenv commands will also give you this information, along with many other environment
variables (see later in this Guide).

However, all these commands will show you only your login shell. If you have invoked another shell and
you use one of these commands, you will be informed about your login shell, not the new shell you invoked.
The C shell is designated as csh, the tcsh shell by tcsh, the Bourne shell sh, the Bourne Again shell bash and
the Korn shell by ksh.

It is possible to invoke a new shell (subshell) on top of your current shell by simply typing its name. If
�These so-called modern shells, usually freely-available in the public domain, are normally available on CERN’s Public Domain

server ASIS (see the section 8.1 on ASIS later in this Guide).

10

you wish to change your default shell you can do this with the command chsh (change shell); not supported in
Solaris 2 or SGI systems.

Once you enter a subshell, you can exit again by typing

exit

If you repeat the exit command once more, your terminal emulation is closed, and the terminal window
disappears. Instead of exit, you may need to enter �Ctrl-D�.

2.1 Entering Commands

When you see the command prompt you can enter a command by typing the command name and any options
and arguments, followed by a carriage return.� The default prompts are as follows - % for the C shell, $ for the
Korn shell and bash$ for the Bourne Again shell; however, all these may be changed and frequently are.

The basic format of UNIX commands is:

command [-option(s)] [argument(s)]

command is the UNIX command name of a utility or tool
option(s) modify how the command runs and are listed one after another

preceded by a dash
argument(s) specifies data on which the command is to operate, and are

separated by blanks (“white space”)

Remember, UNIX is case-sensitive and therefore most UNIX commands must be entered in lower case.

The components are separated by at least one blank space. If an argument contains a blank, enclose the
argument in double quote marks. Normally, options can be grouped (e.g., the -lw in the example below). Some
options can have arguments, and unfortunately there isn’t consistency on whether there should be a blank space
between the option and its argument.

Examples:

wc -lw file1 file2
wc -l -w file1 file2
f77 -o outputfile program.f

In the third example outputfile is the argument of the option -o.

You should be aware that UNIX commands are not noted for their consistency of format. Furthermore,
commands, formats, arguments, and options vary somewhat from one UNIX platform to another. In this Guide,
we attempt to be generic and describe options that are widely available; for exact details on any command,
including a full list of allowable options and arguments, see the man pages for that command (the man command
is described in Section 9.1). Various options are possible to print man pages on a printer but unfortunately there
is no universal formula. You may try one of the following but we cannot guarantee which will work best for
you.

�Note, usually a UNIX command is actually the name of a file, which the operating system will load and execute (see the section on
“path” below). Other commands are built-in in the sense that they are included in the UNIX shell program.

11

man pwd | col -b | lp -ddest
or groff -man file | lp -ddest

The first command pipes the output of the pwd man pages as an example to be printed on a printer dest.
The second command gives a better-formatted output but you require know where the input man pages for the
command in question are stored. This will be somewhere in the /usr/man directory hierarchy. You can guess
where by looking at the output of man command: the first line will contain the string command(i) and then
the file in question should be in /usr/man/mani/command.1. Note that on some systems, HP-UX for
example, the files may only be in /usr/man/mani.Z and need to be uncompressed before used in this way.

To correct typing errors you can use the erase key to erase character-by-character, or the kill key to kill an
entire line. Recalling and editing previously-executed commands (command history) depends on the shell you
are in and is discussed briefly in a later section.

More than one command can be entered on a line if the commands are separated by semicolons. Such
commands will be executed sequentially.

If you need to continue a command to a new line, you can either keep on typing or enter a backslash character
n followed by a carriage return and then continue on the next line.

You can use parentheses to group commands. Since a subshell is created for each group, this can be used
to prevent changing the current environment. It can also be used to redirect all output from a set of commands
considered as a group (see below).

Type ahead is permitted, even if the characters get interspersed with output.

UNIX commands are described online via the man command (see section 9.1 for more information).

2.2 Path

When you issue a command, the shell program parses the command line and either processes it directly or
searches for a file with that name in any of the directories specified in your search path, which is controlled by
the shell variable PATH. If the file is not found in any of the directories in your search path, the shell reports
that the command was not found. The file may well be on the disk somewhere, but it is “not in your path.”

We will attempt to provide an appropriate default path in a future CERN UNIX Environment, but you can
always modify the value of PATH in your ’startup’ file (normally .cshrc or .login for the C shell family or
.profile for the Bourne shell family, see section 3.2).

If you are using the C, tcsh or zsh shells, for example, and you add a command to one of the directories in
your search path, it may be necessary for you to either log out and log back in or to recreate the internal tables
used by the C shell with the rehash command.

2.3 Processes

When you begin a terminal session, the operating system starts a single parent process. Creating a new process
from an existing process is called forking. This new process is called a child process and has its own unique
process identifier. A child process can fork another process and become a parent. A process which is not
receiving input from the terminal, either running or stopped, is in the background.

12

When you issue a command to the shell, except for built-in commands such as cd, exec or set, the shell
forks a child process for the command to run in. The parent process remains dormant until the child process
completes or is stopped, then control returns to the parent.�

The ps command can be used to print the status of active processes.

ps [options]

This forking of a child process when you run a script can be confusing because the parent process is not
affected by the child process. For example, if you change the value of a shell variable in a script, this change
will not be seen by the parent shell. If you are using the C shell you can use the source command to cause the
current shell or process to execute a script. If you are using the Bourne shell, type

. filename

Note the space between the . and the filename.

2.4 Standard Input, Output and Redirection

The shell and many UNIX commands take their input from standard input (stdin), write output to standard
output (stdout), and write error output to standard error (stderr). By default, standard input is connected to
the terminal keyboard and standard output and error to the terminal screen.

The way of indicating an end-of-file on the default standard input, a terminal, is �ctrl-d�.

Redirection of I/O is accomplished by specifying the destination on the command line using a redirection
metacharacter followed by the desired destination. Using the C shell as an example, some of the forms are:

Character Action
� Redirect standard output
�& Redirect standard output and standard error
� Redirect standard input
j Redirect standard output to another command (pipe)
�� Append standard output
��& Append standard output and standard error

The first three redirect to files. These characters are easy to remember if you think of them as the head of
an arrow. The fourth is called a pipe and is described in Section 2.5.

The form of a command with input and output redirection is:

command [options] [arguments] � input-file � output file

Unless you are using the C shell and you have noclobber set (see the man pages for csh), using � and �&
to redirect output will overwrite any existing file of that name. You can use �� and��& to append to existing
files.

Examples:
�Unless the child process runs in the background.

13

who � names # Direct standard output to a file named names
(pwd; ls -l) � out # Direct output of both commands
pwd; ls -l � out # Direct output of ls command only

Input redirection can be useful if you have written a FORTRAN program which normally expects input
from the terminal and you want to provide it from a file. In the following example myprog, which was written
to read standard input and write standard output, is redirected to read the file myin and the write file myout.

myprog �myin �myout

You can suppress redirected output by sending it to the null device, /dev/null:

who �& /dev/null

To redirect standard error and output to different files, you can use grouping:

(cat myfile � myout) �& myerror

2.5 Pipes

UNIX uses the concept of a pipe to connect the standard output of one program directly into the standard input
of another program. This is specified by separating the two commands with the pipe operator, the vertical bar
(j). The general format is:

command1 j command2 j ...

For example, to sort the output of the who command:

who j sort

Of course, each command can have options and arguments.

The tee command can be used to send output to a file as well as to another command.

who j tee whoout j sort

This is the same as the previous example except that a file named whoout is created containing the original who
output. The sorted output goes to standard output, the terminal screen.

It is possible to set up multiple pipes. Commands that appear in pipe statements may include all the usual
options and file designations.

ls -l | lp

This command pipes the output of the ls command to the printer via the lp command.

14

2.6 Shell Scripts

A shell script is the UNIX equivalent of the VM/CMS EXEC file or the VMS DCL procedure although you
should be aware that individual shell commands have limits in the size of their argument strings.

The UNIX shell can be used as an interpretive programming language. Within the shell you can, besides
executing shell commands, create and use variables; process (read) arguments; test, branch, and loop; do I/O;
etc.

A shell script is a file containing a sequence of commands which can be executed by the shell. The easiest
way to execute a script is by typing in the filename on the command line. The shell then interprets and executes
the commands in the file one by one.

Although you can write complex programs using the shell language, you can also use simple shell scripts
for running complex commands or a series of commands that you use frequently.

The most commonly-used shells in our environment are the C shell and the Bourne shell, or derivatives of
these. Many people believe that although the C shell is better for interactive use, the Bourne shell is better for
scripts, so you may see many scripts written in the Bourne shell.

The default shell for scripts is the Bourne shell and C shell scripts must begin with a comment line (a line
which begins with the character #).

Note that in order to execute a script, the file containing it must have execute permission (see Sections 4.2.11
and following) and the shell may need to rebuild its table of commands.

chmod a+x mycommand
./mycommand

It is important to remember that, like all UNIX commands that are not built-in to the shell, a script file executes
in a child shell forked by the parent shell. The shell running the script file retains environment variables of the
parent shell as well as those variables defined in the shell startup file for that shell (e.g. .cshrc� for the C shell)
which is executed before the script. However, at the end of the script, control returns to the parent script and
any definitions made by the child process are not passed back to the parent process. If you want to execute
commands that affect the current shell, you must use the source command (C shell):

source script

(For the Bourne shell, use the . command instead.)

Refer to a good UNIX reference manual to learn about shell programming; see the Bibliography at the end
of this Guide for references.

2.7 Filters

A filter is a command or program which gets its input from standard input, sends its output to standard output
and may be used anywhere in a pipeline. The combinationn of UNIX filters (grep, sort, awk, cut, paste) and
the use of pipes is very powerful.

�See Section 3.2.

15

The grep filter searches files for a pattern and prints only those lines matching that pattern.

sort can sort or merge files.

sort [options] [field-specifier] [filename]

Sort is straightforward to use - read man sort to see what the options are and how to specify the sort fields. If a
field is not specified, the sort key is the entire line. The sorted output goes to standard output.

awk is a powerful pattern scanning and processing language. Although you will need to spend a little time
learning how to use awk, it is very well suited to data-manipulation tasks. It handles internally what you would
have to handle laboriously in a language like C or FORTRAN. For example, you can declare a field separator
(spaces, colons, commas, tabs) and it will properly align and interpret the contents of a field according to the
way you use it. Thus you can do in a few lines what would take many lines of FORTRAN.

A widely-available book on awk is The awk Programming Language [16]. There are several versions of
awk, an old version and a new version which is not completely backwards compatible. The book mentioned
above describes the new version, and you should use the new version unless you get a program that is explicitly
for the old version. However, vendors are not consistent in what they call the two versions of awk: on Silicon
Graphics and Sun, you must use nawk to get the new awk and awk is the old awk, but on RS/6000, awk is the
new awk.

2.8 Regular Expressions

A regular expression is a string composed of letters, numbers and special symbols that defines one or more
strings. They are used to specify text patterns for searching. A regular expression is said to match any string it
defines. The major capabilities include:

1. match single characters or strings of characters

2. match any arbitrary character

3. match classes of characters

4. match specified patterns only at the start or end of a line

5. match alternative patterns

Regular expressions are used by the UNIX commands vi, ed, grep, awk, and sed. grep in fact stands for
global regular expression printer.

For a complete discussion of regular expressions refer to a UNIX reference manual but, to get you started,
we include a table of special characters that can be used in expressions. Note that regular expression special
characters are similar to but not identical to those used in filename expansion.

. Any single character
$ End of line
" Delimits operator characters to prevent interpretation
n Turns off special meaning of a single character following

16

� Represents 0 or more occurrences of the preceding character
� � Specifies character classes
ˆ Match only if string is at the beginning of a line
� Matches any string, including the null string
? Matches any one character
����� Matches any one of the characters enclosed in square brackets
������ Matches any character other than one of the characters that

follow the exclamation mark within square brackets.

The string .* represents 0 or more characters, since . is any character and * is 0 or more occurrences.

17

Chapter 3

Working Environment

3.1 Environment Variables

There are many parameters in the shell that define parts of your working environment and which can be set
interactively at the command prompt, in shell scripts, or in user-specific profile files (see subsection "The Profile
Files" below). Each shell has one or more startup files. Work is currently in progress developing a set of
standard startup files (for further information contact Alan Silverman or Tony Cass).

� Shell parameters that are local to your current shell and not passed to any subshell or subprocess are
called shell variables.

� Shell parameters that are global are called environment variables. They are valid in the current shell,
where they are set, and in all subshells. They are not valid however in ’higher’ shells, from where the
current shell is invoked as subshell. The way in which a parameter is declared to be global depends on
which family of shell you are using (see below).

There is one restriction if you define environment variables in a shell script. If the environment variables
are to be valid also in the current shell you must invoke the script in a special way (without spawning a new
process:

. myscript for the Bourne Shell
source myscript for the C shell

Otherwise the environment variables are valid only within the script in which they are declared and all subpro-
cesses invoked from there.

A set of environment variables is already defined by the operating system and can be changed by each user
for his personal working environment. In addition, he can of course also define new environment variables.
The profile files which serve as an interface for initialisation of these variables at login are described later. By
convention, environment variable names are upper case.

A list of the currently-valid environment variables may be obtained with the command

env
also printenv in the C shell

18

In the following examples, for the reasons of simplicity and shortness, the command prompt is assumed to be $.

3.1.1 Setting Environment Variables

Your default printer, for example, is defined by the environment variable PRINTER (for information on the
available printers and their names and characteristics, see the WWW entry for printing; from the CERN
Computing Home Page, select in turn – UNIX Workstation Support –> Printsp –> List of Registered Printers;
WWW is described in Section 9.3.1). To change the default value of PRINTER, enter the command

setenv PRINTER printer-name C shell family
PRINTER=printername; export PRINTER Bourne shell family

If the value you wish to assign to a variable contains blanks, enclose the string in quotes (“).

3.1.2 Getting Values of Environment Variables

The contents of environment variables can be made visible with the echo command. To get the value, the name
of the environment variable must be preceeded by a $-sign:

echo $PRINTER
sw-31

The value for PRINTER is shown. If you forget the $-sign, the character string is printed and not its value:

echo PRINTER
PRINTER

Again you should keep in mind that Unix is case sensitive. This means that environment variables such as
printer, Printer and PRINTER are all different.

A More Advanced Example

For example, if you want to have your current host name and current working directory named MyEnv,
using the Bourne Shell you can proceed as follows:

NODE=‘hostname‘; export NODE
MyEnv=$NODE:$PWD; export MyEnv
echo ’My Environment: $MyEnv’
My environment: rzri6f:/u/goeri

With the first statement, a new global variable NODE is defined. NODE gets the output of the command
hostname as value, which is achieved by enclosing the command name in single backquotes. Then the values of
NODE and of the environment variable PWD, which is already provided by the system and contains always the
current working directory, are put together in MyEnv. Finally, to control the success of this action, the contents
of MyEnv is printed to your terminal window, prefixed by some text.

