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Abstract

We review the current status of � physics from an experimental point of view.
Results from all experiments that have observed e+e� ! �+��, from threshold to
LEP energies, are summarized and discussed. Recent results on static properties of

the �� and the �� , such as mass and spin, are reported. We then analyze the world

data on the production of � pairs by the electroweak neutral current interaction.

Decay properties of the � lepton by the weak charged current are discussed. For the

electroweak sector, we compare the properties of the three lepton generations. Since
the � lepton also decays into hadrons, resonance production by the weak charged

current is studied and information on �nal state strong interactions is achieved.
Finally, we comment on the implications of � physics results in the search for new

particles and new interactions.

(Submitted to Physics Reports)
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Chapter 1

Introduction

The physics of the third generation lepton family is a subject that combines simplicity in

principle with complexity in practice. It is simple since the � lepton and its neutrino appear
to be elementary, sequential leptons just like the electron and the muon. Its analysis is rather
complex because of its many decay modes and short lifetime.

A couple of intriguing questions immediately comes to mind when thinking about the objects
of this review. The �rst one is the obvious question of why the third generation of elementary

matter constituents exists at all, a question equally valid as for the second generation. And, as
the measurement of the number of light neutrino families at LEP indicates, the � family may
well be the last one for which this question can be asked. In the approach to an answer, one
faces a pair of related questions:

1. Are the � and its neutrino truly elementary, i.e. pointlike and structureless?

2. Is the � a sequential lepton, with the same vertices and couplings as the electron and the
muon?

Should the answer to both of these questions really be yes, one would be dealing with just

another lepton like the ones de�ned as the matter contents of the Standard Model [1], distin-

guished from the �rst two lepton generations only by its mass and its own conserved lepton
number. Would a deviation from this baseline be observed one would hope that indeed progress
could be made to �nd the raison d'être for a lepton almost twice as heavy as the proton. Even in

the framework of the standard model, the asymmetry between leptons, whose mass eigenstates

and weak eigenstates seem to coincide, and quarks, for which this is manifestly not the case, is
most remarkable and disturbing.

Twenty years after its discovery [2], e+e� reactions have stayed the only abundant source

of � leptons to date. Four generations of experiments have been performed covering the energy

region from threshold to the mass of the Z boson. The experimental approach to the above
questions has stayed constant:

� to measure the static properties of the � and its neutrino, especially their masses, with
high precision;
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� to study their production by the electroweak neutral current and their decay by the weak

charged current;

� to search for interactions of � neutrinos and possible oscillations between �� and other

neutrino species.

In addition to these rather classic features of experimentation with leptons, a new element

enters in that the � lepton is the only one heavy enough to decay hadronically. This opens

the possibility to study the hadronic current at rather low momentum transfer in a simple

experimental environment.

The history of � physics has been reviewed elsewhere [3]. The purpose of this paper is to

systematically collect the currently existing data and review them under the above aspects.

Preference is given to recent results and, wherever possible, to published data; earlier � results

have been summarized in previous reviews [4{6]. The organization of the paper is as follows. We

�rst summarize the experimental conditions for the four generations of � lepton experiments,

from threshold to the Z pole. We then review the current knowledge of the static properties
of � and �� . The following two chapters are devoted to the measurements of the electroweak
couplings of � and �� . Strong interactions in � decay are then covered, both for exclusive

charged hadronic currents and for inclusive �nal state interactions at low momentum transfer.
A �nal chapter collects results of searches for new physics in which the � lepton enters as a
powerful tool.
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Chapter 2

Experimental conditions for

e+e� ! �
+
�
�

Although � leptons have been observed at hadron colliders [7{9], e+e� experiments remain the
major contributors to the study of their properties and interactions.

An overview of e+e� experiments which have published results on � leptons shows that they
densely cover the energy range from threshold all the way to the Z pole. One can identify the
following main energy domains:

1. Threshold region: SPEAR and BEPC

2. Heavy quark resonance region: CESR and DORIS

3. Electroweak interference region: PETRA, PEP and TRISTAN

4. Z region: SLC and LEP

Fig. 2.1 gives an overview of the � production cross section in these energy regions, without

showing enhancements by hadronic resonances such as the �. All data are radiatively corrected
so that they can be directly compared to Born level Standard Model predictions. This procedure
is not very accurate, especially close to the Z resonance, so that this only gives a qualitative

picture. A more precise analysis, which does full justice to the impressive experimental accuracy

at the Z pole, will be described in chapter 4.

