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1 Introduction

With the forthcoming increase of the LEP energy, new processes like W -pair produc-

tion and decay will o�er opportunities for an experimental investigation of funda-

mental quantities such as W mass or triple boson coupling. During the preparation

for the �rst phase of LEP operation [1], at centre-of-mass energies comparable with

the Z mass, it was advocated that di�erent classes of radiative corrections may turn

out to be essential in the interpretation of experimental results. Indeed, in some

cases such as the � polarization measurement [2], Monte Carlo modelling of the

observables is important. In the case of the luminosity measurement at LEP1 [3]

QED corrections constitute, even today, the systematic uncertainty surpassing the

experimental error and limiting the physical signi�cance of the measurement of the

number of neutrino species. The main di�culty is the complicated interrelation of

experimental cuts and strongly peaked multiphoton phase space, which has to be

handled with the help of a high-precision Monte Carlo simulation.

It is thus of high practical importance to ensure that a similar situation will not

repeat at LEP2 and, if necessary, to take appropriate steps in advance. For this

purpose a whole family of Monte Carlo programs and semi-analytical calculations
are being developed (see e.g. [4, 5, 6, 7]) and are being studied by the LEP2
workshop [8]. In the future W -pair production and decay measurements we expect
to reach the 1% experimental precision level. For theoretical e�ects to be negligible,
theoretical predictions of the Standard Model have to be given with precision, which

is at least 0.5% and preferably 0.3%. Due to complicated cuts which are usually
applied in experimental analyses, a Monte Carlo representation of the theoretical
results is necessary.

The purpose of the present paper is twofold. First, a technical one is to check
if the Monte Carlo program KORALW [9] for W -pair production and decay in

the LEP2 energy range is reproducing some distributions calculated using di�erent
methods, that is semi-analytical calculation. The second is to study the size of
some well-de�ned class of initial-state QED corrections for the total cross section of
W -pairs as a function of the centre-of-mass energy.

Good agreement, on a level signi�cantly better than 0.1% (in fact better than

0.01%!), de�nes a solid starting point for inclusion of smaller corrections into the
Monte Carlo program, as well as for the discussion of theoretical uncertainties due to

further missing terms, for observables of direct experimental and phenomenological

interest.

2 Semi-analytical Calculation

The core of the tests of the Monte Carlo (MC) code KORALW is the comparison
with the dedicated semi-analytical (SAN) calculation. These two approaches are

completely di�erent both in their principles (helicity amplitudes with YFS resum-

mation of soft photons versus standard Feynman diagram calculation plus Structure
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Functions) and in their numerical implementation (MC integration versus Gaussian

integration). Therefore they form an excellent tool for mutual tests. This approach

has however certain limitations. Namely, the SAN calculation cannot handle com-

plicated cuts required by the real experiment. In fact, in our SAN formalism no

angular cuts of any kind can be applied. The only variables available for cuts are

the total energy carried away by photons: v = 1� s0=s and two invariant masses of

the virtual W bosons: s1; s2. This limits our comparisons with the quantities like

total cross section or di�erential cross sections with respect to the v and si variables.

The extensive presentation of the MC algorithm and program was done in ref.

[9]. Also a brief description of the SAN calculation can be found therein. In the

following we will give a more detailed description of the SAN calculation.

Let us start with a presentation of the master analytical formula and discuss in

detail its components:

�SAN (vmin; vmax) = NS

1�vminZ
1�vmax

dxF (x; s)

xsZ
0

ds1

(
p
xs�

p
s1)

2Z
0

ds2 �(s1) �(s2)�
S
0 (xs; s1; s2):

(1)

The hard cross section �S0 (xs; s1; s2) is taken from ref. [10]. The only modi�cation
that had to be done to the original formula of eq. (4) in ref. [10] was to modify the

appropriate Z propagators. For the sake of completeness we present the complete
modi�ed formula for �S0 in the Appendix. The functions �(si) in eq. (1) are also
modi�ed with respect to ref. [10]:

�(si) =
1

�

1

12

�W

sin2 �W

si

(si �M2
W )2 + s2i�

2
W =M

2
W

: (2)

To adjust the overall normalization of the cross section to the convention of the

KORALW MC program, the corrective factor NS is introduced in eq. (1) for the
speci�c (a; b) decay channel

NS =

 
BRa

BR(e�)

! 
BRb

BR(e�)

!
: (3)

The BR(e�) denotes the branching ratio of the single W into the e� channel, and BRa

is the branching ratio into an arbitrary a channel; �W denotes the QED coupling
constant at the WW threshold, and sin �W is the sine of the Weinberg angle.