19

3.1.3 A Summary of some useful Environment variables

In the following, some useful environment variables provided by the system are listed in alphabetical order:

EDITOR: The default editor as used by a number of utilities such as mail;
the default is vi

ENV: For the Korn shell, the name of a shell script that is executed each time
a new shell is invoked. This shell script is used for example, to define common alias
names, which should be available through the whole environment.
A common default in the Korn shell is $HOME/.kshrc (where $HOME specifies your
home directory; this can also be represented by ˜ (tilde)). This $ENV file is for
your private shell customisation.

HOME: The default directory after login. You switch to the home directory when you
specify the command cd (change directory) without options.

PRINTER: The default printer (example default: 513-pub).
PATH: Defines the search path for the shell when looking for commands in the

system file structure, which is different in different Unix flavors. For example, in
HP-UX using the Bourne Shell, the PATH variable has by default the value
/bin:/usr/bin:/usr/contrib/bin:/usr/local/bin:/usr/bin/X11:/etc:$HOME/bin:.
In the Bourne Shell the directories in the path are separated by colons (:).
The search order is from left to right. The environment variable HOME contains the
value of the home directory, the default directory after login (see above). The last
directory in our example of the PATH variable, indicated by ’.’, specifies
the current working directory.
In the C Shell, the directories in the path are separated by spaces.
A typical value on a Sun would be
set path = (/usr/local/bin /usr/ucb /usr/bin /usr/bin/x11 /bin)

PS1: In the Bourne shell the default command prompt in your shell.
In the C shell, this environment variable is called prompt

TERM: The terminal type for which output should be prepared. Depending on the
Unix flavour, aixterm, hpterm, or dxterm are assumed as default for AIX, HPUX, or
ULTRIX systems, respectively. If necessary, you should overwrite it with vt100, vt200,
3270, and so on, depending on your terminal type.

VISUAL: Should be set to the value to enable command line editing
(for example it could be set to emacs).

3.1.4 Changing Your Command Prompt

As noted previously, the default command prompt in the Bourne shell family is the $ (dollar sign) and in the C
shell family is the % (percent sign). You can change these by setting new values to PS1 (Bourne) or prompt
(C shell). For example to change from the $ symbol as the command line prompt to the machine name as the
new prompt in a Bourne shell –

$ PS1 = "Bravo:"
Bravo: echo test
test
Bravo:

20

Other constructs commonly found in command prompts are all or part of the current working directory and
the command sequence number. Using the C shell, examples of these would look like –

set prompt="$cwd%"
set prompt="n!"

3.2 The Profile Files

Different shells have different profile files, also referred to sometimes as startup files. We show here those for
the Korn shell. There are usually four files for the customisation of the environment:

/etc/profile
$HOME/.profile
/etc/.kshrc
$HOME/.kshrc

Not all these files are used on all systems, some depend on the setting of the ENV variable. See local
documentation for the system being used.

If using HP VUE, there is an additional file $HOME/.vueprofile available. The files in the user’s home
directory are available for private customisation. The two other files are available for common customisation by
the system manager to be used by all users on particular systems and can only be modified by the corresponding
system manager. The file /etc/.kshrc will only be utilised if the ENV environment variable is set appropriately
(see description above).

The organisation of profile files in normal Korn shell environments and in the HP VUE environment is a
little bit different. Therefore, at the HP workstations, the file $HOME/. (profile) can be split into two files:

$HOME/.profile
$HOME/.profile-common

The file $HOME/.profile-common contains the customization settings that are the same for both environments
and is called from either the $HOME/.profile or $HOME/.vueprofile, respectively.

The C Shell executes three (hidden) files from the $HOME directory at various times in your session. They
are

.login, .cshrc, and .logout.

When you log on, the .login file located in your home directory is executed. You can specify the type of terminal
you are using and otherwise customize your environment. It should include commands that you want to execute
once, at the beginning of each session, specifying such things as terminal settings and environment variables.
You can change the default values, or create your own environment variables using the set command to set
C-shell variables.

Also, the C Shell executes the .cshrc file that is located in your home directory each time you invoke a new
C Shell, as when you log on or execute a C Shell script or otherwise fork a new process. At login, it is executed
before .login. It can be used to set variables and parameters that are local to a shell.

21

The C Shell executes the .logout file in your home directory when you log off the system. The following
(.logout) file simply clears the screen:

clear

If you modify your .chsrc or .login commands and you want them to take effect in the current session, you must
execute them with the source command:

source .cshrc
source .login

The following table summarises the profile files associated with each shell at login, logout and when a new
shell is invoked.

Shell Conditions Executed scripts
csh (1) always $HOME/.cshrc

login $HOME/.login
logout $HOME/.logout

tcsh always /etc/csh.cshrc
login /etc/csh.login or $HOME/.login
interactive $HOME/.tcshrc or $HOME/.cshrc
logout /etc/logout or $HOME/.logout

sh (2) login /etc/profile or $HOME/.profile
ksh (3) always ENV (4) variable if set

login /etc/profile or $HOME/.profile
interactive $HOME/.kshrc

bash always not possible
login /etc/profile

$HOME/.bash profile or $HOME/.profile
interactive $HOME/.bashrc
non-interactive ENV variable if set
logout $HOME/.bash logout

zsh always /etc/zshenv
$HOME/.zshenv

login /etc/zprofile
$HOME/.zprofile
$HOME/.zlogin

interactive /etc/zshrc
$HOME/.zshrc

logout /etc/zlogout or $HOME/.zlogout

(1) System-wide startup scripts are not available in most cases:
csh on Sun and DEC platforms starts no file under /etc (according to the manpages)
csh on HP platforms starts the file /etc/csh.login at login time.
csh on SGI platforms starts the file /etc/cshrc then /etc/.login then /etc/csh.cshrc then $HOME/.cshrc at interac-
tive time and all those files plus $HOME/.login at login time.
csh on IBM platforms starts the files /etc/csh.cshrc and /etc/csh.login at login time and /etc/csh.cshrc at interac-
tive time.

22

(2) Again there are some differences between platforms. Some Bourne shells need to have a ’-’ character
to start the profile files.

(3) ksh is not available on SunOS IV. Thus a link to zsh is provided.

(4) $ENV is the file pointed to by the value of the environment variable $ENV if it is set. It is usually set
to .kshrc in the HOME directory.

3.3 Terminal Characteristics

You can specify your terminal type to Unix if the default is not suitable. To do so in the C shell, enter the
command:

set term=(termtype)

where termtype is the name of a terminal type supported on the system. VT100 and VT220 are acceptable
terminal types for example. If you always use the same kind of terminal, you may want to put this command in
your .login.

Terminal control functions settings can be displayed with the stty command, for example:

stty -a

The format on each machine is different but should indicate approximately the same information.

You can display a description of all of the options reported by stty with the command:

man stty

3.3.1 Keyboards

There are a large number of terminal types from which Unix can be used. With the terminal type you describe
the terminal hardware or the emulation program you use when communicating with Unix. The most important
terminal types used are

vt100 DEC
vt220 DEC
vt300 DEC
3270 IBM
xterm standard x-window terminal
aixterm AIX terminal emulation
hpterm HP-UX terminal emulation
dxterm ULTRIX or DEC OSF/1 terminal emulation

If you work in a Unix environment with the wrong terminal type set, you should keep in mind that not all
keys on your keyboard will be available in the expected way. If this is the case you should reset your terminal
type. For example if you want to correct your terminal type to dxterm, you have to enter

23

TERM=dxterm; export TERM - Bourne Shell
setenv TERM=dxterm - C Shell

On dumb terminals, there may be applications that cannot work correctly because they require hardware features
not available. However, many Unix commands can be used in such an environment: e.g. to compile and run
user programs, or to look into the file system.

If you have changed the size of your window or changed your terminal type, this change may not be
recognised by some applications unless you execute the resize command, usually via the command eval
‘resize‘.

Resize: The resize utility prints a shell command for setting the TERM and TERMCAP
environment variables to indicate the current size of the x-term window from which
the command is run.
resize [-u] [-s[row col]]

Reset: The reset command is used to reset the terminal mode. It is most useful
after a program ’dies’ leaving a terminal in an unknown state. You may need to type
”�LF�reset�LF�” to get the terminal to work as �CR� often does not work.

There are also a number of ’special’ keys that can be used, but their use can be restricted by shell and/or
keyboard:

�ctrl-c�: Interrupts a process.
�ctrl-d�: Logout - but in ’C’ shell need to type logout. Can be disabled by

setting the ignoreeof variable.
�ctrl-z�: In the C shell, process will be stopped and can then be run in ’background’.

3.4 Alias

In all shells apart from the Bourne shell you can use the alias command to create your own names or abbreviations
for commands by performing string substitutionon the command line according to your specifications. However
the format of the alias command is shell dependant.

alias [new [old]] C Shell
alias -x new=old Korn Shell
alias new=old zsh Shell

When you enter new the shell substitutes old. In the Korn Shell the -x option causes the alias to be exported to
child processes.

The following example causes ls -l to be executed when the command ll is entered:

alias ll ls -l - C Shell
alias -x ll=’ls -l’ - Korn Shell

The following example creates the command dir to list directory files only:

alias dir ’ls -l j grep ˆd’ - C Shell

24

alias dir=’ls -l | grepˆd’ - Korn Shell

grep in this case searches for a d in the first column of each line of the output of the ls -l command.

3.5 Recalling Commands: history

Apart from the Bourne Shell, each shell provides a history mechanism which maintains a list of commands that
have been entered and allows them to be reexecuted. The history (C Shell) or the HISTSIZE (Korn Shell)
variable, usually set at login, determines the number of commands that are saved in the list.

The (history) command is used to print the list of saved commands:

history

3.5.1 C Shell

Recalling a command to execute exactly as it did last time is fairly easy, but recalling a command to modify it
is difficult and only a few of the many ways to recall pieces of commands or modify pieces of commands are
mentioned here.

You can specify commands or parts of commands to reexecute by number, relative number, or by the text it
contains:

command what to rexecute
!! Reexecute the previous command
!n Reexecute command n
!text Reexecute the most recent command beginning with text
!?text? Reexecute the most recent command containing text

For example, to reexecute the 4th command from the history list and to reexecute the last command starting
with (ls):

!4
!ls

The dollar sign ($) can be used to recall the last parameter of a command. For example, (!$) causes
substitution of the last parameter of the last command. For example, to check if (myfile.f) is the correct file and
then compile it:

more myfile.f
f77 !$

The following table shows several ways to substitute text in recalled commands. The first form allows you
to substitute text in the previous command. In the second form (xx) stands for any of the ways described above
to recall a command.

25

form action
ˆ old ˆ new Substitute text in the previous command
!xx:s/old/new Substitute text in a recalled command
!xx:p:s/old/new Substitute text in a recalled command, display but do not execute

3.5.2 Korn Shell Command Line Editing

Command line editing can be done with emacs syntax. Available functions are as follows (note that you must
issue the command set -o emacs to enable the editing commands):

�Ctrl-p� get previous command from history file
�Ctrl-n� get next command from history file(requires at least one)
�Ctrl-b� move cursor backwards in command line
�Ctrl-f� move cursor forwards in command line
�Ctrl-d� delete under cursor
�Ctrl-a� jump to begin of command line
�Ctrl-e� jump to end of command line

A mask for the next command to be executed can be obtained with �Ctrl-p� or �Ctrl-n�. The cursor is
moved within the command line with �Ctrl-b� or �Ctrl-f�. At any position, characters can be inserted, or be
deleted with the �delete� key, �Ctrl-d�. The command history is accessed from the file $HOME/.sh history.

You can program the keyboard arrow keys for command line editing as follows:

Key Function Alias command Action
� �Ctrl-p� alias -x A=n�Ctrl-p� previous command
� �Ctrl-n� alias -x B=n�Ctrl-n� next command
� �Ctrl-f� alias -x C=n�Ctrl-f� move cursor right
� �Ctrl-b� alias -x D=n�Ctrl-b� move cursor left

3.5.3 Command Line Editing in Other Shells

Shells such as ksh, tcsh and zsh use the arrow keys for command line editing, see the man pages for these shells
for more details. In addition, tcsh supports csh command recall and zsh supports both csh and ksh command
recall options.

26

Chapter 4

File System

4.1 File Structure

Unix has a structured file system that contains three kinds of files:

directories which store the names of other files including other directories;
ordinary files which store text, source programs, and object code; and
special files which correspond to peripheral devices and a UNIX construction called

named pipes which we will not treat in this Guide.
symbolic links strictly this is not a file but rather an additional directory

entry for an existing file.

4.1.1 Naming Directories and Files

The root directory is identified by a single character: slash (/). To name one of the major directories directly
under root, type slash (/) to represent root, followed by the directory’s own name, as in /usr. The slash in front
of usr tells you that usr is a subdirectory of root.

/u or /user user directory
/bin binary directory
/dev device directory
/etc miscellaneous directory (usually system files)
/tmp temporary directory

The home directory on the central Unix Service (DXCERN) is: /u/gg/userid/ where gg refers to the user’s
computing group code and userid is the login name and for AFS it is /afs/cern.ch/user/X/userid where X is the
first letter of the login-name.

4.1.2 Rules for Naming and Accessing Files

The rules for naming and accessing files and directories are closely related to the structure of the Unix file
system:

27

� The root directory is identified by a slash (/).

� A simple filename can be any combination of 1 - 14 characters other than slashes (/), asterisks (*),
question marks (?), quotation marks (“) or (’), square brackets ([) or (]), dollar sign ($) or control
characters.

� A path name is a sequence of directory names, possibly followed by a simple filename, with each
name separated by a slash (/).

To avoid misinterpretation, the safest characters to use for simple filenames are letters of the alphabet,
numbers, periods (.), hyphens (-), and underline (). Note: in Unix, upper and lower case are not the same.
Examples could include –

/usr/local/bin
long-description-name
mydoc.ps
myfile.f
/afs/cern.ch/f/fred/public/shared.info

The directory permanently assigned to you is called your home directory; this is the directory in which you
are placed when you log on. Any directory to which you move after logging on (including your home directory)
will be called your current directory, or working directory or cwd, for as long as you remain in that directory.
The directory which is one level above your current directory in the file system is called your parent directory.
Unix provides shorthand symbols to indicate your current directory (.) and your parent directory (..). If a path
name used to access a file begins with a slash (/), then the search for the file begins at the root directory. Such
a path name is called an absolute path name or full path name. If a path name begins with a simple filename,
then the search for the file begins at your current directory. Such a path name is called a relative path name.

4.2 List of Simple File System Commands

4.2.1 Displaying the contents of a directory: ls

To sort and display the names of all the directories and files that reside in your current directory, use the ls
command:

ls
file1
file2
file.3
Mail

Note that this will not list the hidden files such as .login. For that issue the command

ls -a

28

4.2.2 Changing the Working Directory: cd

To change your working directory, that is to move to another directory, use the cd command:

cd /u/otto/Mail

Use the cd command without any arguments to return to the $HOME directory.