The methods to separate e+e� ! �+�� from concurrent e+e� reactions are based on

� apparent lepton number violation in the visible �nal state, such as e+e� ! �+�� !
(e��) (���) or ! (h n�0 �) (e=� ��);

� combinations of other speci�c decay modes in a single tag or double tag con�guration;

� two low multiplicity, narrow jets of particles.
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Figure 2.1: The center-of-mass energy dependence of the �+��Born cross section and forward-
backward charge asymmetry (without enhancements by heavy quark resonances). Also shown
are experimental results covering the whole energy region from threshold to the mass of the Z

boson [10{41]. All data have been radiatively corrected to allow for a qualitative comparison
with electroweak theory at the Born level.

Main backgrounds to e+e� ! �+�� are 
uctuations towards low multiplicity in e+e� !
hadrons, e+e� ! e+e�(
), e+e� ! �+��(
), as well as the four fermion reactions e+e� !
e+e�l�l and e+e� ! e+e�hadrons. Their relative importance varies considerably with energy.
As a consequence, the � decay modes amenable to a clean selection as well as the selection
e�ciency and purity are very much energy dependent. In general one can observe that the
selection of tau lepton samples becomes more complete and purer with increasing energy.

Table 2.1 lists the pioneering experiments at SPEAR [2, 10, 42{52] and DORIS [53{62], at

threshold and in the region of heavy quark resonances (3 to 11 GeV). Due to the fact that �
branching fractions were not very well established at the time, experiments usually restricted

their analysis to the leptonic decay modes with apparent lepton 
avor violation in the visible

�nal state, like e+e� ! �+�� ! (e��) (���) or ! (h�) (e=���). This resulted in high purity
samples (55 to 94% depending on details of the selection), but at the expense of low detection

e�ciencies (15 to 2%).

Experiments in this energy region are still being continued very successfully at CESR [11,

63{83], at BEPC [84{87], and until recently at DORIS II [88{109]. Tab. 2.2 shows an overview
of recent samples on which published analysis has been based. Clearly the CLEO experiment at

CESR holds the world record in both produced and detected sample size. In the region of the

� resonances, the boost of � lepton decays is already su�cient and the multiplicity of hadronic
background high enough to base a �+�� event selection on topological criteria, which are less

aimed at speci�c decay modes. Nevertheless, detection e�ciencies are in the 15% region when

a purity above 90% is required.
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p
s L N�+��

Experiment [GeV] [pb�1]
SLAC-LBL 3.8-7.8 16 86
MARK II 3.5-6.7 21 2150

DELCO 3.1-7.4 692
MARK III 3.77 9.4 500

DESY-Hdlb. 3.6-4.4 3 299

DASP 3.1-5.2 7 93

Table 2.1: Early experiments at � threshold and in the resonance region at SPEAR [2,10,42{52]

and DORIS [53{62]. The event samples consist predominantly of leptonic � decays.
p
s L N�+��

Experiment [GeV] [pb�1]
BES 3.5-3.6 5 1600

CLEO 10.6 2050 1870000

ARGUS 9.4-10.6 387 373000

Table 2.2: Recent experiments at � threshold and in the resonance region at BEPC [84{87],
CESR [11,63{83], and DORIS [88{106].

p
s L N�+��

Experiment [GeV] [pb�1]
CELLO 14-47 137 4116

JADE 14-47 210 6182
MARK J 14-47 214 2197

PLUTO 35 42 419
TASSO 14-47 227 1310

MAC 29 216 7035
Mark II 29 220 8200
HRS 29 300 6507

TPC 29 140 5000

AMY 52-58 160 1310

TOPAZ 52-61 74 572
VENUS 50-61 27 283

Table 2.3: Experiments in the region of electroweak interference, at PETRA [16{31, 110{122],

PEP [12{15,123{161] and TRISTAN [32{36].