Finally, we need to discuss the Initial State Radiation (ISR) kernel F (x; s). Since

in the radiative sector we are working within the Leading Logarithmic (LL) approx-

imation the F (x; s) kernel is de�ned in the standard way as a convolution of two
Structure Functions D(xi; s):

F (x; s) =

1Z
0

dx1dx2�(x� x1x2)D(x1; s)D(x2; s): (4)
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There are a variety of representations of the exponentiated Structure Functions

available in the literature. They range from the standard, second-order ones ex-

ponentiated according to the Kuraev-Fadin (KF) [11] classical prescription, to the

third-order, faster convergent ones exponentiated according to the Jadach-Ward

(JW) prescription of refs. [12, 13, 14]. Any of these functions can be used to con-

struct the kernel F (x; s) of eq. (4). Among others both of the above mentioned

functions are implemented in the actual FORTRAN routine KORWAN. One has to

remember, however, that the main objective of our analytical calculation is to cross-

check the MC results. In order to achieve this, the kernel F (x; s) has to be slightly

modi�ed to account for some non-leading terms present in the YFS scheme and

by de�nition absent or ambiguous in LL Structure Functions. Let us show these

modi�cations on the example of the second-order kernel F
(2)

JW (x; s) exponentiated

according to the Jadach-Ward prescription of ref. [12]:

F
(2)

JW (1� v; s) = NNLLNY FS

e�CEuler�i

�(1 + �i)
�iv

�i�1�
(2)

JW ; (5)

�i = 2
�

�

�
log

s

m2
e

� 1

�
; (6)

NY FS = exp
�

1

4
�i

�
; (7)

NNLL = exp
�
�

�

�
� 1

2
+
�2

3

��
; (8)

�
(2)

JW = h��
(2)
0 i + h��

(2)
1 i + h��

(2)
2 i; (9)

h��
(2)
0 i = 1 +

�i

2
+
�2
i

8
� �i

4
log(1 � v); (10)

h��
(2)
1 i = v

�
v

2
� 1

�
� �i

2

�
1

4
(2� 6v + 3v2) log(1� v) + v +

1

2
v2
�
; (11)

h��
(2)
2 i =

�i

4
v2: (12)

First, the explicitly non-leading form factor NNLL has to be added. Next, to repro-
duce the proper soft limit behaviour of F , the e�ective LL parameter � = 2�

�
log s

m2
e

is to be replaced by the �i parameter. Let us stress that the above modi�cations,

ad hoc in the LL Structure Functions approach, can be understood in the YFS

formulation as a result of the actual phase-space integration. This integration can
be carried out even further { one can identify separate pieces h��ki of the �JW as
originating from di�erent ��k terms of the YFS expansion [15], see ref. [9] for details

on the de�nition of �� terms. This separation turns out to be very helpful for the

in-depth tests of the Monte Carlo algorithm and we show it explicitly in eq. (9).

Finally, the NY FS form factor di�ers from the well-known Gribov-Lipatov exponent

NGL = exp(3
4
�i). The not exponentiated exp(1

2
�i) is compensated order by order in

the perturbative �JW function.
We present here also the third-order result for the �JW function [12, 13], modi�ed
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to account for the speci�c form of the NY FS form factor

�
(3)
JW = 1 +

�i

2
+
�2
i

8
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48
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1 +
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2
+
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8
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�

+
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i

8

�
1

2
(3v � 2)v log(1 � v) +

1

12
(8� 14v + 7v2) log2(1� v)

+ v2 + (2 � v)vLi2(v)

�
: (13)

The numerical algorithm used by us to evaluate eq. (1) is the following. The

inner integration variables s1 and s2 are changed to u1 and u2 according to

si = MW�W tan
�
MW�Wui

�
+ M2

W (14)

and integrated out by a Gaussian technique.