4.2.3 Determining Your Working Directory: pwd

To find out the name of your working directory at any moment, use the pwd command:

pwd
/u/robin

4.2.4 Creating a New Directory: mkdir

To create a new subdirectory within your current working directory, use the mkdir command:

mkdir personal

This command will create a new subdirectory called personal.

4.2.5 Removing an Existing Directory: rmdir

To remove an existing directory from your working directory, move to the target directory, delete all its files,
move back to the parent directory, and then use the rmdir command:

cd /u/useless
pwd
/u/useless
rm -i *
cd ..
rmdir useless

The -i switch forces rm to prompt for confirmation before removing a file. If you try to remove a directory that
is not empty, you will see a warning displayed. You may use the following shorter method instead of the above:

rm /u/useless/*
rmdir /u/useless

or:

rm -r /u/useless

29

The -r switch removes all files recursively from the directory tree.

Note that these do not delete the hidden files such as .login. For that issue the command

rm /u/useless/.*

4.2.6 Renaming a Directory: mv

To change the name of a directory, use the mv command:

mv old.name new.name

4.2.7 Displaying the Contents of a File: cat,more, etc

To display the contents of a file, use the cat command. It simply displays the contents of a file or several files
on the screen (standard output):

cat file.3 file.1

However, if a file has more lines than the screen, it will scroll off the screen faster than you can read it. In
this case one of use the commands more, less, page or pg.

Combining Files

Another function of the cat command is to combine files, or concatenate files with the result stored in another
file, e.g.:

cat file.1 file.2 � file.3

Avoid storing the result in one of the original files, as this will cause the original file to be overwritten.

4.2.8 Renaming a File: mv

You can use the mv command to rename a file or to move it from one directory to another. To change the name
of a file, enter a pair of commands like this:

cat new.file
cat: cannot open new.file
mv old.file new.file
or simply mv -i old.file new.file

The -i switch will warn you if the command would overwrite an existing file.

The mv command will change the file’s name whether the new filename exists or not. The cat command
makes sure that a file will not be replaced or lost.

30

4.2.9 Copying a File: cp

To make a duplicate copy of a file, use the cp command:

cp file.one FILE.ONE

This command will make a copy of file.one. As a reminder lower and capital letters are different filenames.

4.2.10 Deleting a File: rm

To delete a file, use the rm command:

rm file.1

This form of the command will delete the file file.1 immediately. To confirm before proceeding to delete
the file, add the -i option:

rm -i file.1

4.2.11 File and Directory Permissions

This section deals with UNIX file protections only. Files under the AFS file system (see later in this Chapter)
use a different protection scheme which is described fully in the CERN AFS User Guide (see later for reference).

UNIX allows you to access other files and directories in the system, but only if you have permission from
the owner of those directories and files.

4.2.12 Determining Permission: ls -l

To determine the permission associated with a given file or directory, use the ls -l command to display the
contents of the directory:

ls -l
total 501
-rw-r----- 1 user group 108 Oct 15 19:10 file.1
-rwxr-x--- 1 user group 6452 Oct 15 17:15 program.1
drwxr-xrw- 1 user group 512 Oct 15 19:13 letters

The first character indicates the type of the file

- ordinary files
d directory
l symbolic links

31

The remaining nine characters represent three sets of three characters: one set for the individual user, one
for the user’s working group, and one for all other users. Spread out the characters of the display above to
explain the groupings:

Type User Group Others
- rwx r-x — program.1
d rwx r-x rw- letters

The permissions given are for reading, writing, and executing. They have different meanings for ordinary files
and directories. For an ordinary file, permissions are defined as follows:

read permission means you may look at the contents of the file
write permission means you may change the contents of the file or delete it
execute permission means you may execute the file as if it were a

Unix command.

For a directory, permissions are defined as follows:

read permission means you may see the names of the files in the directory
write permission means you may add files to and remove files from the

directory
execute permission means you may change to the directory,

search the directory, and copy files from it.

The characters used to represent these permissions are:

r read permission
w write permission
x execute permission
- permission denied

4.2.13 Changing Permission: chmod

You can make changes to permissions by entering a chmod command. It allows the owner of the file to add to
(+) or remove from (-) existing permissions. It also allows the owner to clear existing permission and assign all
permission from scratch; this is known as assigning permissions absolutely (=). The chmod command affects
any of the three types of access for any of the three categories of Unix users, using one-letter symbols in the
following order (left to right):

u owner (user)
g File’s group
o all others
a all (default)

+ add permission

32

- remove permission
= absolute permission

r to read
w to write
x to execute

Caution: It is possible for you to lock yourself out of one of your own files with chmod. Be careful when
you type it.

Example:

ls -l psab
-rwxr-xr-x 1 otto rz 487 Jul 30 10:21 psab
chmod o-x psab
ls -l psab
-rwxr-xr-- 1 otto rz 487 Jul 30 10:21 psab

In the above example, the first ls -l shows the default permissions for a script, which is executable and
readable by everyone, but writable only by the owner. After the chmod o-x command, the execution permission
for others is removed. The file permissions can also be expressed in octal numeric form; see the man pages of
chmod for details.

4.3 File Backup

There are now over 1000 Unix Workstations on the CERN site and the number grows almost daily. Some
of these are grouped into well-organised clusters where system administration tasks are well understood and
handled by assigned individuals. Others are less well catered for and many end-users now find themselves
having to become part-time system administrators and having to care about such things as user account creation,
network configuration and file backups.

The UNIX Workstation Support Section in CN’s DCI Group provides advice and help in several of these
areas, including specially-writtenGuides for most of the supportedworkstations at CERN. (See the latest edition
of your favourite CERN computing newsletter for full details of these services or go to the UCO for a copy of
the Guide most interesting for you.)

This section describes a suggested file backup policy covering systems at CERN. We emphasise (a) the
following is only a suggestion – if you already have file backup under control or prefer a different scheme, we
will in no way try to change your methods; (b) we have not surveyed the whole market, it is too broad; these
tools may or may not be the best, we have assured ourselves that they work correctly and do the job required.

The bases of our policy are: to encourage clustering where possible, to select tools with some reasonable
user interface, to select tools which use network resources as efficiently as possible, and to select tools which
either support multiple platforms already or are expected to do so in a future release.

Local Backup - “Do it Yourself”

If you wish to perform local backups, especially if you can cluster some systems together, then we recommend
one of the following tools:

33

� Standard Unix tools such as dump/restore, tar, cpio and so on; however, these do not have a friendly
interface and few advanced features (little or no support for rebooting from tape, no compression, etc)
although they are free. Unless you fully understand them and/or have a small number of systems to
administer, we urge you to at least consider one of the following commercial products, depending on the
architecture of your system(s).

� DEC ULTRIX and OSF/1 systems – obtain licences for DECnsr. Like several other tools, DECnsr
supports other platforms as clients.

� HP systems (Apollo/Domainand Series 700) - obtain license for OMNIBACK; this tool can write to tapes
or cartridges on Apollo or Series 700 and has Apollo, Series 700 and SUN clients. Series 700 licenses
are immediately available via Alan Silverman, CN Division (see cern.hp news).

� Other systems and mixed-architectures groups – there are many tools, some propriety tool such as SUN’s
CoPilot, and some general such as Legato Networker which is available for most platforms. Contact Unix
Workstation Support for more information.

Central Backup – “Do it for Me”

The tool we have chosen to use is IBM’s ADSM, a development from WDSF (Workstation Data Save Facility).
Here the data is transferred to a VM system, CERNVM in our case, and the files are written to robot cartridges
with a file index remaining on real disc. At the workstation end, the user installs a small client package and a
run script whose contents include some filtering (see below). (There is a small licensing charge per client but
for the moment at least that will be covered by CN Division.) Clients are available for all major workstations
present on site. ADSM is still relatively new to CERN and production systems still rely on WDSF but tests are
continuing with ADSM. Also, a version of ADSM running as a master on an RS/6000 is under test so that it
should soon become independent of CERNVM while still storing the saved files on robot cartridges.

ADSM works in several modes. Because of the potential for network traffic from up to 1000 workstations
today plus the demand for disc catalogue space on CERNVM, we offer a service to backup USER files only
(files in the $HOME directory tree) and we normally exclude files which are relatively simple to recreate (.o
files, .lis files, .dvi files, etc). There are other restrictions which will apply (no core dump files, no very large
data files) and all of these will be reviewed from time to time in the light of experience in real use. Further, this
service is effectively an incremental backup from the previous backup since the IBM keeps a current ’map’ of
the disc in its catalogue space. At the moment of the first backup of a station, we will consider performing a
full archive backup and users performing major system upgrades may request this at such times.

ADSM backups will be performed within time limits mutually agreed by the users of the station(s) and CN;
it will usually be overnight and/or at weekends.

Disc/file/directory recovery is simple and initiated by the user himself although retrieving entire discs
involves many (automatic) mounts of robot cartridges and hence takes a finite amount of real time.

Users interested in this scheme should contact Lio Frost-Ainley for licensing details and to obtain the client
installation procedure.

Requests for further information about any aspect of this policy should be addressed to Alan Silverman at
Alan.Silverman@CERN.CH.

34

4.4 AFS Overview

AFS is an acronym for the Andrew File System, developed at Carnegie-Mellon University, Pittsburgh, under
a sponsorship from IBM. Today AFS is marketed by Transarc Corporation and has been chosen by the Open
Software Foundation as the basis of its Distributed File System DFS.

AFS is a network-distributed file system comparable to Sun’s NFS but with some more advanced features
than all but the most recent version of NFS. AFS distinguishes between client machines and server machines.
An AFS client enables users to access data residing on AFS servers transparently as if they were stored on a
local disk. AFS servers in turn provide disk storage for files and directories.

CERN has purchased licenses for AFS for all the common UNIX platforms on site and currently offers a
limited public service, including some central AFS file servers.

For more information on AFS please refer to: /afs/cern.ch/project/afs/afsug.ps

which should be accessed via World Wide Web in the CERN Computing UNIX Workstation Support en-
try under ’Guides’.

35

Chapter 5

Communications

5.1 Internet Overview

The Internet is a global network of networks that provides access to hundreds of thousands of computers around
the world. As the reach of the network has grown, so has the number of services accessible. The main tools
that allow the user to navigate through the Internet, are:

telnet to access remote hosts
ftp to retrieve data files
mail to send mail
WWW to browse World Wide Web (This facility is further described in 9.3.1)
news to scan the numerous Usenet news groups (This facility is further

described in 9.4)

5.1.1 Internet addresses

There are two forms that express an Internet address, an alphabetic name and a series of numbers. The alphabetic
version is called the “domain name” and the numeric the “numeric address”. Sometimes a local network will
not be up-to-date with additions to the domain names and an address may not work. If this happens, try the
numeric address before giving up. Sometimes the numeric address will be changed without notice and in that
case the alphabetic domain name should be tried. Normally if your system is configured correctly it should
refer to the central CERN name servers and you should always be able to use the alphabetic name.

5.1.2 Internet Services

With a little practice, the above-mentioned functions (ftp,telnet) will be simple and open the electronic door to
the global reach of the Internet. An introduction to the Internet services can be found in [8]. A comprehensive
listing of services is given in that document. Its table of contents is listed below:

1. Library Catalogs & Campus Information Systems

2. Databases

3. Electronic Discussion Groups/Forums

36

4. Directories

5. Information Resources

6. FTP Archives

7. Fee-Based Information Services

8. Software/Freeware

9. Bulletin Board Services

10. Miscellaneous

5.2 Remote Login

5.2.1 Remote Processing

There are several ways to perform some work on a remote host without ending the local session. With the
commands

telnet and rlogin

you can establish a session on a remote host from within your local session. Whereas commands such as

rsh, remsh and rexec

do not perform a login on a remote host but execute commands there for you.

Associated with the remote commands, eg: rlogin, rsh, remsh, rexec and rcp, is the special file known as a
$HOME/.rhosts file. In this file you can place the names of users and their machines which may contact your
machine and use your account without needing to give a password. The format of the $HOME/.rhosts file is
as follows:

host1 userid
host2 userid
.
.

For security, make sure that you set the protections on this file so that only you can read it. Otherwise, an
outside user can hack this file to gain access to your account. The protection should be rw for owner and no
other access (mode 600). The command to set this is

chmod 600 .rhosts

In some (old) Unix documentation you may find an explanation of the use of the /etc/hosts.equiv file to
achieve a similar result. For security reasons, you are strongly discouraged from using this mechanism.

37

5.2.2 telnet

To enter the telnet environment simply issue the command

telnet

and after telling you the escape character (usually � Ctrl�� �) telnet will show its prompt

telnet�

Now you can enter telnet subcommands.

For a complete list of subcommands and flags for the telnet command consult the appropriate man page.
Here are some frequently used subcommands:

quit ends the telnet command
open establishes a connection to a remote host
close ends that connection
help lists the subcommands with a brief explanation

So the first subcommand will probably be:

telnet� open hostname

This connects your terminal or X-window to the specified host and displays the logon logo for that node. Then
you can log on there and work as normal. After logging out of the remote host you will get the

telnet�

prompt so that you can open the next host or quit from the telnet program and resume the local session.

Alternatively you can specify the remote host on the invocation of the telnet program:

telnet hostname

This automatically connects to the remote host and you see immediately the logon logo. Logging out of the
remote host will now end the telnet program. You don’t get the telnet� prompt and you are back in your
local session.

5.2.3 rlogin

The “remote login” command

rlogin hostname

connects your terminal or X-window to a login session on the specified host. Since your local host should be
equivalenced to the remote host via the rhosts mechanism described above, you should not need to authenticate
yourself to the remote system. You will get the command line prompt of the remote system. Logging out of the
remote system resumes your current local session.

38

Usage Notes: You must not omit the hostname parameter when using rlogin.

If you use flags on this command, you have to place them after hostname.

5.3 Remote File Access

File transfer

Let us focus on the two commands

rcp and ftp

which allow file transfer between the nodes of a network.

5.3.1 ftp

ftp stands for “file transfer protocol” and is the principal method used to transfer files over the Internet.

ftp allows you to connect to a remote node and execute ftp subcommands there without leaving your
current session on the local host. The ftp command works between various platforms, not only between Unix
systems. Simply invoke ftp by typing

ftp

to get the prompt

ftp�

Select the remote host by

ftp� open hostname

and you will be prompted for login information. If you invoke ftp by typing

ftp hostname

the open hostname is implicitly executed and you will be prompted directly for login information. Please
consult the man page for the various flags that can be set on the command line when invoking ftp.

After a successful login you will get the ftp� prompt again and you can now issue the ftp subcommands
which allow you to navigate through the remote file system, display a remote directory and transfer files between
the remote and the local host in both directions. Some frequently used ftp subcommands are:

quit ends the ftp command
cd changes directory on remote host
lcd changes directory on local host

39

mkdir creates a new directory on the remote host
pwd prints the path that is current on the remote host
put transfers a file from local to remote
get transfers a file from remote to local
binary transfers data without conversion (usually for binary files)
ascii converts data according to different character representation

on the sending and receiving host (text files)
help displays all available subcommands and gives a

short description of them.

You can find more information on further ftp commands in the man pages.