Due to the low total cross section, experimentation in the region of maximum electroweak

interference (15 to 60 GeV) is di�cult. However, � events are rather easily recognized as low
multiplicity, narrow back-to-back jets of particles. Separation of �+�� �nal states from con-
current reactions becomes progressively easier with increasing energy, and substantial samples

of �+�� �nal states have been collected at PETRA [16{31,110{122], PEP [12{15,123{161] and
TRISTAN [32{36] in this interesting energy domain. Tab. 2.3 shows an overview of published

statistics. Already here, the large average multiplicities in e+e� ! hadron background and the

characteristic � decay kinematics allow for 95% pure separation at e�ciencies approaching 30
to 40%.
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p
s L N�+��

Experiment [GeV] [pb�1]
MARK II 92 0.2 21
SLD 92 2.2 4522

ALEPH 89-93 122 132000

DELPHI 89-93 77 45000
L3 89-93 118 105000

OPAL 89-93 121 127000

Table 2.4: Experiments in the region of the Z resonance, at SLC [245{248] and LEP [37{41,

162{244]. Note that DELPHI data are only included up to 1993, while the other experiments

include preliminary 1994 data.

Since the charged multiplicity of e+e� ! hadrons grows with log s and the tau decay

multiplicity stays small, it is clear that a sample selection based just on topology must be very

successful at high energies. As an example, �g. 2.2 shows the observed multiplicity distribution

with the contributions of various �nal states from DELPHI at LEP [162]. Consequently, high
e�ciencies and purities can in fact be obtained simultaneously at energies around the Z pole.

Tab. 2.4 shows an overview of published statistics for the LEP [37{41,162{244] and SLC [245{
248] experiments. Sample purities close to 100% and e�ciencies of order 70% result. This is very
important in that it not only provides high statistical accuracy to �+�� data but that it also
establishes samples with low bias on the decay channel and the decay kinematics. This matters
especially for the study of high multiplicity � decays and the measurement of � polarization.
Chapters 4 and 5 will provide details on these measurements. Moreover, the Z resonance

su�ciently enhances the production cross section to allow for samples of order 100000 �+��

�nal states to be collected and analyzed by each LEP experiment to date.
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Figure 2.2: The observed multiplicity distribution of charged particles from DELPHI at
LEP [162]. Also shown are the contributions of various �nal states as determined by Monte

Carlo calculation.
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Chapter 3

Static properties of � leptons

3.1 The mass of the � lepton

The masses of fundamental constituents of matter, leptons and quarks, are basic parameters of
the Standard Model. They are not predicted by the model and have to be �xed experimentally.
Masses are of fundamental importance since they distinguish between the generations. They
are also of great practical importance, since they enter into all rate calculations through phase

space factors with a high exponent. To a lesser extent, they are also important as arguments
of the running coupling constants of the theory.

Probably the best example to show that precision measurements of the charged lepton
masses are of prime importance is the consistency check on lepton universality by comparing

the leptonic width of the muon and the tau (see section 5.1). In the calculation of the width for
�� ! e���e�� , the tau mass enters as the �fth power, the results are thus very sensitive to the
experimental uncertainty on this parameter. The measurement of the � mass by DELCO in
1978 [47], later corrected by the Particle Data Group to take into account a precise recalibration
via the  (2S) mass from resonant depolarisation [249,250], dominated the world average for over

a decade until 1992. The DELCO result, m� = 1783+3�4 MeV, was extracted from an analysis
of the e+e� ! �+�� excitation curve at threshold. The limited statistics of the measurement
and the non-optimum distribution of energy points in the threshold scan severely limited the
accuracy of the mass measurement. However, the rather wide range in energy covered by the

experiment allowed to unambiguously conclude that the tau spin is 1=2.

As the accuracy of the ingredients into the measurement of the tau leptonic width increased,
an apparent violation of leptonic universality at the level of two standard deviations started to
appear (see e.g. [251]). In addition, and equally importantly, the large uncertainty in the tau

lepton mass limited the obtainable accuracy in upper limits to the tau neutrino mass.