From the outermost integration over v = 1�x we subtract the singular part and

integrate it by hand

�sing(vmin; vmax) = NS�
B(vmin)NNLLNY FS

e�CEuler�i

�(1 + �i)
�s

vmaxZ
vmin

dv�iv
�i�1

= NS�
B(vmin)NNLLNY FS

e�CEuler�i

�(1 + �i)
�s(v

�i
max � v

�i
min); (15)

�s = 1 +
�i

2
+
�2
i

8
; (16)

where

�B(vmin) =

(1�vmin)sZ
0

ds1

(
p

(1�vmin)s�
p
s1)

2Z
0

ds2 �(s1) �(s2)�
S
0 ((1 � vmin)s; s1; s2);

(17)

�B(vmin) is calculated numerically. The lef-tover, non-singular part �SAN � �sing is

integrated numerically directly by a Gaussian technique.

3 Numerical results and comparisons

In the second part of this letter we present a series of results from the MC program
KORALW and SAN routine KORWAN1. We focus on two aspects: study of the

1In all of the numerical results presented below we used the following set of input param-

eters: 1=�QED = 137:0359895; 1=�W = 128:07; G� = 1:16639 � 10�5 GeV�2; MZ =

91:1888 GeV; �Z = 2:4974 GeV; MW = 80:23 GeV; sin2 �W = ��W=(
p
2M2

WG�) =

0:23103091; �W = 9G�M
3

W =(6
p
2�) = 2:03367033 GeV: Other parameters are taken from ref.

[16]. Also the running width s�Z=MZ is used in the Z propagator, next-to-leading corrections are

switched o� in the YFS form factor and the �nal-state masses are set to zero.
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technical precision of the KORALW code and the discussion of higher-order ISR

corrections. The experimental accuracy of the measurements at LEP2 will be of

order 0.5{1%. Therefore it is su�cient to have the theoretical precision of MC

code of order 0:1%. Nonetheless in our discussion of the technical precision we will

often push the precision even down to 10�5. Is this useful in any sense? Yes, it

is! Our comparisons are done almost without cuts. This way the overall results are

dominated by paricular parts of phase space. In various `corners' of phase space there

might still be some inaccuracies, contributing below the 0:1% level and harmless in

this `no-cuts' test within the 0:1% precision, but harmful if one starts to impose

more stringent cuts enhancing these regions. Pushing the precision to 10�5 in our

`no-cuts' tests substantially increases our sensitivity to the `corners' of the phase

space.

Total cross section

The KORALW MC code is quite a complicated program (almost 10,000 lines).

Its satisfactory testing poses a highly non-trivial problem. In principle one should

cross-check, with at least one completely independent analytical or numerical cal-

culation, all the experimentally interesting quantities, of total and di�erential type,

with all the possible combinations of cut-o�s. This sounds unrealistic (at least for
the time being). Therefore we have chosen a somewhat di�erent strategy in testing
the KORALW code. To begin with we tried to identify some basic blocks of the
program and then perform a series of tests focused on each of these blocks sepa-
rately. We started with the Born matrix element. Given the fact that, leaving aside
ISR corrections, the physics of the Monte Carlo is contained in its matrix element

squared, a very powerful cross-check of the physics contents of di�erent generators
may be obtained by comparing the values of the matrix element squared evaluated
using completely di�erent codes, in phase-space points randomly sampled. The dif-
ferences due to gauge choices, should manifest themself only in global phases, which
are irrelevant if squared matrix element are compared. If the codes assume exactly

the same physics ansatz, then the results should agree within the numerical accuracy
of the machine used. If this is the case, even using a reduced sample of points, one
can be completely sure that the calculations are equivalent. Any di�erence would
re
ect either di�erent physics assumptions or just computer-code bugs. We have
compared on this event-by-event basis the values of Born matrix elements from as

many as four di�erent approaches. Namely:

� the KORALW code,

� an alternative computer code which we developed, in which the matrix element
squared is built using the techniques described in ref. [17],

� our own computer implementation of the matrix element squared described in
ref. [18],

� and �nally a custom version of the EXCALIBUR MC program of ref. [4],

modi�ed to yield the matrix element squared at a given point of phase-space.
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Apart from the purpose of checking the value of the matrix element squared, the use

of such a wide variety of calculational approaches served us to dig deeper into the

understanding of the structure and properties of the matrix element squared. After

some work, we found that, up to an overall constant factor, there was an agreement

of 13 digits or better for the total matrix element squared, and for its di�erent spin

contributions as well, among the four di�erent approaches. Having checked the Born

matrix element we turned to the Born total cross section. This way we were able

to check another crucial piece of the algorithm { the Born phase-space integration,

i.e. whether the event generation covers the entire phase space, whether the overall

and partial normalizations are correct, etc. We compared the MC KORALW results

with the SAN results described above and implemented in the KORWAN routine.