Usage Notes: Some explanations on data conversion: To transfer a file that is human-readable you should do
it in Ascii mode. Unfortunately the default starting mode is different on different platforms: on ULTRIX,
AIX/6000 and all SUN systems, ftp starts in ASCII mode; on HP-UX, DEC OSF/1 and SGI, it starts in binary
mode. Ascii is the correct mode to transfer e.g. a TEX source, for example. To transfer compiled programs or
similar files you have tobe in binary mode so the transfer can be done on a “bit by bit” mode without any
change. For example, binary is the correct mode to transfer a dvi file produced by the TEX program. However,
contrary to what you might expect, Postscript files (typical suffix .ps) are Ascii format.

Examples: Imagine you have to be up to date on remote files which change frequently. You will have to
perform the same file transfer quite often. A shell script similar to the following would be very useful:

getfiles: get a few files regularly from DXCERN
#
customize the next lines:
user=XY12 # replace this with your id
locpath=... # specifies where to put
rempath=... # from where to get
#
echo " "
echo "Opening FTP connection to DXCERN"
echo "for user" $user
echo " "
ftp -n dxcern ��EOF # invoke FTP with next lines as input
user $user # specifies remote user id
lcd $locpath # set the local path
cd $rempath # set the remote path
get file1 # with EBCDIC/ASCII conversion
binary # change transfer mode
get file2 # without conversion
quit # terminate FTP
EOF # terminate input to FTP

You will be prompted for your password on the remote host.

“Anonymous” ftp means that one can login to the remote system using the userid of “anonymous” and
password of either “guest” or more usually your own userid and internet address. Ftp is like telnet in that

40

the “open” command and access to the remote host is similar, except that you can only access files in the
subdirectory tree belonging the remote anonymous ftp account.

A typical session might go as follows:

ftp any.host.i.know
login:anonymous
guest login ok...send user id as password
ftp>ls -al (list all files)
ftp>cd pub (change to the ‘‘pub’’ directory)
ftp>get my.file
transfer complete
ftp>quit

The standard transfer protocol is ASCII. This is suitable for text. Use the command binary if transferring
program or image files. (Note: on VAX-VMS computers use IMAGE).

Large files are usually “tared” and compressed. You have to use binary FTP to get such files. The file
extension shows how to uncompress it:

.tar tar -xvf myfile.tar

.Z uncompress myfile.Z

.tar.Z uncompress myfile.tar.Z
tar -xvf myfile.tar

5.3.2 rcp

The rcp (remote copy) command copies a file or directory from one host in the network into a directory or as
a file on another host of that network:

rcp [-rp] source destination

Remember that the hosts have to be authorised using the rhosts mechanism described earlier in this Chapter.
The -r flag means source is a directory and is to be copied with all the files and subdirectories it contains. The
-p flag preserves the modification time and access modes.

The source and destination specifications not only contain the name of the file but also optionally the host
where it resides. You can specify source and destination in one of the following three forms:

filename relative or absolute name of local file
host:filename relative or absolute name of file residing on host
user@host:filename name of file relative to the home directory of user on host.

If the filename is specified with a leading / then it is taken as absolute.

Examples: To copy the file some.data from the current directory of the local host to the directory
/u/hugo/archive on host rzri6f enter:

41

rcp some.data rzri6f:/u/hugo/archive

Suppose you want to choose a different name for the destination:

rcp some.data rzri6f:/u/hugo/archive/x.y

You could have specified the destination relative to hugo’s home directory:

rcp some.data hugo@rzri6f:archive

This is absolutely equivalent to the first example.

A last example

rcp -rp fred@rzhp9a:mess/data rzhp9b:/exp/march

Here both rzhp9a and rzhp9b are remote nodes. The source is given relative to the home directory of fred
on rzhp9a whereas the destination is an absolute pathname on rzhp9b. The flags say, that the source is
a directory and is to be copied recursively (-r); this implies that the destination also has to be a directory.
Moreover the file permissions and the modification times are preserved (-p).

5.4 Remote Shell

There are two remote shell commands rsh & remsh, the one to apply depends on the system from which you
are working:

Ultrix rsh only
Aix either
Sun rsh
HP remsh
OSF rsh
SGI rsh

5.4.1 rsh

You can execute commands on a remote system and have the output displayed on your terminal with rsh which
stands for remote shell. In order for this to work, there must be an appropriate .rhosts file on the remote
machine. The format is:

rsh rhost [-l username] [command]

where

rhost is the name of the remote host on which the command is to execute.
username is the username if different on the remote system than the originating system.
command is the command to be executed on the remote system.

The command might be just a simple command, or it might execute a shell script on the remote system.
Metacharacters in the command should be quoted if they are to be interpreted on the remote machine.

42

5.4.2 remsh

To execute a command on a remote host enter:

remsh hostname command

This command runs a “remote shell” which executes a command for you. I/O redirection works as usual using
the��������� operators to redirect input and output to and from the remotely executed command to local(!)
files. If you want to redirect the input and output to remote files use double quotes " " around the redirection
operators.

Usage Notes:

Both remsh and rsh commands will not process the login profiles, but will process the $ENV file if that
variable is set (usually .kshrc). If you omit the command parameter on the remsh command then rlogin
will be executed instead, which will process the login profiles.

If you use flags on this command, you must place them between hostname and command.

Examples: All the examples below assume that the remote host that you are communicating with is called
rzri6f and that you have to set your DISPLAY variable to refer to the window at which you are working.
(DISPLAY is discussed in detail in documentation and man pages referring to the X11 window system.)

To get a window with a terminal emulation on your X-server:

remsh rzri6f term -display $DISPLAY &

To get a window that emulates a mainframe terminal (3270) on your X-server enter:

remsh rzri6f x3270 -display $DISPLAY cernvm &
or remsh rzri6f 3270 -display $DISPLAY cernvm &
or remsh rzri6f tn3270 -display $DISPLAY cernvm &

The next examples illustrate the I/O redirection mechanism with the remsh command. They are not
examples for efficient file transfer.

remsh rzri6f cat .profile �� .profile

appends the profile you have on the rzri6f to your local profile.

Find the difference:

remsh rzri6f cat .profile � � � .profile.old

Right! Your remote profile will be copied to a remote file named .profile.old.

43

5.4.3 rexec

With the rexec command you can execute a command on every remote UNIX host you have an account on,
regardless if they are made equivalent or not with the rhosts mechanism. The rexec command works in the
same way as remsh does, the only difference is that you will be prompted for your name and password on the
remote host.

rexec hostname command

You can try the examples from the last section on remsh with one disadvantage: If you use unquoted I/O
redirection the authentification prompts do not work properly; you will not see the prompts but you can type in
your username and password “blindly”.

5.5 Mail

This section appears as well in the document ’The CERN Electronic Mail User Guide’. A sophisticated mail
program comes bundled with most flavors of Unix operating systems (e.g. Mail on Berkeley Unix or mailx on
System V). It interfaces to sendmail, a Unix facility for mail routing.

Some Unix users prefer to use the elm or pine user interface to Unix mail. Elm (with the underlying
metamail)and pine are public domain mail reading programs with multimedia capabilities. They are available
on dxcern and on asis for workstation users. Information on release changes and documentation will be
published in the newsgroup cern.mail.

In order to try them type elm or pine from the shell prompt. The most common mail(x), elm, pine commands
are listed in the relevant ’Getting Started’ sections below.

5.5.1 Getting Started with mail

� To send a message, type mail recipient-address.

� To read waiting messages, type mail.

� To list a summary of saved messages in a folder, type mail -f folder.

� To print on the screen of one of the listed messages, type p message-number or t message-number.

� To reply to the current message, type R.

� To list the message headers in the current folder, type h. If the list exceeds one page, type z.

� To delete the current message, type d.

� To undelete the current message, type u.

� To extract the current message into a file, type s filename.

� To send a file as a message, type mail -s "subject-text" recipient-address < filename.

� For information on other mail commands, type help or ?.

� To quit from mail , type q.

44

Address examples from Unix mail are shown below:

Destination Syntax Example
local user username bloggs
others at CERN user@host pretty@cernvm
others outside CERN user@host.domain dear@math.utexas.edu

For further information on addressing ’others’ see the section ’Addressing Mail from within CERN’.

5.5.2 Getting started with mailx

The commands are similar to mail. For example: mailx user@host.domain or mailx aliasname

Type the message text, terminate and send your message with � Ctrl� d � or with a last line containing
a single . (period) in column one.

Mail a file:
mailx -s "subject" recipient-address < filename

Reading, forwarding, replying, filing, sorting and editing mail are done inside the mail utility. Invoke:
mailx
then use any of the following subcommands:

m send mail, invoke editor
h header displays list of messages in your mailbox
? help
d delete current message
e edit the current message
[n] read message number [n]
[-] read previous message
s save current message in personal mailbox
s file save current message to file
s [n] file save message number [n] to file
c [n][file] same as s but do not delete message from incoming mailbox
r reply to current message
a display aliases
a hd display alias hd
q quit mail, discard deleted messages
x quit mail, do not discard deleted messages

Note: Ultrix, HP-UX and AIX use r to reply to all the people contained within the To and CC: lists and
R to reply to the sender only. In SunOs the reverse occurs. However, the man pages on the different systems
correctly describe the behaviour on the different systems.

By default mail uses the vi editor. Insert a line

45

set EDITOR=/usr/local/bin/emacs
into your $HOME/.mailrc file to change the default editor to emacs.
If you want to work with your personal mailbox instead of the system mailbox, type mailx -f.

Work with an arbitrary mail folder is started as

mailx -f filename

5.5.3 Useful facilities

From some Unix machines it is possible to check if a destination address within CERN is correct, by typing
the command mverify recipient-address from the shell prompt, where recipient-address must be of the form
user@host.

The command mverify for CERNVM users must be entered as: mverify userid@crnvmb.

Alias names of your frequent correspondants can be entered in the .mailrc file in your home directory in
the format:

alias name address (e.g. alias dear you@cernapo). Example of $HOME/.mailrc contents:

alias hd dob@hp9a.gsi.de
alias um rz02@mvs.gsi.de
alias rb brun@cernvm.cern.ch
alias he goofy@v6000a.gsi.de
alias body user@cageir5a.bitnet

Aliases may contain lists of addresses but not lists of aliases.

5.5.4 The elm mail system

elm is a screen-oriented public domain electronic mail processing system. In interactive use, the main header
index and mini-menu of commands are displayed upon initial invocation and at any point when the program is
waiting for input.

You can invoke elm by typing elm at the shell prompt.

You can easily send a mail (m), reply (r) or forward (f) a mail, save it to a folder (s) or delete an incoming
mail (d), (?) to get help.
Aliases are stored in the file ˜/.elm/aliases.text, which can be edited by any text editor. After having
edited this file, the internal alias database has to be updated by the command newalias. In the latest elm version
the option a enters the alias menu. Editing the aliases.text file is then possible, in which case the update of the
database takes place automatically. An elm alias may also contain a list of previously defined aliases.
As elm is installed at CERN, i.e. with the underlying software package metamail multimedia mail according
to the internet standard MIME (Multipart Internet Mail Extensions) is possible using in the message body
the command: [include filename MIME Content-Type Encoding] e.g. [include /path/to/my/photo image/gif
base64].

A full postscript documentation of Elm is available on dxcern, directory: /usr/local/doc/postscript/elm2.4-
doc. Also on asis, directory: /asis/share/usr.local/doc/elm.

46

5.5.5 The pine mail system

pine is a mail user agent designed primarily for novice users, but it is full featured enough for processing large
amounts of mail.

Like elm the main header index and mini-menu of commands are displayed upon initialisation and at any
point when awaiting input. The help screens in pine constitute the main documentation, but if more informa-
tion is required refer to the man pages.

pine can be invoked be typing pine at the shell prompt.

The major features of pine include: view, save, export, delete, print, reply and forwarding of incoming
mail, as well as the composition and sending of mail. Use of the control keys as described on the bottom line
of the main menu and following the instructions on the bottom of the screen, will enable easy use of pine.

It is possible to read elm folders through pine if you enter:
mail-directory=Mail in your ˜/.pinerc file.

pine supports MIME, The Multipart Internet Mail Extensions, which enables pine to send and receive
multimedia Email.

Optional features include sorting, address book and spelling checker.

For more information on pine refer to the man pages and to the file /usr/local/lib/pine.info on dxcern. Also on
asis refer to the directory /asis/share/usr.local/doc/pine.

5.5.6 How to get help with problems

For online help, use the relevant man pages. For general problems contact the User Consultancy Office,
user.support@cern.ch which is equivalent to uco@cernvm.cern.ch, (or phone 4952). For elm or
pine specific questions write to mail.support@cern.ch.

5.6 Printing

5.6.1 Printing with lpr

Printer output is sent to the device specified in the environment variable PRINTER or by the device given with
the -P option in the print command. If neither of these are defined, output will be either printed on the system
default printer, disappear down a ’black hole’, or generate an error message depending on the system setup. Set
up your printer using the command:

PRINTER = printername; export PRINTER for Bourne & korn shells
setenv PRINTER printername for csh

Should you wish to change the printer momentarily simply use a command like the following to print your
file:

47

lpr -Pprintername filename

Text files printed through the ’springer’ central print server must be converted to PostScript for printing on
a PostScript printer such as an Apple LaserWriter. For printers connected to the AppleTalk (the vast majority
of printers at CERN), this formatting is normally done automatically on ’springer’.

What follows currently applies ONLY to AppleTalk-connected PostScript printers!

For the formatting process, some decisions have been taken as to how the text should appear on the page.
These decisions concern the text-formatting program, the text’s layout on the physical page and the size of
characters used. In the absence of any formatting specification by the user or in the printer description entry on
the print server, a paper-saving default has been chosen as described below.

Formats can be controlled –

1. For DEC/Sun/IBM users: through the ’-w’ switch on the ’lpr’ command, for example: lpr -P513-pub
-w80 /.profile or through the ’:pw#...:’ in your local /etc/printcap (yes, this is not ’:pw=...:’! it is a
numeric parameter, see ’man printcap’) entry file. The use of /etc/printcap is normally confined to DEC
and Sun only but can also exist for SGI.

2. For HP-UX users: the ’-oBSDw’ switch on the ’lp’ command, for example:
lp -d513 pub -oBSDw80 myfile

3. For VM users: all the parameters to ’a2ps’ must be specified by the user, as described in ’HELP A2PS’,
’HELP LWPRINT’, etc...

4. In the ’pw’ printer description entry on the print server ’springer’ on a per printer basis. Send mail to
’printer.support@springer’ mentioning the printer and the desired default. (Make sure you agree with
other people using the same printer!)

Normally, text is typeset in ’courier’ typeface. The formatter ’a2ps’ surrounds text by a frame and prints a
header specifying the print date, file name (if available) and page number.

Throughout the following ’w’ means the argument to the ’-w’ option on the ’lpr’ command, to the ’-oBSDw’
optionon the ’lp’ (SysV) command or the ’pw#.." value assigned in your local /etc/printcapfile if you are printing
from a DEC or Sun Unix workstation.