The mass accuracy for the three lepton families has reached a precision of �m=m of 10�7

for electron and muon [252]. Only recently, the tau mass measurement has entered into the

sub-permill region. In the following, the most recent and most accurate measurements will
be discussed. ARGUS, and later CLEO, have used the kinematics of hadronic tau decays to

obtain a mass value with high statistics, high accuracy measurements far above threshold. The
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threshold scan has been repeated with a stepwise re�nement method in a dedicated experiment

by the BES collaboration at BEPC.

3.1.1 Excitation curve at threshold

This method is based on the measurement of the e+e� ! �+�� cross section in the region

most sensitive to m� , a few MeV around threshold. The energy dependence of the total or

visible cross section is interpreted in the Standard Model to derive the � mass. This method,

pioneered at SPEAR by DELCO to obtain the �rst accurate mass value [47], has recently been

repeated at BEPC with the BES detector [84, 86, 87]. In their threshold scan, a data driven

scan strategy was used to adjust the center of mass energy of each scan point in order to reach

maximum sensitivity on the tau lepton mass. The sensitivity is ampli�ed by the fact that the

�+�� cross section has a �nite step at threshold, due to Coulomb interactions [253,254].

The �rst BES measurement, based on a small event sample of the type �+�� ! e�+4� [84],

was restricted to the e� topology to guarantee an essentially background free sample. The data
were collected at ten di�erent energies within a range of 24 MeV around threshold, with an

integrated luminosity of ' 4:3 pb�1. The selected sample consisted of 14 e� events with a
negligible background of 0.12 events. This background, crucial to the accuracy of the mass
measurement, was estimated by applying the same selection to a sample taken at the J= 
energy. Measurements of the J= peak were also used to calibrate the beam energy scale.

The likelihood function used to estimate m� is the product of Poisson probabilities, de�ned

at each center of mass energy, to obtain the observed number of events given a mass dependent
prediction. The predicted number of events is

N = L[�B�(ps;m�) + �B] (3.1)

where L is the integrated luminosity, B the product of semileptonic branching fractions cor-
responding to the signature, � the signal detection e�ciency and �B the accepted part of the
background cross-sections. The function �(

p
s;m�) is the Standard Model cross section for

�+��production including radiative corrections and integrated over the spread in the center of

mass energy,
p
s, �ps ' 1:4 MeV.

With a two dimensional maximum likelihood �t, the values of m� and �, the overall absolute
e�ciency to detect �+��events, are determined. Thus, uncertainties in the luminosity scale,
the trigger and detector e�ciencies are implicitly taken into account. The value of � is then

�xed to the �t result and a value for m� obtained from a one parameter �t, its error is included

in the systematics. As independent sources of systematic error were considered: uncertain-
ties in the product �BL, that contributed �m� =+0:16

�0:20 MeV, the absolute beam energy scale

(�m� = �0:09 MeV), the uncertainty in the beam energy spread (�m� = �0:02 MeV) and the
background (�m� = �0:01 MeV). Combining these systematic error in quadrature, the BES

result on the mass of � lepton from dilepton events was m� = 1776:9+0:4�0:5 � 0:2 MeV, where the

�rst error is statistical and the second systematic.

Recently, a re-analysis of the full data sample yielded an improved �nal result [86,87]. It uses
a sample of dilepton as well as lepton-hadron events to obtain larger statistics. These events are
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distributed in di�erent decay categories as: ee(4), e�(18), e�(19), eK(2), ��(3), ��(5), �K(3),

��(4) and �K(6), for a total of 64 events. Using the same procedure as described above, BES

�nds a �nal result of

m� = 1776:96+0:18+0:20�0:19�0:16 MeV (3.2)

The e�ciency corrected cross section as function of center of mass, and the result of the likeli-

hood �t are shown in Figure 3.1.