The results are collected in Table 1. One can see from this table that the typical

Table 1: Born total cross sections: MC (KORALW), SAN (KORWAN) and their ratiop
s MC KORALW SAN KORWAN MC/SAN{1

GeV �tot Born �tot Born

130 0:079769 � 0:00001 0:079764 � 0:00001 0:00007 � 0:00016
160 3:44770 � 0:00025 3:44758 � 0:00001 0:00003 � 0:00007
176 16:22371 � 0:00076 16:22463 � 0:00001 �0:00006 � 0:00005

190 18:34741 � 0:00086 18:34912 � 0:00001 �0:00009 � 0:00005
205 18:50651 � 0:00090 18:50783 � 0:00001 �0:00007 � 0:00005
300 13:50121 � 0:00066 13:50157 � 0:00001 �0:00003 � 0:00005

500 7:37282 � 0:00038 7:37308 � 0:00001 �0:00003 � 0:00005

agreement j�MC
Born=�

SAN
Born � 1j is better than 10�4, and always within two standard

deviations2.
Having gained some con�dence in the Born calculations, we have cross-checked

the next piece of the KORALW code { the multiphotonic phase-space integration.
As before, we looked at the total cross section but with ISR switched on3. The
comparison of the second-order exponentiated SAN (with the � function of eq. (9))
and the MC total cross sections is given in Table 2. One may notice that for energies
close to or below the WW threshold the agreement j�MC

ISR=�
SAN
ISR � 1j is very good

{ of order 10�5, within the statistical errors. Far above the threshold, however,

there appears a systematic deviation between second-order MC and SAN results.
How can we explain it? Close to the threshold, only the soft emission is allowed.

This soft radiation is properly summed up to all orders both by the MC and SAN

formulas. Further above the threshold the situation changes. More hard radiation
becomes allowed. Contrary to the soft part, the hard radiation in the SAN formula

2The Born level comparison of our semi-analytical program KORWAN with the GENTLE code

[19] was reported by D. Bardin at the second plenary LEP2 meeting [20], and agreement between

the two programs was at least 7 digits.
3Let us mention here that this multiphotonic part of the code is taken without any modi�cations

from the KORALZ code. This greatly reduces the chance of bugs in this piece of the code.
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Table 2: O(�2) total cross sections: MC (KORALW), Jadach-Ward(JW)-exponentiated

SAN (KORWAN) and their ratiop
s MC KORALW SAN KORWAN MC/SAN{1

GeV �tot O(�2)exp �tot O(�2)JWexp
130 0:067009 � 0:00001 0:067007 � 0:00001 0:00002 � 0:00021

160 2:46981 � 0:00026 2:47002 � 0:00001 �0:00008 � 0:00011
176 13:52135 � 0:00091 13:52211 � 0:00001 �0:00006 � 0:00007

190 16:29314 � 0:00110 16:29277 � 0:00001 0:00002 � 0:00007
205 17:08934 � 0:00118 17:08525 � 0:00001 0:00024 � 0:00007

300 13:64190 � 0:00111 13:64017 � 0:00001 0:00013 � 0:00008

500 7:86479 � 0:00073 7:86084 � 0:00001 0:00050 � 0:00009

is truncated exactly on the second order, whereas in the MC formulation some parts

of the higher orders are present. These higher-order terms are responsible for the

discrepancies in Table 2. To see it more quantitatively, in Table 3 we compare the

same second-order MC total cross sections as in Table 2 but with the third-order
SAN results (with the � function of eq. (13)). It is evident that the discrepancy

Table 3: Total cross sections: O(�2) MC (KORALW), Jadach-Ward(JW)-exponentiated

O(�3) SAN (KORWAN) and their ratiop
s MC KORALW SAN KORWAN MC/SAN{1

GeV �tot O(�2)exp �tot O(�3)JWexp
130 0:067009 � 0:00001 0:067013 � 0:00001 �0:00006 � 0:00021
160 2:46981 � 0:00026 2:47012 � 0:00001 �0:00013 � 0:00011