Standard default (plus all ’-w’ not falling into the ranges below plus the special value ’w=2’: text formatter
’a2ps’, two logical ’portrait’ pages printed on a physical ’landscape’ oriented page including a frame, header
and line numbers, font size 6.8 pt (rather small, paper saving mode).

39 � w �= 85: formatter a2ps, portrait orientation, font size chosen so that either w or
w+1 columns fit on a line. Lines longer than w (or w+1) are folded.

85 � w �= 200: formatter a2ps, landscape orientation, font size chosen so that either w or
w+1 columns fit on a line. Lines longer than w (or w+1) are folded.

Some values of ’w’ less than 40 are used for special purposes:

w=2: default, see above
w=4: formatter ascii2ps, a4 portrait orientation, 11 pt. font with long lines

folded, no frames, headers, or page numbers, just plain text.
w=5: formatter a2ps, a4 portrait orientation, 6.8 pt. font, supporting lines

up to 122 characters.

48

Some options that are available using lpr are listed below but remember that most of these are not available
when listing postscript files, see the later section on LATEX for more information about this.

-l for control characters and suppressing page breaks.
-f this option interprets the first character of a line as a standard Fortran

control character.
-s for printing large files, (these files are softlinked to the spool and not

written there. Do not modify files sent via this method until printing
is complete).

-x No filtering, file printed verbatim.
-#num Number of copies required.
-wnum Maximum page width
-znum Maximum page length

5.6.2 Some Useful Unix Print Functions

Unix has a number of associated print functions which you may find useful. For a more comprehensive list
and explanation of these functions the appropriate man page should be consulted. lpq and lprm are both Unix
BSD commands, their equivalent in Unix System V are lpstat and cancel respectively. The commands to apply
depend on the system in use:

OSF BSD and System V
AIX BSD and System V
Ultrix BSD
HP/UX System V

lpq Typing this command at the prompt will initiate an examination of the
spooling areas used by lpd for printing files on the printer, and report on
the status of jobs in the queue.
The print queue can be examined in its entirity, or by individual users
or jobs - see man pages for more details.

lprm This command can be used to remove a job or jobs from the printer’s
spool queue. As the spooling directory is protected from users, using
lprm is normally the only method of removing a job.
You can remove jobs currently active, by job number or all jobs owned
by a specific user - see man pages for more details.

5.6.3 Printing with lp

The lp command is the normal print command on UNIX systems based on System V, such as HP-UX and
Sun/Solaris 2. The differences include the fact that the environment variable PRINTER is replaced by the
variable LPDEST; that the switch to print to a remote printer other than the default is

lp -dprintername

and the commands to examine the printer status and cancel a print job are lpstat and cancel respectively. Consult
the man pages for lp on the system for further details.

49

5.6.4 Printing with LATEX

Files created in LATEX may be processed using the command LATEX filename and then dvips to print or file
the output. For file previewing there is an xdvi preview facility but those with workstations will undoubtedly
have local facilities for this operation. Once you have obtained your DVI type files there are several ways to
proceed:

dvips xx converts to postscript and prints filename xx on default lpr printer.
dvips -o xx creates a file called xx.ps, no printing. Subsequently the xx.ps postscript file

can be printed with lpr.
dvips -o yy xx creates a file in postscript format called yy, no printing.

For further information in this area you should refer to the CERN guide called ’TEX at CERN’ by Michel
Goossens, available on self-service in the UCO.

5.7 Connecting to CERNVM

5.7.1 Alphanumeric sessions - 3270

The telnet environment on workstations offers in addition to the line-by-line mode the emulation of a DEC
VT100 terminal or a full screen IBM 3270 terminal. To start the telnet 3270 emulation, enter

3270 cernvm

which connects directly to the CERNVM system.

With this product you can have up to 46 lines on your screen or alternatively a wide 132 character display
depending on the original size of the window. The disadvantages are the lack of colour support and the lack of
provision for transcript pad or window copying.

The maximum screen size will be used, depending on the lines/columns values of the screen from which the
session is initiated. 3270 has an online help facility accessible via <ctrl>-e or the "Help" key. One particularly
useful option is to display the keyboard mapping which the program thinks that you have and a second displays
the function corresponding to a key that you select. The 3270 keyboard mapping is determined by the value of
the KEYMAP environment variable or, if that is not defined, by the TERM variable. If you wish to set up your
own keymap, you should set the variable MAP3270 to the absolute pathname of the file containing your desired
keymap, which you would normally create by modifying the file /usr/local/lib/map3270. For more information,
see the man page.

5.7.2 Access with graphics capabilities - x3270

x3270 is a public domain X Windows based 3270 emulator. It provides 3270 terminal sessions for UNIX
workstations accessing an IBM host system. Currently, it should work correctly on all UNIX platforms present
at CERN.

For extended information about x3270 options and parameters type

man x3270

50

5.7.3 Access via telnet - tagibm

A telnet interface to CERNVM also exists; it is called TAGIBM and can be used by the typing the command

telnet tagibm

When TAGIBM prompts for a username, reply with the string CERNVM �. The program then requests
your CERNVM username, will attempt to size your terminal window correctly and then prompt you for your
CERNVM password.

51

Chapter 6

File Editing

6.1 vi

The editor vi is a standard full-screen text editor available on all UNIX systems and bundled with the operating
system.

The great advantage of vi is that it is included in the vendor-independent international standard POSIX.2
(IEEE 1003.2). On all POSIX.2 conforming systems vi is available. This allows users to move from one POSIX
system to another without needing to learn a new editor.

The disadvantage of vi is that it is very cryptic and so not easy to learn. However there are people who,
having mastered it, claim to like it. In addition, if you are likely to use multiple UNIX systems and to connect
to them using different keyboards from different locations, then you may find it worthwhile to learn a "survival
kit" of basic editing commands.

6.1.1 Operating Modes

vi has three operating modes:

� vi command mode.

� text input (or insert) mode.

� ex command (or line edit) mode.

In the vi command mode, each key initiates an instruction. In the text input mode the keyboard functions
like a typewriter. And in the ex command mode you can use the ’old’ ex line editor to invoke ex commands.

As elsewhere in UNIX, all commands in vi are case-sensitive.

6.1.2 Starting vi

To start vi, simply type vi followed by the name of the file you want to edit.

vi myfile

52

If myfile is a new file, the buffer is empty and the screen appears as follows:

˜
˜
˜
"myfile" [New file]

The tilde (˜) down the left-hand column of the screen indicates that there is no text in the file, not even blank
lines. The prompt line (also called status line) at the bottom of the screen echoes the name and status of the file.

6.1.3 Exiting vi

The vi command to exit and save edits is ZZ. You can also use the ex command :wq to exit and save the edits.
Unlike vi commands, the ex commands, introduced by a ’:’, require a � Return � after the command. To exit
vi without saving your changes, use the ex command :q!.

6.1.4 vi Command Mode

As soon as you enter a file, you are in vi command mode, and the editor is waiting for you to enter a command.
Commands enable you to move anywhere in the file, to perform edits, or to enter insert mode to add new text.
Commands can also be given to exit the file in order to return to the UNIX prompt.

One of the most used vi commands is ’i’ (for ’insert’). The "i" doesn’t appear on the screen, but after you
press it whatever you type will appear on the screen and will be entered into the buffer. The cursor marks the
current insertion point. To tell vi that you want to stop inserting text, press� Esc �. Pressing� Esc � moves
the cursor back one space and returns vi to command mode.

If you have opened a new file and want to insert the words this is a new file type the keystrokes:
i this is a new file

What appears on the screen is:

this is a new file

To break a line press � Return �.

If you don’t know whether you are in vi command mode or text input mode press � Esc � once or twice
to enter vi command mode. When you hear a beep, you are in vi command mode.

6.1.5 ex Command Mode

A Q in vi command mode invokes ex command mode. At the command line (bottom of the screen) the prompt
’:’ appears. The command vi returns you back to vi command mode.

In vi command mode you can issue a single ex command and immediately return to vi mode by prefacing
an ex command with a ’:’.

53

6.1.6 Basic vi Keystrokes

Moving around

� Move forward one character (right). Also the l key.
� Move backward one character (left). Also the h key.
� Move to previous line (up). Also the k key.
� Move to next line (down). Also the j key.
w Move one word forward.
b Move one word backward.
0 Move to beginning of line.
� Return � or + Move to beginning of next line.
- Move to beginning of previous line.
$ Move to end of line.
� Ctrl� f � Move forward one screen.
� Ctrl� b � Move backward one screen.
G Move to end of buffer.
:1 Move to beginning of buffer.
:n Move to line number n.
� Ctrl� g � Display current line number.
� Ctrl� l � Redraw screen.
/pattern Search forward for pattern.
?pattern Search backwards for pattern.
n Repeat last search in same direction.
N Repeat last search in opposite direction.

If you precede the move commands by a number, the command is repeated that number of times. Thus 5w will
move forwards 5 words.

Inserting Text

i Inserting text before cursor.
a Inserting text after cursor.
I Inserting text at beginning of line.
A Inserting text at end of line.
o Open new line for text below cursor.
O Open new line for text above cursor.
� esc � End text insertion.

Deleting Text

X Delete previous character.
x Delete character under cursor.
dw Delete the word the cursor is on.
D Delete form cursor to end of line.
dd Delete current line.
p Put deleted text after cursor.
P Put deleted text before cursor.

54

Once again, the deletion characters may be preceded by a number to perform multiple deletions; thus 5dd will
delete the next 5 lines starting with the current line.

Yank �

yw Yank (copy) word.
yy Yank (copy) current line.
“ayy Yank (copy) current line into named buffer a.
p Put yanked text after cursor.
P Put yanked text before cursor.
aP Put text from buffer a before cursor.

Undoing and other vi Commands

. Repeat last edit command.
u Undo last edit.
U Restore current line.
J Join two lines.

Exiting Commands

ZZ Save (write) and quit file.
:x Save (write) and quit file.
:wq Save (write) and quit file.
:w Save (write) file.
:w filename Write current buffer to filename.
:q Quit file.
:q! Quit file with no save.
Q Quit vi and invoke ex.
:e file Edit file without leaving vi.

Some ex Commands

:set Display options set by user.
:set all Display list of all current options, both default and those set by the user.
:set number Display line numbers.
:set showmode Displays in insert mode a message on the prompt

line indicating the type of insert you are making.
:set option Activate option.
:set option=value Assign value to option.
:set option? Display value of option.
:set nooption Deactivate option.
:sh Invoke shell.
� Ctrl� d � Return to editor from shell.
!command Execute UNIX command.

�Yanking means copying text into a buffer

55

:r newfile Read contents of newfile into current file.
:r !command Read output of UNIX command into current file.

6.1.7 The .exrc File

Your can control your vi environment with the $HOME/.exrc file in your home directory. A sample .exrc
file looks like this:

set number
set showmode

The file is read by ex before it enters the vi mode; commands in .exrc should not have a preceding colon.

6.1.8 More about vi

More about vi may be available in the man page on your workstation.

Recommendable books about vi are ’Learning the vi Editor’ by Linda Lamb and ’The Ultimate Guide to
the vi and ex text editors’ from the Hewlett-Packard Company.

6.2 GNU emacs

GNU emacs is a powerful editor in the UNIX world. Emacs belongs to the GNU project of the Free Software
Foundation and is available on all UNIX platforms.

Unlike most other editors, emacs is a complete working environment; you can start emacs in the morning,
work all day and night and never leave it. It can be used to compile programs; for interactive work with the
UNIX shell; and so on. Before windowing systems like X became popular emacs often served as a complete
windowing environment.

6.2.1 Emacs Commands

Emacs commands consist of a modifier, such as� Ctrl � (CONTROL),� Esc � (ESCAPE), or� META �

(META), followed by one or more characters. In this text the followingnotation isused to describe the keystrokes.

� Ctrl� g � Hold down the � Ctrl � key and press g.
� Esc� x � Press � Esc �, release it, and then press x.

Most emacs manuals refer to the � META � key instead of the � Esc � key. But most keyboards don’t
have a � META � key, so we will refer to � Esc �. If you have a � META � key, you will probably
prefer to use it instead of � Esc �. The � META � key works like the � Ctrl � key described above.
� Esc� x � is then equivalent to:

� META� x �Hold down the � META � key and press x.

56

To complete a command you may need to press a carriage return:

� Return � Press the RETURN key. This key may be labelled ENTER on your keyboard.

All emacs commands, even the simplest ones, have a ’full name’: for example forward-word is equivalent
to the keystrokes� Esc� f � and forward-char is equivalent to � Ctrl� f �. Many commands only have
’full names’, there are no corresponding keystrokes.

6.2.2 Starting emacs

To start emacs, simply type emacs followed by the name of the file(s) you want to edit.

emacs [myfile...]

6.2.3 Exiting emacs

To exit emacs, type

� Ctrl� x � � Ctrl � c �

6.2.4 Emacs Screen

When you enter emacs, you are in a workspace. A cursor marks the position in the file, you don’t have to do
anything special before you start typing.

Just above the bottom of the screen, emacs prints information about what it is doing. This line is called the
’mode line’ and may look like this:

--**-Emacs: myfile (Text Fill)---5%----

At the left edge of the mode line, you may see two asterisks (**). This means that whatever you’re editing
has been modified since the last time you saved it. If you haven’t made any changes, the asterisks won’t be
there. Next, emacs prints ’Emacs:’ followed by the name of the buffer or file you are editing (myfile in our
example). In parentheses following this emacs shows the major (Text mode) and minor modes (Fill mode).
Following this emacs prints where you are in the buffer or file (5%). If the entire file is visible on the screen,
emacs prints the word ALL.

6.2.5 Emacs modes

Emacs has various editing modes in each of which it behaves slightly differently. When you often want features
like word wrap so you don’t have to press � Return � at the end of the line, you can set text mode. When
you are programming, your code must be formatted; for example, for programming in C set C mode.

Text mode and C mode are major modes. A buffer can be in only one major mode at a time; to exit a major
mode, you have to enter another one.

57

Whenever you edit a file, emacs attempts to put you into the correct major mode for what you are going to
edit. If you are editing a file with the ending .c, it puts you in the C mode. If the file has the ending .tex, it puts
you in the TEX mode. If emacs can’t determine a special mode, it puts you in the fundamental mode, the most
general of all modes.

You can also change the mode manually with the command:

� Esc� x � startup-command � Return �.

The important major modes and their startup-commands are in the following table:

Mode Description Startup-command
Fundamental The default mode; no special behavior. fundamental-mode
Text For writing text. text-mode
Directory For editing directory contents. dired-mode
Indented text Indents all the text you type. indented-text-mode
Picture For creating simple drawings. picture-mode
C For writing C programs. c-mode
FORTRAN For writing FORTRAN programs. fortran-mode
nroff For formatting file for nroff. nroff-mode
TEX For formatting file for TEX. tex-mode
LATEX For formatting file for LATEX. latex-mode
Outline For writing outlines. outline-mode
View For viewing files but not editing. view-file
Mail For sending mail. mail
Read Mail For reading mail. rmail

In addition to the major modes there are also minor modes. These define a practical aspect of emacs and
can be turned on and off within a major mode.