(a) (b) (c)

-8

-6

-4

-2

0

1774 1776 1778

0

1

2

3540 3580 3553 3554

C
ro

ss
 S

ec
ti

o
n

 (
n

b
)

ln
(L

/L
   

   
  )

m
ax

W (MeV) m   (MeV)τ

Figure 3.1: a) The center-of-mass energy dependence of the �+��cross section as measured by
BES [86] (dots), compared to the result of the likelihood �t (curve). b) An expanded view
of the region in the immediate vicinity of the �+��threshold. c) The dependence of the log
likelihood on the tau mass, solid curve for the �nal BES result [87], dashed curve for the result
from e� events alone [84].

3.1.2 Decay kinematics

Another method to measure the tau mass, based on kinematics properties of hadronic � decays,
has been applied by the ARGUS and CLEO collaborations.

The ARGUS Collaboration [101] used a large sample (11K events) of taus decaying into
three charged pions, �� ! �����+�� . The other tau in the event was required to decay in one
prong mode. Since the neutrinos escape detection, the event kinematics cannot be completely

reconstructed. Nevertheless, approximating the tau direction by the direction of the charged

particles, a so-called pseudomass m�
� can be de�ned

m�
� = 2(E� � E3�)(E3� � p3�) +m2

3� (3.3)

where E� ' Eb is the � energy, E3�, p3�, and m3� are the energy, momentum and mass of the

three pion system. This quantity tends towards the real tau mass as the neutrino energy goes

to zero. The pseudomass spectrum, shown in Figure 3.2 has a sharp cut-o� on the high mass
side. The position of this edge is directly related to m� . The background has only a very slight

slope in this area.
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Figure 3.2: Pseudomass distribution from �� ! �����+�� showing data (points with error

bars) and Monte Carlo simulation (shaded histogram) [101] for a tau mass of 1784.1 MeV. The

insert shows an enlarged view of the region at the kinematic limit.

The � mass has been obtained �tting the measured m�
� spectrum using a model function

with a sigmoid shape. This shape has been obtained from a Monte Carlo simulation of the mea-
surement at a reference mass of 1784.1 MeV. The measurement was thus reduced to obtaining

a small shift with respect to this reference value. In addition, an almost constant background
must be added to the �t function. Figure 3.3 shows the data in the region of the kinematic
limit, together with the �t result.
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Figure 3.3: m�
� distribution from data ARGUS data in the vicinity of the kinematic limit

(histogram), together with the result of the �t (solid line) and the background contributions

(dashed and dotted curve. [101]

The result obtained from this method is:

m� = 1776:3 � 2:4� 1:4 MeV (3.4)
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with the �rst error representing the statistical, the second one systematic uncertainties. The

systematic error includes the contribution from uncertainties in the absolute beam energy

(�m� = 0:5 MeV), the assumption of zero neutrino mass (�m� = 0:3 MeV), the absolute

momentum scale of the apparatus (�m� = 1:2 MeV), and the modeling of the 3� spectra

(�m� = 0:5 MeV). This result in fact gave the �rst indication that m� is signi�cantly below

the previous best value measured by DELCO. Preliminary results from DELPHI [255], using a

similar technique, have yielded a mass value of 1778:7 � 3:1� 1:3 MeV.

Using a similar kinematic approach, but with a di�erently de�ned sample of decay modes,

CLEO obtained a precise value of m� soon after [75]. The decay sample consisted of one prong

decays. Since the two tau leptons in an event have to be emitted back to back up to radiative

corrections, the tau direction can be reconstructed up to a two fold ambiguity just from the

two charged tracks and four-momentum conservation. The two tau directions are constrained

to lie on cones around the charged particle direction (see Figure 3.4), the opening angle cos ��

of the cones depends on the tau mass

cos �� =
1

2p�ph�

�
m2

��
�m2

� �m2
h� + 2E�Eh�

�
(3.5)

The intersections of one cone with the parity inverted second one thus de�ne the two kinemat-
ically allowed tau directions. Varying the mass of the tau, one can determine a lower limit per

event,Mm, which is reached when the two cones just touch each other. At CESR energies, the
half-angles are small (� 8�) and the value of Mm is close to m� . The Mm distribution shows a
characteristic edge, the position of this edge again gives the tau mass.
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Figure 3.4: The kinematics of �+�� ! h+���h
��� [75].