176 13:52135 � 0:00091 13:52286 � 0:00001 �0:00011 � 0:00007
190 16:29314 � 0:00110 16:29408 � 0:00001 �0:00006 � 0:00007
205 17:08934 � 0:00118 17:08711 � 0:00001 0:00013 � 0:00007
300 13:64190 � 0:00111 13:64398 � 0:00001 �0:00015 � 0:00008
500 7:86479 � 0:00073 7:86492 � 0:00001 �0:00002 � 0:00009

above the threshold disappears. On the other hand such a good agreement as seen
in Table 3 should not be taken literally. Instead, it should be considered as an

indication that the third-order corrections are of the same order of magnitude and
sign as the discrepancy in question. The actual precise cancellation visible in Table

3 may not be true if, for example, one imposes some further cuts or looks at a

di�erent observable.
So far we have discussed the MC and SAN results with the focus on technical

precision, as the inherent component of the total (physical and technical) error of
the MC calculation. The above tables contain however a lot of physical information

as well. By inspecting Table 2 versus Table 1, one can see how big the IS photonic
corrections to the WW production are. Enquiring further one might ask whether the
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second-order corrections, as given in Table 2, are really necessary for the assumed

theoretical accuracy of 0:1%? Indeed, the �rst-order corrections are in this case

su�cient, at least for the total cross section, provided one uses the multiplicative

(JW) exponentiation of ref. [12]. This can be veri�ed by inspecting Table 4, where

the same second-order MC results as before are compared with the �rst-order JW-

exponentiated SAN results. The size of the second-order correction is 0:1% in a

Table 4: Total cross sections: O(�2) MC (KORALW), Jadach-Ward(JW)-exponentiated

O(�1) SAN (KORWAN) and their ratiop
s MC KORALW SAN KORWAN MC/SAN{1

GeV �tot O(�2)exp �tot O(�1)JWexp
130 0:067009 � 0:00001 0:066934 � 0:00001 0:00111 � 0:00021

160 2:46981 � 0:00026 2:46658 � 0:00081 0:00131 � 0:00035
176 13:52135 � 0:00091 13:50562 � 0:00081 0:00116 � 0:00009

190 16:29314 � 0:00110 16:27565 � 0:00081 0:00107 � 0:00008

205 17:08934 � 0:00118 17:06952 � 0:00081 0:00116 � 0:00008
300 13:64190 � 0:00111 13:62754 � 0:00081 0:00105 � 0:00010

500 7:86479 � 0:00073 7:84361 � 0:00081 0:00270 � 0:00014

large energy-range. Only for the energies close to 500 GeV does the correction
grow to 0:3%. In other exponentiation schemes the second-order ISR might not be

negligible. As an example, in Table 5 we show again the second-order MC results
but compared with the �rst-order Kuraev-Fadin (KF) exponentiated SAN results.
The discrepancy (i.e. second-order corrections) grows to 0:7% already within the
LEP2 energy range.

Table 5: Total cross sections: O(�2) MC (KORALW), Kuraev-Fadin(KF)-exponentiated

O(�1) SAN (KORWAN) and their ratiop
s MC KORALW SAN KORWAN MC/SAN{1

GeV �tot O(�2)exp �tot O(�1)KF
exp

130 0:067009 � 0:00001 0:066695 � 0:00001 0:00471 � 0:00021
160 2:46981 � 0:00026 2:46385 � 0:00081 0:00242 � 0:00035

176 13:52135 � 0:00091 13:46044 � 0:00081 0:00453 � 0:00009

190 16:29314 � 0:00110 16:19217 � 0:00081 0:00624 � 0:00008

205 17:08934 � 0:00118 16:96140 � 0:00081 0:00754 � 0:00008

300 13:64190 � 0:00111 13:51930 � 0:00081 0:00907 � 0:00010
500 7:86479 � 0:00073 7:79601 � 0:00081 0:00882 � 0:00014

`Mass loss'

Another interesting observable, which can be calculated within our SAN frame-

work is an average `mass loss' de�ned as an average of v = 1 � s0=s variable timesp
s=2, i.e. (

p
s=2)