Abbrev Allows you to use word abbreviations. abbrev-mode
Fill Enable word wrap. auto-fill-mode
Overwrite Replaces characters as you type instead

of inserting them. overwrite-mode
Auto-save Saves your file automatically. auto-save-mode

In your $HOME/.emacs file, the startup file of emacs, you can set your favourite modes to be turned on
automatically every time you start emacs.

6.2.6 Basic emacs Keystrokes

Moving around

� Move forward one character (right).

58

� Move backward one character (left).
� Move to previous line (up).
� Move to next line (down).
� Esc �-f Move word forward.
� Esc �-b Move word backward.
� Ctrl� a � Move to beginning of line.
� Ctrl� e � Move to end of line.
� Ctrl� v � Move forward one screen.
� Esc �-v Move backward one screen.
� Esc �-� Move to end of buffer.
� Esc �-� Move to beginning of buffer.
� Ctrl� l � Redraw screen with current line in the center.

Deleting Text

� Del � Delete previous character.
� Ctrl� d � Delete character under cursor.
� Esc � � � Del � Delete previous word.
� Esc �-d Delete the word the cursor is on.
� Ctrl� k � Delete from cursor to end of line.
� Ctrl� w � Delete region (area between mark and cursor).
� Esc �-w Copy region into kill ring.
� Ctrl� y � Restore what you have deleted.
� Ctrl� � � or � Ctrl� � Space ��

Mark the beginning (or end) of a region.

Stopping and Undoing Commands

� Ctrl� g � Abort current command.
� Ctrl� u � Undo last edit (can be done repeatedly).

File-handling and exiting

� Ctrl� i � Insert file at cursor position.
� Ctrl� x �� Ctrl� s �

Save file (this may hang terminal; use � Ctrl � q � to restart).
� Ctrl� x �� Ctrl� w �

Write buffer contents to file.
� Ctrl� x �� Ctrl� c �

Exit emacs.

Tutorial and Getting Help

� Ctrl� h �� Ctrl� h �� Ctrl � h �

Menu of help options.
� Ctrl� h � t Starts emacs tutorial.

59

6.2.7 More information about emacs

There is a man page available with:

man emacs

A Postscript file of the reference manual is in the directory /asis/share/usr.local/doc/gnu on
the central servers (nearly 300 pages).

A very good book about emacs is ’Learning GNU Emacs’ by D. Cameron and B. Rosenblatt [4] and [5]. It
covers the first basics and the more advanced features of emacs. It is available from the UCO; there is also a
good emacs reference card, also available at the UCO.

60

Chapter 7

Software Development

7.1 Compiling and Linking Programs in Unix

Compiling and linking FORTRAN programs in UNIX differs a bit from what you may be used to in VM/CMS
or VMS. There are three methods you can use to compile and link your programs:

1. linking as a second phase of the compilation command. This is the method most commonly used in the
Unix world.

2. compiling and linking with separate commands

Althougha specific command for linkingexists (ld), in practice it is very little used. Since the compilation
command (normally f77) doesn’t require you to actually compile anything and takes care of providing
the correct language specific and system libraries, it is usually used for linking in preference to ld.

3. use of the make command

The make command is not described here because it involves a completely different philosophy which
will only confuse new UNIX users. If you are interested in this powerful tool, you are encouraged to read
the man pages for make and the references given there. See also the book by Talbott [10].

7.2 Compile, Link, Run

Although the name of the compiler and recommended options may differ from platform to platform, all Unix
compilers function in essentially the same way as illustrated in the simple examples below.

To create an executable program, you compile a source file containing a main program. For example, to
compile a Fortran program named hello.f � use:

f77 hello.f

If no errors occur, the compiler creates an executable file named a.out in the current working directory.
Similarly, to compile and then run a C program use:

�.f is default file extension for Fortran code in UNIX just as .FOR on VAX/VMS or FORTRAN on VM/CMS.

61

cc hello.c
a.out

If your source is divided among separate files, simply specify all files in the compile command:

f77 main.f func1.f ... funcn.f

The -o name option causes the compiler to name the output file name instead of a.out. For example, to
compile a Fortran program hello.f and name the resulting executable hello use:

f77 -o hello hello.f

The -c option suppresses the link-edit phase. The compiler generates an object file with the extension .o for
each input file and not thea.out file. This is useful when compiling source files that contain only subprograms,
which can be linked later with other object files. The resulting object files can then be specified on the compiler
command line:

f77 -c func.f
f77 main.f func.o

7.3 Important Platform Dependant Differences

On most platforms at CERN the recommended Fortran compiler is called f77. The exception is HP/UX where
you are recommended to use fort77 rather than f77 since it allows you to specify libraries in a way which is
compatible with all the other platforms. For AIX on the RS/6000 the Fortran compiler is called xlf, but in more
recent versions of AIX the name f77 can also be used. On DEC Ultrix systems the supported compiler is the
DEC Fortran compiler rather than the MIPS Fortran.

The table below shows the minimum command that should be used for compiling and linking in the CERN
environment.

Machine Compilation only Compiling and/or Linking
IBM/AIX xlf -c -qextname xlf -qextname
HP/UX fort77 -c +ppu fort77 +ppu
Others f77 -c f77

As we saw in the section above, by default Unix compilers generate an executable module. The option “-c”
(compile only) generates an object file but causes the linking phase to be surpressed.

The options -qextname on AIX and +ppu on HP/UX are explained in section 7.5 and are ESSENTIAL for
compatibility with the CERN Program Library.

7.4 Libraries

Libraries in Unix are the same as libraries in other operating systems. They usually contain a collection of
pre-compiled routines which you can link to your routines when creating an executable. On all Unix systems,

62

libraries can be created with the command ar (short for archive). See section 7.6. Once again, it is not necessary
for a new Unix user to know this command but you can find more information in the man pages.

Libraries in Unix follow a naming convention such that names begin with the letters lib and have the
extension .a (for archive) or .sl (for shared library). This was not a whim of the creators of Unix but actually
serves a useful purpose.

When specifying libraries to be used in linking you can use a shorthand notation. If you wish, you can
specify the full pathname of the library just as you would with your object files .o files. For example;-

f77 mprog.f mysub.o /cern/pro/lib/libpacklib.a

Or you can specify the library with a combination of the -L and -l options,
e.g. -L/cern/pro/lib -lpacklib which refers to the CERNLIB library packlib. What this actually
is instructing the link editor to do is to search the directory (search path) /cern/pro/lib for the library
libpacklib.a which will then be replaced on the command line with
/cern/pro/lib/libpacklib.a which you could type in yourself.

fort77 +ppu -O -o my program my program.f n
-L/usr/local/delphi/dpadev/lib -ltanag3xx n
-L/cern/pro/lib -lgraflib -lgrafX11 -lpacklib

NOTE that the placement of a library on the command line is important (as it also is for the VAX/VMS
LINK command); the libraries are searched once only, in the order they appear on the command line.

7.4.1 The cernlib command

The cernlib command has been designed to ease access to the CERN program library software, while allowing
access to user libraries. It is platform-independent and accepts the POSIX syntax. Note that you must have the
directory /cern/pro/bin in your path in order to use this command.

cernlib grants access to packlib
cernlib mathlib grants access to mathlib and packlib
cernlib -L $DELPHI LIBS -l dstanaxx -l ux26xx

grants access to libraries dstanaxx and ux26xx in the directory
defined by the environment variable DELPHI LIBS

The cernlib command is used in combination with the link command by enclosing it in back-quotes on the link
command line. For example if you use the f77 command for linking:

f77 -o myprog myprog.o ‘cernlib mathlib graflib/X11‘

7.5 Compiling and Linking Options

The compiling and linking options are given together on the same command line.

� Executable program:

63

-c Instructs the compiler to suppress the link edit phase and produce only a file containing the object
code that results from the compilation. This file can then be linked into another program or placed
in a library.

-o filename Sets the name of the output file containing the executable program to filename.

� Optimization:

As with all systems, when debugging a program compilation should be done with optimization switched
off. Once the program is ready for production it should be recompiled (and re-tested) with optimization
on. As you will probably have guessed there is no consistency between the optimization options of
compilers from different vendors! Some have it on by default, others have it off and they all have different
ways of specifying different optimization levels.

Machine Default Optimization off Maximum ’Value’ of -O
IBM/AIX noopt -O3 -O2
HP/UX noopt +O3 +O2
Sun OS and Solaris noopt -O4 -O3
DEC Ultrix and OSF -O4 -O0 -O4 -O4
SGI -O1 -O0 -O3 -O2
Apollo -opt -opt 0 -opt 4 -opt 3

� Static Code:

Most of the compilers foresee an option to force the static storage of local variables, which means that
local variables in a subroutine or function retain their value between calls. This option may be particularly
important with older programs that don’t use the Fortran SAVE statement. On HP/UX and SGI this option
also ensures that all uninitialized variables are initialized to zero. On Sun no compile time option exists.
The source code statements AUTOMATIC, SAVE, STATIC must be used. See the Sun Fortran Reference
Manual. Use of static mode may reduce the optimization the compiler attempts to provide for your code.

System Default Static mode Dynamic mode
Ultrix and OSF static -static -automatic
RS6000 static -q nosave
Sun OS and Solaris static not available
HP/UX dynamic -K
SGI dynamic -static
Apollo dynamic -save

� Debug Information:

-g Saves debug information on the output file. You may later debug your program with the symbolic
debugger, dbx, (called xdb on HP/UX!). Note, this option may significantly increase the size and
execution time of your program. It often disables the optimizer, although we are beginning to see
systems where this is no longer the case.

� Binding Fortran and C:

Postpend an underscore to external names such as subroutines, functions and common blocks. This is
done by default on all systems apart from AIX/6000 and HP/UX. This seemingly senseless option has
the functionality of allowing C programmers to access FORTRAN routines and data according to BSD
programming convention. Though this may not be of interest to a new user, this option is nearly a standard
in the computing world. (the CERNLIB routines are compiled with it, which in turn means that you if
wish to call VZERO or LENOCC, you must compile your own program with the +ppu option).

64

System Option
AIX/6000 -q extname
HP/UX +ppu

� Link editor options:

-L dir Library path. Defines the search path for libraries. It instructs the linker to look in the directory
dir for libraries before looking in the standard places (/lib and /usr/lib) for the libraries specified by
the -l option. This option is effective only for the libraries following it.

-l name Library name. Search the library libname.a or libxx.sl for unresolved references in the search
paths defined by a preceding -L option or in the default search path.

7.5.1 man page for Fortran

The above section lists only a few of the more common Fortran options. You should, at least once in your life,
look at the Fortran man page on the system which you use.

7.6 Creating and maintaining your own libraries

If you have a lot of different object files you can create an archive library to store them. The command ar is
used to create and manage archive libraries. Its syntax is:

ar keys archive [obj files]

The most important keys are r to replace or add modules to the archive and t to display a table of contents. The
archive is a name composed of libname.a. For example the command sequence:

cc -c func1.c
cc -c func2.c
cc -c func3.c
ar r libmy.a func1.o func2.o func3.o

compiles func1.c,func2.c,func3.c and adds the object files into the libmy.a.

65

Chapter 8

Applications

8.1 ASIS

ASIS stands for Application Software Installation Service but is more generally used to refer to the collection
of commonly used CERN and public-domain applications software which is made available in both source and
ready-to-use form on central servers. The master copy of all the software is stored under AFS� in the ’ASIS
tree’ of the CERN cell. A copy of the binaries and libraries (but not the sources) is made each night onto an
NFS server.

The recommended way to access these applications at CERN is to use AFS. When you install the AFS client
software on your workstation or local server, you will normally also install a script called ’make asis’ which
will be run each night to create links in your /usr/local/bin directory to the applications available on ASIS.

If for some reason you can’t install the AFS client software, you can access ASIS via NFS. For more
information refer to “ASIS: The Installer’s Guide” available from the UCO, or alternatively contact P. Defert
(defert@dxcern.cern.ch).

The list below is a selection of some of the most commonly used applications. It is far from complete.

CERN Program Library

cernlib - access standard libraries such as PACKLIB, MATHLIB, GRAFLIB
paw - visualisation of experimental data
geant - detector description and simulation tool
fatmen - distributed file and tape management system
hepdb - distributed database management system

CERN-Specific Utilities

3270 - IBM 3277/3278 terminal emulator
phone - display phone book entries from central server
www - World Wide Web hypertext browser for dumb terminals
mosaic - World Wide Web hypertext browser for workstations
emdir - electronic mail address directory

�See Section 4.4 for more information on AFS.

66

Public Domain and GNU Software
The list of available public domain and GNU software is very long. Below we list some of those most
commonly used at CERN.

emacs - GNU project Emacs
pine - an electronic mail processing system
elm - an electronic mail processing system
ghostview - View PostScript documents using ghostscript
ispell - Correct spelling for a file
perl - Practical Extraction and Report Language
tk/tcl - Tools for building scripts with Motif-like user interface
tcsh - C shell with file name completion and command line editing
bash - GNU Bourne-Again Shell
gnuplot - an interactive plotting program
gdb - The GNU Debugger
gcc, g++ - GNU project C and C++ Compiler (v2 preliminary)
f2c - Convert Fortran 77 to C or C++

TeX Software
A lot of TeX/LaTeX related software is available. Information about TeX can be found in
“TeX at CERN - The Local Guide”, available at the UCO. The most commonly used programs
are listed below.

latex - text formatting and typesetting
tex, initex, - text formatting and typesetting
slitex - make LaTeX slides
dvips - convert a TeX DVI file to PostScript
dvitype - translate a dvi file for humans
xdvi - DVI Previewer for the X Window System
bibtex - make a bibliography for TeX
makeindex - a general purpose, formatter-independent index processor
detex - a filter to strip TeX commands from a .tex file.

X11 Software
A full distribution of X11 (Release 4 & 5) software from MIT.

x3270 - IBM remote host access tool
xlock - Locks the local X display until a password is entered.

8.2 CORE (CSF,SHIFT,PIAF)

CORE, the Centrally Operated RISC Environment, is a set of integrated physics data analysis services located
in the CERN Computer Centre. These services include CSF, SHIFT and PIAF. The “CORE Physics Services -
User Guide” provides an overview of CORE and describes the common aspects of the services provided.

67

8.2.1 CSF

The Central Simulation Facility, CSF, is aimed at providing a facility for compute-intensive applications with
low I/O requirements. Information on CSF can be found in the “ CSF User Guide”, available from the UCO.

8.2.2 SHIFT

SHIFT, the ’Scalable Heterogenous Integrated Computing Facility’, provides a data analysis facility for more
I/O intensive applications. Unlike CSF, the individual machines in SHIFT ’belong’ to the specific experiments
that contribute finacially and help with the system administration to best suit their individual needs. For
information about SHIFT refer to the “SHIFT User Guide” or the “SHIFT Reference Manual”, both available
from the UCO.