The CLEO sample consists of � decaying hadronically into one charged particle and 0, 1,
or 2 �0's. Inclusion of additional �0's reduces the dependence of the result on the absolute

knowledge of the momentum scale, but introduces an additional dependence on the energy

scale. At least one �0 is required in the event to reduce background. The value of Mm for each
event is calculated from measurements of charged tracks and calorimetric showers, as well as

the beam energy. The distribution is shown in Figure 3.5 and indeed shows the expected pile

up just below m� and a sharp drop beyond. Monte Carlo and experimental Mm distributions

are �tted with an empirical shape to extract a mass value. The result is

m� = 1777:8 � 0:7� 1:7 MeV (3.6)

where the �rst error is statistical and the second systematic. The systematic error comes

from uncertainties in the momentum scale (�m� = 0:8 MeV), the calorimeter energy scale
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Figure 3.5: The Mm distribution in the data and in the simulation for a tau mass of 1784.1

MeV [75].

(�m� = 1:2 MeV), the beam energy (�m� = 0:1 MeV), simulation statistics (�m� = 0:8
MeV), the cuts and the �t itself (�m� = 0:5 MeV).

Clearly both kinematical methods have to assume that the mass of the tau neutrino is zero,
while the result from the threshold scan is insensitive to small neutrino masses. ARGUS takes
this into account in the systematic error. A �nite neutrino mass would increase the CLEO
result by m2

��
=1100 MeV.

τ Mass         MeV

1770 1780 1790

PDG92 1784.1 +2.7
−3.6

ARGUS92 1776.3 ±   2.4 ±   1.4

BES92 1776.9 +0.4
−0.5 

+0.2
−0.2

CLEO93 1777.8 ±   0.7 ±   1.7

DELPHI94 1778.7 ±   3.1 ±   1.3

BES94 1776.96 +0.18
−0.19 

+0.20
−0.16
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Figure 3.6: The value of m� obtained from recent experiments, compared to the 1992 world

average of the Particle Data Group. Note that the �nal result from BES [86, 87] supersedes

the previous BES result [84]. The band indicates the current world average and its error,
m� = 1777:02+0:26�0:24 MeV.
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In summary, the recent accurate measurements of the tau mass, listed in Fig. 3.6, correct

its value downwards to an new world average of

m� = 1777:02+0:26�0:24 MeV (3.7)

and reduce its error by more than an order of magnitude compared to the 1992 world average.

Even with respect to the 1994 average of the Particle Data Group, which contained the result

of the early BES analysis, their �nal result improves the error by almost a factor of two.

3.2 Limits on the � neutrino mass

The kinematic properties of the observed �nal state in hadronic � decays also give the possibility

to estimate the tau neutrino mass. It is obvious that the best decay channels for a missing mass

measurement will be those with a high hadronic mass, where the least energy is available for

the missing neutrino. Thus high multiplicity decays are selected for this analysis. The endpoint

of the visible hadronic mass spectrum, compared to the tau mass, then gives a limit on the

�� mass. It is also clear that this measurement is simpler when the tau leptons are produced
with a low momentum, thus with a low boost factor. However, the distinction between a high
multiplicity tau decay and a low multiplicity event from e+e� ! hadrons becomes a lot easier
with increasing center of mass energy. Recent precision limits on the �� mass thus come from
ARGUS and CLEO at

p
s ' 10 GeV and, surprising at �rst sight, from OPAL and ALEPH atp

s ' 91 GeV. The recent results are summarized in Tab. 3.1 and shortly extended on in the
following.

Experiment characteristics CLEO ARGUS OPAL ALEPH

Produced �+�� 1.77 M 325 K 36 K 76 K
Signal 3���0/5�� 5�� 5��(�0) 5��/5���0

2nd � ��e� ��e�h� 1 prong < 4 prongs

Number events 53/60 20 5 23/2
Method 1-D 1-D 2-D 2-D

m��< (95% CL) 32.6 31 74 23.8

Table 3.1: Limits on the tau neutrino mass in MeV.