R
vd�=

R
d�. In Table 6 we compare, as usual, the second-order
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MC and second-order SAN (with the � function of eq. (9)) values of the `mass

loss'. One can see from this able that systematic discrepancies between MC and

Table 6: O(�2) W-pair `mass losses', i.e. <v>
p
s=2: MC (KORALW), SAN (KORWAN)

and their ratiop
s MC KORALW SAN KORWAN MC/SAN � 1

GeV <v>
p
s=2 [GeV] O(�2) <v>

p
s=2 [GeV] O(�2)

130 1:37535 � 0:00148 1:37711 � 0:00080 �0:00128 � 0:00122

160 0:53716 � 0:00029 0:53664 � 0:00007 0:00097 � 0:00055

176 1:17741 � 0:00030 1:17732 � 0:00008 0:00008 � 0:00027
190 2:13134 � 0:00046 2:13053 � 0:00011 0:00038 � 0:00022

205 3:18454 � 0:00066 3:18359 � 0:00016 0:00030 � 0:00021
300 10:03224 � 0:00191 10:02006 � 0:00048 0:00122 � 0:00020

500 25:56743 � 0:00449 25:53362 � 0:00112 0:00132 � 0:00018

SAN numbers appear at higher energies. Again, as for the total cross section, these
discrepancies can be traced back to the residual third-order terms missing in the
SAN result. To see it explicitly we repeat the comparison of Table 6, but with the
complete third-order SAN formula (with the � function of eq. (13)). Results are

given in Table 7. As one may see, the discrepancy changed sign and somewhat

Table 7: W-pair `mass losses', i.e. <v>
p
s=2: O(�2) MC (KORALW), O(�3) SAN (KO-

RWAN) and their ratiop
s MC KORALW SAN KORWAN MC/SAN � 1

GeV <v>
p
s=2 [GeV] O(�2) <v>

p
s=2 [GeV] O(�3)

130 1:37535 � 0:00148 1:37805 � 0:00080 �0:00196 � 0:00122
160 0:53716 � 0:00029 0:53679 � 0:00007 0:00070 � 0:00055
176 1:17741 � 0:00030 1:17753 � 0:00008 �0:00010 � 0:00027

190 2:13134 � 0:00046 2:13116 � 0:00011 0:00008 � 0:00022

205 3:18454 � 0:00066 3:18499 � 0:00016 �0:00014 � 0:00021
300 10:03224 � 0:00191 10:03286 � 0:00048 �0:00006 � 0:00020

500 25:56743 � 0:00449 25:59021 � 0:00112 �0:00089 � 0:00018

decreased in absolute value, showing that the order of magnitude and sign of the

e�ect are consistent with the discrepancy.
Di�erential distributions

With the help of the SAN formalism outlined earlier we are also able to look

at the di�erential distributions. We start with the photonic distributions d�=d log v
with v = 1� s0=s. In Fig. 1 we show the di�erential cross section with second-order
ISR (with the � function of eq. (9)). The histogram shows the MC result. Open

circles plot the SAN second-order JW-exponentiated result and the dots plot the

di�erence (d�MC=d log v�d�SAN=d log v)�100 in absolute units. To make it visible
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the di�erence has been multiplied by a factor 100. The errors shown are the MC

statistical errors. The plots are for the energies
p
s = 190 GeV and

p
s = 500 GeV.

As can be seen, the agreement for 190 GeV is very good, the di�erence between MC

and SAN results being, within statistical errors, consistent with zero. In the case

of 500 GeV, one notices a systematic discrepancy in the hard part of the spectrum.

This is again the above-mentioned e�ect of the third-order terms not included in

the SAN curve, and present in the MC data. The same pattern can be seen in the

next two �gures separately for the �rst- and second-order contributions to the cross

section. More precisely, we plot the contributions to d�=d log v from the second-order
��1 and ��2 terms of the YFS expansion as given in eqs. (11) and (12), respectively.

As before, histograms represent the MC results and open circles the SAN results.