8.2.3 PIAF

PIAF, the ’Parallel Interactive Analysis Facility’, is an extension of the PAW program. It allows users to analyse
interactively their Ntuples in parallel on a set of 5 high performance HP workstations. The usage of PIAF is
quite transparent for the PAW user. The PAW on-line help explains how to access PIAF. There is currently no
formal documentation about PIAF.

8.3 PaRC

PaRC (Parallel Risc Cluster) is intended for numerically-intensive work carried out by the engineering and
accelerator design community. Information on PaRC and its utilities can be found in the “PaRC Users Guide”,
available from the UCO.

8.4 NQS, NQS++

The Network Queuing System (NQS), is a batch system which has been installed on CSF and SHIFT systems
and is used for batch job submission. Further information on NQS and NQS++ can be found in chapters 6 & 7
of the “CSF User Guide”.

68

Chapter 9

Getting Help

9.1 man pages

Online help in Unix is in the form of man pages which consist of an online version of the Unix documentation
set (often called the Unix Programmer’s Reference Manual). You get access to the man pages with the man
command (man stands for manual). The format is:

man [part] topic

where topic is the name of the topic described in the manual (a command name or a filename) and part
specifies the section of the manual (1 through to 8). If no part is specified, man searches all reference sections
(giving preference to commands over functions) and prints the first manual page it finds for the topic given.
Usually, ordinary users are interested in part 1, commands and utilities. Part 2 is system calls, part 3 library
routines, part 8 is the System Administration Reference Manual.

Man pages are normally displayed using the more command. more displays one page at a time and allows
you after each page the option to enter commands to control what it does next. For example, you page forward
with the space bar and exit from man with q (for quit). You can search for patterns by entering /pattern. Enter
simply / to find additional instances of the pattern in the text. If there is more than one entry for the selected
topic, man will prompt for a second q to quit, or space to continue with the first page of the next entry.

man includes Unix system commands and utilities, but may not include shell commands. Help for shell
commands can be obtained with man csh or man sh then /pattern where pattern is the shell command you
want information on.

You can often get the format of a command by entering the command with an illegal option (try / or ? or .).
For example,

ls -/
ls: illegal option - - /
usage: ls -Rad CLHxmnlogrtucpFbqisf [files]

You can display information about man with:

69

man man

The man command can also be used to locate commands by keyword lookup:

man -k keyword

will display the man page name, section number in the Unix documentation and a short description, for
each man page whose NAME line contains keyword. On some systems this facility is also available via the
command:

apropos keyword

9.2 Vendor Online Help

9.2.1 IBM

The complete manual information available on a CD-ROM can be obtained in a very comfortable environment
with several screens using the info command. Like almost all such vendor-provided information systems it
provides extensive help menus on functionality and usage and are self explanatory. The info database has
been copied to the AFS file hierarchy and if your workstation has been installed according to the scheme
recommended by CN’s UNIX Workstation Support team, then the info command will point to that database
which is permanently mounted.

9.2.2 HP

Online documentation for the HP-UX is available through a central server known as hp-osf1. The documentation
can be invoked by typing lrom, if the HP Laserrom/UX software has been installed. The software and the
documentation is on a CD ROM which is usually (but not always) mounted. For further information about
mounting the software refer to the “CERN HP-UX Installation Guide”. In case of problems check with
hp.support@cern.ch.

9.2.3 DEC

For ULTRIX and OSF the man pages will have been added to your system during the system installation. If this
has not been done, for example to save disk space, or if you require additional documentation, the CD library
may be accessed from the server dxsoft using the Bookreader application.

For further information about setting the environment variable and mounting the documentation library,
please refer to the “CERN Guide to Installing ULTRIX”.

9.2.4 SUN

The SUN documentation is the answerbook, which is the SUN software to access the on-line manuals.

70

For information about installinganswerbook, please refer to “The CERN Sun workstation cookbook”.

9.3 Information Servers

9.3.1 World Wide Web (WWW)

The World Wide Web is a way of viewing online information available on the Internet. The user can navigate
and browse through information which has been hand-authored or partly computer-generated from existing
databases and information systems.

The Web today incorporates information from systems such as Gopher and WAIS as well as sophisticated
multimedia and hypertext information from many organisations.

There are two different commands which can be used to access the Web: mosaic for X-based screens or
www for line mode terminals.

The reader may find the CERN home page within these two browsers of particular interest because they can
find information on the Unix Workstation Support (UWS) group. By looking at the UWS pages the reader may
also find a link to the man pages of various systems. The URL � for the CERN Home Page is
http://www.cern.ch/

mosaic

For X-windows based workstations use mosaic.� mosaic is a hypertext browser. Hypertext is text which
contains highlighted links, called hyperlinks, to other texts. To activate a mosaic hyperlink, click with your left
mouse button on any highlighted text; this will take you to the document at the other end of the hyperlink. The
referenced document can be located anywhere on the World Wide Web, accessible via any network protocol
and in any format; mosaic will allow you to discover, retrieve, and display it almost as if it were stored on your
own hard disk.

If you have a colour screen, mosaic’s hyperlinks are initially blue and turn purple after you have accessed
the corresponding document. On a monochrome screen, hyperlinks are initially underlined text and become
dotted-underlined text. For information on the many options offerred by mosaic, consult the Help pages within
mosaic itself.

WWW

On terminals which can not run mosaic, www should be used. www is a line mode browser, which allows you
to access a wealth of information on the global internet. WWW can be invoked by typing www at the shell
prompt.

You can find information by following references and/or by using keywords. References are numbers in
[brackets] after particular phrases. Type the number and � RETURN � for more information on the phrase.

�A URL, or Universal Resource Locator, can be thought of as an address of an object which exists in the Web and which can be
accessed. A more precise definition is given in the help pages of the mosaic and www browsers.

�Previous versions of this utility were called xmosaic but users are advised to invoke mosaic as the new versions, starting with
version 2, have many more interesting features.

71

There are a number of commands which are available at the prompt within www. Some are disabled when
not applicable. All commands may be abbreviated and case is not significant.

Some of the more useful commands are:

Find � keywords � Queries the current index with the supplied keywords.
The interpretation of the keywords depends on the particular
information server you are looking at. In most cases, it will
search a database for entries matching the keywords, and will
display the results with possible links to further details. For
more complex queries, instructions should be present in the cover
page. The “find” command can be omitted if the first keyword
does not conflict with another www command.

Source Followed by another command, causes raw source to be
generated for that command. Useful for printing postscript files
without formatting with SOURCE PRINT.

Print Prints the current document, without the numbered document
references. A background www is launched to do that, and its
output is piped to the command defined by the environment
variable WWW PRINT COMMAND (“lpr” by default).

�file, ��file Saves or appends the current document to the given file,
without the numbered document references. A background www
is launched to do that.

|command Pipes the current document to the given command, without the
numbered document references. A background www is launched to
do that.

CD(or LCD) directory Changes the local working directory.

9.3.2 phone

To display information on a particular user the phone command can be used. Information can be obtained by
using phone together with: name, userid, phone number, bleeper number or division, for example

phone mickey

This will display the relevant information for the entries where the name contains mickey. The required
entry can be interrogated further to display electronic mail and account information for the user in question.
For further information on phone refer to the relevant man page.

9.3.3 emdir

The emdir command is an electronic mail directory service which allows you to interrogate a central directory
for the addresses of CERN personnel and update your own entry on it. (For various reasons, the binary file for
emdir has the name EMDIR L as currently stored on ASIS.)

The emdir command can be used on its own or with the following parameters: name, first name, division,
phone, experiment, institute, institute phone and mail address.

72

If parameters are given the database will be accessed in order to retrieve an entry corresponding to the
parameters. A %, *, or ? may be used to replace any missing parameters, or as a wild card at either end of
or within any of the parameters. For further information on how to use the emdir command please refer to the
relevant man pages.

Nearly all new entries on emdir are created automatically upon registration for an account on any of the
central computers at CERN. However, if this is not the case, send an email message to emdirmgr@vxcern.cern.ch
asking for the creation of your emdir entry. Thereafter, you will be responsible for its update.

Example

To update the mail address of Denys Smithers:

emdir
Emdir� Query
;;; information for Smithers is displayed
Emdir� Update
Update� 8 smithers@dxcern.cern.ch
Update� Go
Emdir� Exit

After the Go command you will be prompted for a password which will be requested before all future up-
dates. If you have forgotten this password from a previous update, contact emdirmgr@vxcern.cern.ch. For
more information use the online help.

9.4 News

Besides the local CERN newsgroups with which most people are familiar, Unix gives access to a vast amount of
news in the Usenet newsgroups. It also allows sites to exchange their ’private’ newsgroups by mutual agreement
and CERN currently exchanges news with DESY, Fermilab and SLAC.

9.4.1 NetNews

Usenet is the set of people who exchange articles tagged with one or more universally recognised labels, called
“newsgroups”. The groups distributed worldwide are divided into a number of broad classifications such as:
“comp”, “sci”, “news”, “soc”, “talk”, “rec”, “misc” and “alt”. Each of these classifications is organised into
groups and subgroups according to topic.

comp Topics of interest to both computer professionals and hobbyists, including topics in computer science,
software source, and information on hardware and software systems.

sci Discussions marked by special and usually practical knowledge, relating to research in or application of the
established sciences.

news Groups concerned with the news network and software themselves.

soc Groups primarily addressing social issues and socializing.

73

talk Groups largely debate-orientated and tending to feature long discussions without resolution and without
appreciable amounts of generally useful information

rec Groups orientated towards hobbies and recreational activities.

misc Groups addressing themes not easily classified under any of the other headings or which incorporate
themes from multiple categories.

alt Groups which are subject to less strict rules for creation of groups and content of articles.

9.4.2 Newsreaders

All newsreaders use a file in your home directory called ’.newsrc’. This file is used to register the newsgroups
to which you subscribe and the news articles you have already seen. Unless you have a system manager who
has created a ’.defaultnewsrc’ file for your machine, before using the newsreader ’nn’ for the first time it is
essential to create a ’.newsrc’ file in your home directory. It should contain the initial list of newsgroups, one
per line, to which you want to subscribe. For example

cern.cern
cern.computing
cern.unix
cern.hp

If you don’t create such a file you will be overwhelmed by interactive requests from every existing newsgroup
(all 3000 of them!). You may also find it convenient to create such a ’.newsrc’ file before using mxrn but it is
not so essential.

Three tools for reading news are proposed;-

mxrn This is a Motif interface to the ’old fashioned’ rn newsreader. It is relatively easy to use since all the
options are made available via the windows interface.. When you execute mxrn for the first time you will
be presented with the complete list of newsgroups from which to select the ones to which you wish to
subscribe. Luckily the list is presented in alphabetic order and a scroll bar is provided to help you get to
the ones you want. As new newsgroups become available you will automatically be offered the chance
to subscribe the next time you execute mxrn.

nn This calls itself ’an efficient’ news reader and although it is more difficult for a new user to learn, offers an
enormous variety of options and functions for someone who wants to scan, if not read, a large amount of
news. Since it is not an X application it can be used from any type of terminal. Don’t forget to create
a ’.newsrc’ file before using ’nn’ for the first time. Subsequently, each time you execute nn you will
first be given the chance to examine newly created groups. If you are not interested in them type U to
unsubscribe.

For each newsgroup to which you subscribe, you are first presented with a list of all new news articles
from which you select the ones you want to look at by typing in the letter or number appearing to the
left of the subject line. When you have finished selecting items, hitting the space bar will put you into
’reading mode’ where the text of the selected articles will be presented one after the other.

nn commands are normally just one letter and are mostly CASE SENSITIVE.

? help, summary of the commands that you can use at this moment

a-z,0-9 the letter or number corresponding to new item you want to look at

74

Q quit - note upper case!

space advance to the next page, next mode, next newsgroup,..

U unsubscribe

www You can also access news via the World Wide Web (www) using either ’mosaic’ or the line mode browser
’www’. This method does not use the .newsrc file and so does not keep track of the newsgroups to which
you are subscribed nor which news you have seen. However it could be useful for people who read
very little news or who normally use ’mxrn’ and have an occasional need to access news from a ’dumb
terminal’ and don’t want to learn ’nn’. News is accessible from the CERN ’home page’. Note that if
you are using mosaic you could add your favorite news groups to your ’hotlist’. The URL needed for
accessing news is of the form

news:cern.computing
news:comp.unix.ultrix

75

Bibliography

[1] Mark G. Sobell, A Practical Guide to the UNIX System, available at the UCO (Building 513) for SFr 60.

[2] Al Kelley and Ira Pohl, A Book on C, available at the UCO (Building 513) for SFr 50.

[3] Metcalf and Reed, Fortran 90 Explained, available at the UCO (Building 513) for SFr 30.

[4] D. Cameron and B. Rosenblatt, Learning GNU Emacs, O’Reilly & Associates,Inc, Sebastopol, USA, (1991)

[5] Stallman, GNU Emacs, will be available from the UCO for SFr 24.

[6] M. Goossens, A.Samarin, TeX at CERN - Local Guide, CERN CN/US/136, (1992)

[7] D.E. Knuth, The TeXbook, Addison-Wesley, Reading, (1990); available from the UCO for SFr 46.

[8] E. Krol, The Whole INTERNET, User’s Guide and Catlog, O’Reilly, (1992),ISBN 1-56592-025-2

[9] L. Lamport, LaTeX, A Document Preparation System, Addison-Wesley, Reading, (1986); available from
the UCO for SFr 45.

[10] St. Talbott, Managing Projects with make, O’Reilly & Associates,Inc

[11] D. Gilly et al., Unix in a Nutshell: System V Edition; Revised and Expanded for SVR4 and Solaris 2.0,
O’Reilly & Associates

[12] W. Joy, An Introduction to the C Shell, available on dxcern in /usr/local/doc/postscript/cshellintro

[13] B. Rosenberg, Korn Shell Programming Tutorial, Hewlett Packard

[14] L. Wall & R. Schwartz, Programming Perl, O’Reilly, (1991), will be available from the UCO for SFr 50.

[15] S. Garfinkel & G. Spafford, Practical Unix Security, O’Reilly, (1990)

[16] Aho, Kernighan, and Weinberger, The awk Programming Language, Addison-Wesley

[17] Philip Bourne, UNIX for VMS Users, Digital Press, available from the UCO for SFr 55. Addison-Wesley

76

Appendix A

Commonly Used Unix Commands

This appendix summarises frequently used Unix commands, special characters used to identify directories,
and special characters used on the command line. More detailed information on each command, including a
complete list of options, can be obtained with the man command.