The di�erence MC � SAN in absolute units, multiplied by a factor of 100, is plotted

with the solid circles. For the ��1 contribution of Fig. 2, again the agreement between

SAN and MC is consistent with zero within the statistical errors for the energy 190

GeV, and shows third-order discrepancies for 500 GeV. As for the ��2 contribution of

Fig. 3, the discrepancy MC � SAN appears to be larger. It must be noted, however,

that the scale in Fig. 3 is changed with respect to Fig. 2. The actual ��2 correction

is almost two orders of magnitude smaller than the ��1 one and the absolute size of
discrepancies MC � SAN for ��2 and ��1 is the same, re
ecting again the third-order
di�erences in MC and SAN calculations.

Finally, we can have a look at the d�=d
p
s1 distribution, with s1 being the invari-

ant mass of one of the virtual W bosons. It is rather straightforward to remove one
dimension of integration from formula (1) and obtain this single W mass spectrum

in the SAN way. A sample comparison of the second-order SAN calculation with
our MC program is given in Fig. 4. The SAN result for the di�erence of O(�2) and
Born distributions is also given (small dots); note the 
ip of sign between the two
energies shown. The level of discrepancies, consistent with zero, and the size of the
initial-state bremsstrahlung e�ect are clearly visible.

4 Closing remarks

At the end of this letter we would like to add a few words of caution. It may be

tempting to interpret the reported high-precision agreement between SAN and MC

results as follows: one could conclude that solutions based on the LL Structure Func-
tion, either of SAN or MC type, are an excellent approximation of the actual fully
exclusive approach, of the YFS/KORALW style. However, this is not necessarily

true. First of all, in the LL SF approach one cannot control the transverse momen-

tum distributions, which are not important for the total cross section. Secondly,

one has to keep in mind that the Initial-State Radiation constitutes only part of the

photonic corrections to the W -pair production. The missing, not factorizable e�ects
of O(�) cannot be incorporated in the LL SF formalism. On the contrary, these

corrections can be taken into account in the exclusive YFS approach in a rather

10



straightforward way.
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A Appendix

We give here the complete modi�ed formula for �S0 of eq. (1), based on ref. [10]:

�S0 (s; s1; s2) = C1G1 + C2G2 + C3G3 (18)

C1 =
�2(4��W )2

64�s2s1s2

�
1

s2
+

1

16

1

sin4 �W

(1� 4 sin2 �W )2 + 1

(s�M2
Z)2 + s2�2

Z=M
2
Z

+
1

2

1

sin2 �W

1� 4 sin2 �W

s

s�M2
Z

(s�M2
Z)2 + s2�2

Z=M
2
Z

�
;

C2 =
�2(4��W )2

64�s2s1s2

1

8

1

sin4 �W
;

C3 =
�2(4��W )2

64�s2s1s2

�
�1

8

2� 4 sin2 �W

sin4 �W

s�M2
Z

(s�M2
Z)2 + s2�2

Z=M
2
Z

� 1

2

1

sin2 �W

1

s

�
;

G1 = �� 3

2

�
1

6
� + 2

�
s(s1 + s2) + s1s2

��
;

G2 = �� 1

2

�
1

6
� + 2

�
s(s1 + s2)� 4s1s2

��

+4(s� s1 � s2)s1s2 log
s� s1 � s2 � �

1

2

s � s1 � s2 + �
1

2

;

G3 = �� 1

2

�
1

6
�
�
s + 11(s1 + s2)

�
+ 2

�
s21 + 3s1s2 + s22

�
s� 2(s31 + s32)

�

�4
�
s(s1 + s2) + s1s2

�
s1s2 log

s� s1 � s2 � �
1

2

s � s1 � s2 + �
1

2

;

� = (s� s1 � s2)
2 � 4s1s2:
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Figure 1: O(�2) di�erential cross sections d�=d logv: MC KORALW (solid line), SAN

KORWAN (open circles) and their di�erence enhanced by a factor 100 (dots). Two energiesp
s = 190 GeV and 500 GeV are shown.
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p
s = 190 GeV and 500 GeV are shown.
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Figure 4: O(�2) di�erential cross sections d�=d
p
s1: MC KORALW (solid line), SAN

KORWAN (open circles), their di�erence enhanced by a factor 100 (dots) and enhanced

SAN di�erence (O(�2)�Born) (small dots) are shown for
p
s = 190 GeV and 500 GeV.

Note 
ip of the sign for SAN (O(�2)�Born) di�erence and the two
p
s.
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