A.1 Managing Directories

pwd display the path name of the working directory
cd dir change working directory to dir
mkdir dir create directory called dir
rmdir dir remove (delete) directory called dir. dir must be empty

A.2 Managing Files

ls list contents of working directory
ls file list file if it exists in working directory
ls dir list contents of the directory dir
ls -l list additional information on directory contents
ls -a list all files including hidden files (. files)
cp file1 file2 copy file1 to file2 (overwrites file2)
cp file dir copy file into directory dir
mv file dir move file into directory dir
mv file1 file2 move file1 to file2 (overwrites file2)
rm file remove (delete) file
rm -i file ask for confirmation before removing (deleting) file
more file displays contents of file, one screen at a time
cat file displays contents of file
chmod arg file change read/write/execute permission of file
chmod arg dir change read/write/execute permission of dir

77

A.3 Managing Jobs

� Ctrl� c � kill current job
� Ctrl� z � stop current job; can then be run in background with bg command
ps list process by process identifier
kill PID stop process with process identifier PID
jobs list your jobs by job number

A.4 On-line Help

man command display manual entry for command
man -k keyword list manual pages that pertain to keyword
learn on-line tutorial (AIX only)
info on-line tutorial, help pages and manuals, stored on CD-ROM.

Can only be used with X-Windows Terminals. (AIX only)
answerbook on-line help (SUN only)
insight on-line help (SGI only)
lrom on-line help (HP only)
dxbook on-line help (ULTRIX and DEC OSF/1 only)

A.5 System Information

who list users logged onto system
who am i displays your logon ID
passwd change password

A.6 Utility Programs

sort file sort contents of file, send result to standard output
grep pattern file look for pattern in file
uniq file1 file2 delete repeated lines in file1, write new version to file2
wc file count the number of lines, words, and characters in file
echo string write the parameter string to standard output, translate special characters
find path search the directory tree path (see man page for more details)
tar file write to or retrieve files from an archival storage media
compress file compresses the file and writes file.Z
uncompress file.Z restores file from compressed file

78

A.7 Directory Identifiers

˜ (tilde) your home directory
. (dot) the working directory
..(dot)(dot) the parent directory (one level up within hierarchy)
� root directory

A.8 Special Characters

* match any character
� redirect standard input
� redirect standard output
j send standard output of first command to standard input of second command
& put job in background
! repeat command (C shell)

79

Appendix B

Glossary

. (dot) The current directory.

.. (dotdot) The parent directory of the current directory.
absolute pathname A pathname which starts with the root directory (/). An absolute

pathname locates a file without regard to the working directory.
Pathnames that are not absolute are called relative.

access Frequently used to mean use, read from, or write to.
alias The mechanism for providing a different name for a Unix command string.
alphanumeric character One of the characters from a-z and 0-9, inclusive, either

uppercase or lowercase.
append To add to the end of something else.
argument Any word (string of characters delimited by spaces or tabs)

occuring after the command on a command line.
argv The variable in which the list of arguments to a command is stored.
arithmetic operator Symbol used to indicate and execute addition (+), subtraction (-),

multiplication (*), or division (/).
a.out Binary executable file.
background job A job which is not receiving input from the terminal. A job not

in the background is said to be in the foreground.
bin directory A directory containing binaries of programs and shell scripts.
bit bucket Name for the file /dev/null. Characters written to this file are

thrown away; characters read from this file cause immediate EOF.
boot The loading of the kernel into memory.
BSD Berkeley Software Distribution, a version of Unix originating

at the University of California at Berkeley.
built-in command A command executed directly by the shell, as opposed to

forking a process to execute a file in a directory.
case sensitive Treating lower and upper case characters as two kinds of

characters with separate meanings.
child directory The directory below another directory in the file system tree structure.
child process A process created when a parent process forks a new process.
command A function performed by the system either by the shell or by a

program residing in a file in the directory.
command editing Modifying a previously entered command for reuse as a new command.
command prompt A string of characters that the system outputs to tell you it is

ready to accept the next command.

80

concatenate To link together in a series.
console The terminal with which you communicate to the system.
csh Shorthand for /bin/csh/, the C shell program.
current directory The directory to which commands refer by default, the

directory you are currently in. Same as working directory.
cwd Variable in the shell which holds the absolute pathname of

the current working directory.
daemon A continuously-running program which monitors and manages

a system resource such as printers, working sets, etc.
detached job A job that continues processing after the user has logged out.
device See physical device.
device file A file that represents a device. Also called a special file.
directory A Unix file that contains names of othe files or directories. More

technically, a system-managed file containing the associations
between path components and inodes. Each directory entry
contains an inode number and a path component.

directory hierarchy The arrangement of directories in a Unix file system, consisting
of a root directory at the top of the directory hierarchy
containing pointers to all file systems, and hence to all
directories on the system.

disk partition Part of a disk onto which a file system is mounted.
driver The device dependant code for a particular device class;

eg: a specific type of printer or terminal.
environment The set of characteristics describing a user’s sessions, including

open files, user and group identification, process identification
and environment variables.

environment variable A variable exported automatically to subsequent programs.
EOF End-of-file generated by �ctrl-d� or the end of a file used as input.
escape A character (n) used to prevent the special meaning of a metacharacter.
ethernet A packetised asynchronous protocol using coaxial or optical fiber

cable with multiple senders and receivers. Each node listens for
packets which are addressed to it. When a node wants to send, it
waits for the ethernet to be idle and then sends. If two or more
nodes attempt to send at the same time, they detect this condition
by checking their own signals as they come back to the node and if
the signals are damaged each node waits for a short random
amount of time and then tries again.

event Past command stored in the history list.
exec A family of system calls that replace one program executing in

a process with another. The system calls differ in format of the
arguments and not in the purpose of the system call.

expansion The replacement of strings in the shell input which contain
metacharacters by other strings.

file A collection of data known to the operating system. In most
operating systems a file is associated with a specific name
or names. In Unix a file need not have a name but most files do
at least have one.

file descriptor The number Unix assigns to an open file.
filename The set of characters used to reference a file.
file system a) the component of the kernel that manages data resources into files

81

b) a disk data structure used to manage a tree of files.
filter A program that reads form standard input, does something and

writes to standard output.
foreground job A job that must be completed or interupted before the shell will

accept more commands; a job receiving input from the terminal.
See background job.

flag option Option used to modify the action of a command, consisting of
one or more letters preceded by the character -.

fork The system routine that creates a new process by duplicating the
calling (parent) process. One is called the parent and the other the
child. The parent process receives the process identification (pid)
of the child as a result of the fork system call. The child receives
from its copy of the same system call a pid of 0.

full-duplex the communications path is bi-directional and both ends may be
sending at the same time.

getty The terminal line monitoring program.
globbing Filename expansion using metacharacters.
group ID A numeric identification designating the group to which a user belongs.
half-duplex The communications path sends signals in one direction at a time.

The path may be capable of communicating in one direction only.
Otherwise, there is some agreed signal to allow the other end to
become the sender.

hidden file A file which begins with a period and often has special meaning
to the system.

history list The list of previously issued commands.
home directory Your default working directory; the location in the file system that

Unix automatically puts you when you log in. Same as the login directory.
host A computer network. Also known as a node.
ignoreeof A variable in some shells to prevent �ctrl-d� from logging

you out.
inode Pointer used to locate data on a physical device.
interrupt A signal to a program to stop execution (often set to �ctrl-c�).
job One or more commands typed on the same input line. Jobs are

classified as foreground, background, or suspended.
job number A unique number assigned to a job when it starts.
kernel The operating system control program.
ksh Shorthand for /bin/ksh, the Korn shell program.
link An entry in a directory that points to an existing file. There are

hard links and symbolic links (or soft links).
.login A file in your home directory which is executed each time you login.
login directory Your default working directory; the location in the file system that

Unix automatically puts you when you log in. Same as the home directory.
login name The unique name assigned to a user which is used at the login

prompt to login to the system.
login shell The shell that is started when you login.
.logout A file in your home directory which is executed when you log out.
metacharacter Character with special meaning to the shell or to Unix.
NFS Network File System, a protocol developed by Sun Microsystems,

Inc, to permit access to files on remote computers.
noclobber A variable in some shells which can be set to prevent accidental

82

destruction of files by output redirection.
noglob A variable in some shells which can be set to suppress the

filename expansion of arguments containing certain metacharacters.
ordinary file Collection of characters stored on disk. Contrast with special

(device) file or directory file.
output Information that a program sends to the terminal or other file.
panic The kernel has detected a fatal error and is terminating a system

crash. A panic dump results.
parent directory The directory one level closer to the root than the current directory.
parent process The process that forked to create a child process.
path A directory specification. An absolute path starts with slash and is

relative to a process’s definition of the system’s root directory.
A relative path does not have an initial slash and is relative
to a process’s definition of its current working directory.

pathname A list of directories, separated by / characters. It is used to trace
a path through a file structure to locate a file. The types are
simple, absolute and relative.

path component A field of a path delimited by the beginning, a slash, and the end of
the path.

physical device A piece of hardware attached to the computer eg: disk drive, printer.
physical device name The name given to a physical device.
PID Process IDentification. The PID number is a unique number

assigned to each process when it is initiated.
pipe A connection between two programs such that the standard

output of one is connected to the standard input of the other.
pipeline A group of programs connected by pipes.
plain file A file used to store a program, text or other data, as contrasted

with directory file or device file.
port The part of a computer system to which a terminal is connected.
prompt A cue from a program, usually displayed on the terminal, indicating

that it is waiting for input.
process The unit of work, or the means by which Unix executes a program.
process id An integer that uniquely identifies a process within the system.
quotation The process by which metacharacters are prevented from using

their special meaning, usually by using the character ’ in pairs
or by using the character n.

redirection The routing of input or output from or to a file, rather than a terminal.
relative pathname A pathname which does not begin with a / is interpreted relative to

the current working directory. Contrast with absolute pathname.
RISC Reduced Instruction Set Computer.
root Another name for the superuser; the source directory of the file system.
root directory The directory which is at the top of the entire directory structure and the start of

an absolute pathname. Represented by a /
script A sequence of shell commands placed in a file/program.
sh Shorthand for the file /bin/sh, the Bourne shell program.
shell A command language interpreter.
shell script See script.
signal A short message sent to a running program which causes

something to happen to that process.
socket Defines an endpoint for network communication (BSD only).

83

special character See metacharacters.
special file A file that represents a physical device. Also called a device file.
spooler A program or system of programs that accepts files to be delivered

to a system resource that needs to be used serially, eg: printers or
communications equipment.

standard error output A file that a program can receive output to, usually reserved for
error messages. By default it is directed to the terminal.

standard input A file that a program can receive input from. By default, it comes
from its terminal.

standard output A file to which a program can send output. By default, it is to the terminal.
stream Same function as socket (System V).
superuser A priviledged user who can perform administrative tasks.
suspended job A job which has received a stop signal, either via �ctrl-z� or

the stop command.
symbolic link A method to associate a file with two or more file names.
system call A request for services from the operating system control program or kernel.
TCP/IP A communication protocol that may be embedded within a

physical communications protocol such as Ethernet that supports
methods of communications that are sending letters called
datagrams or establishing two-ways links called virtual circuits.
Datagrams may arrive out of order or be lost. Virtual circuits protect
against packets arriving out of order but may lose packets. Higher
order protocols may provide either order services or replacements
for lost or damaged packets.

trusted host A host that permits access without a password.
tty An abbreviation for teletype, frequently used to indicate the port

to which a given terminal is connected.
user ID A number associated with each login name.
white space A name for spaces and/or tabs.
wild card character A character with a special meaning in a file specification.
working directory The directory you are currently in. Relative pathnames are built

upon the working directory. Also called current directory.

84

Index

.emacs, 58

.exrc, 56

.rhosts, 37

3270, 50

Absolute path, 28
Account, 7
ADSM, 34
AFS, 35
Alias, 24
Andrew File System, 35
Anonymous ftp, 40
Answerbook, 70
apropos, 70
ar, 63, 65
archive, 65
ASIS, 66
awk, 16

Backup, 33
bash, 10
Binding, 64
Bookreader, 70
Bourne shell, 10, 15

C, 61
C shell, 10, 15
cancel, 49
cat, 30
cd, 29
cernlib, 63
CERNVM access, 50
chmod, 32
CNL, 9
Combining files, 30
Command recall, 25
Commands, built-in, 11
Commands, format of, 11
Compiler, 61

option, 62
Computer Newsletter, 9
CoPilot, 34

CORE, 67
cp, 31
cpio, 34
CSF, 68
csh, 10

dbx, 64
Debugging, 64
DECnsr, 34
DFS, 35
Distributed File System, 35
dump, 34
dvips, 50

EDITOR, 20
Electronic mail, 44
elm, 46
emacs, 56
emdir, 72
End-of-file, 13
ENV, 20
Environment variables, 18
ex, 53

f77, 61
File backup, 33
File permissions, 31
Filter, 15
Forking, 12
fort77, 62
FORTRAN, 61
ftp, 39

Gnu emacs, 56
Gnu software, 67
Gopher, 71
grep, 16

History, 25
HOME, 20
Home directory, 27
Hypertext, 71

ignoreeof, 24

85

info, 70
Internet, 36, 71

Korn shell, 10
ksh, 10

LaTeX, 50, 67
ld, 61
Legato Networker, 34
Libraries, 62
Link editor options, 65
Linker, 61
Login, 8
Logout, 8
lp, 49
lpq, 49
lpr, 47
lprm, 49
lpstat, 49
lrom, 70
ls, 28

Mail, 44
mailx, 45
make, 61
man pages, 69
man, printing man pages, 11
Merging files, 30
mkdir, 29
more, 30, 69
mosaic, 71
mv, 30
mxrn, 74

Networker, 34
News, 73
nn, 74
noclobber, 13
NQS, 68
Null device, 14

Object file, 62
OMNIBACK, 34
Optimisation, 64

PaRC, 68
Password, 9
PATH, 20
Path, 12
phone, 72
PIAF, 68
pid, 12

pine, 47
Pipes, 14
Postscript, 48
PRINTER, 20
Printing, 47
Printing man pages, 11
Process identifier, 12
Process, active, 13
Process, background, 12
Process, child, 12, 15
Process, dormant, 13
Process, login, 10
Process, parent, 12, 15
Profile files, 21
Prompt, 11, 20
PS1, 20
pwd, 29

rcp, 41
Redirection, 13
Registration form, 7
Regular expressions, 16
Relative path, 28
remsh, 43
reset, 24
resize, 24
restore, 34
rexec, 44
rhosts, 37
rlogin, 38
rm, 31
rmdir, 29
Root directory, 27
rsh, 42

Scripts, 15
Search path, 12
sh, 10
Shared library, 63
Shell script, 15
Shell, bash, 10
Shell, Bourne, 10
Shell, C, 10
Shell, Korn, 10
Shell, login, 10
Shell, tcsh, 10
Shell, zsh, 10
SHIFT, 68
sort, 16
Standard error, 13
Standard input, 13

86

Standard output, 13
Startup files, 21
Static code, 64

tagibm, 51
tar, 34
tcsh, 10
telnet, 38
TERM, 20
Terminal server, 8
Terminal type, 20
TeX, 67

UCO - Registation form, 7
UCO - Resetting passwords, 9
UID, 7
Usenet, 73

Variables, environment, 18
Variables, shell, 18
vi, 52
VISUAL, 20

WAIS, 71
WDSF, 34
World Wide Web, 71
WWW, 71

X Terminal, 8
x3270, 50
xdb, 64
xdvi, 50
xlf, 62
xmosaic, 71

zsh, 10

87