3.2.1 Low energy measurements

In low as well as high energy experiments it is extremely important to have an event sample

as clean as possible, since a background event near the endpoint of the visible mass spectrum
can produce an arti�cially low upper limit for m�� . This aim is reached at low center of mass

energies [76, 92, 101] by selecting one � decaying into a high multiplicity �nal state, the other
decaying leptonically (CLEO) or into a single charged particle (ARGUS).

ARGUS [92,101] used � 's decaying into 5 pions, �� ! �������+�+�� , recoiling against a

single charged particle. 20 candidates were found in this category, with an estimated background
of much less than one event. The visible hadronic mass of the 5� system is shown in Fig. 3.7
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and compared to what one expects from a tau decay into 5 pions according to phase space,

assuming m�� = 0. Within statistics, the spectra agree in shape and peak position, such that a

zero mass cannot be excluded. An upper limit on m�� is de�ned by the event with the highest

visible hadronic mass. To account for possible uncertainties in the background determination,

ARGUS conservatively disregards the event with the highest observed mass and extracts a limit

from the masses (and errors) of the remaining 19 events, compared to their own result for m�

(see section 3.1). The result is m�� < 31 MeV at 95% con�dence level.

��
��
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Figure 3.7: Measured invariant mass spectrum of the 5 pion system in events �� ! 5���
from ARGUS [101]. The light histogram corresponds to the distribution observed in an earlier
study [92]. The curve is the expected shape for a phase-space decay with zero neutrino mass.

For a similar analysis, CLEO [76] selected high multiplicity tau decay modes with charged
as well as neutral pions, namely �� ! 2h�h+2�0�� and �� ! 3h�2h+�� . The size of their event
sample is 60 events of the �rst and 53 events of the second category, with a total background
of less than half an event including feed up from lower multiplicity tau decays. 12 events with
a mass of the hadronic system larger than 1.65 GeV were observed. The distribution of the
invariant mass for all candidates is shown in Fig. 3.8; no event above m� was observed. The
agreement to the expected spectrum with m�� = 0 is good.
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Figure 3.8: Distribution of invariant masses of �ve pion tau decays from CLEO [76]. The

superimposed curve is the expected distribution for m�� = 0.

An upper limit for m�� is obtained from a likelihood function calculated event by event as
a function of m�� , taking into account the observed mass and the theoretical mass spectrum
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convoluted with detector resolution and acceptance. The limit on m�� obtained from both

decay modes is m�� < 32:6 MeV at 95% CL. It is dominated by the sample with neutral pions.

This limit include the e�ects of systematic errors such as uncertainties in acceptance, mass

scale, mass resolution, distortion from backgrounds, the model of � decays used and m� , which

was taken from an early BES measurement [84].

3.2.2 High energy measurements

The kinematic disadvantage of high boost factors for high energy measurements of this kind is

counterbalanced by the diminishing multihadron background and the excellent momentum and

energy resolution of LEP detectors. Also, statistics is not necessarily an issue, since a single

event at high visible mass su�ces to give a stringent limit. Moreover, the correlation between

visible mass and visible energy in a tau decay allows to enhance the sensitivity to a non-zero

m�� , as �rst shown by OPAL [234].
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Figure 3.9: Selected � ! 5��� data from OPAL [234], with 1� ellipses indicating the experi-

mental resolution. The Monte Carlo events (m��=0), with a statistics eight time higher, are
plotted with boxes. The lines show the kinematically allowed range for m�� = 0 and m�� = 100

MeV.

In the OPAL analysis, �ve tau decays into a �nal state with �ve charged pions were selected,

recoiling against a one prong tau decay. The estimated background is less than 0.1 event in this
category. The events were studied in the plane de�ned by the total hadronic energy and the

total hadronic mass, as shown in Fig. 3.9. Again, the \best event", with a mass of 1:731�0:023

GeV and an energy of 43:03 � 0:81 GeV dominates the mass limit, which is obtained from a

maximum likelihood method analogous to the one dimensional analysis. The result of the �t is

m�� < 74 MeV at 95% CL [234]. A recent update [243], exploiting the high statistics sample of
events where both tau leptons decay into three charged hadrons, yields the preliminary limit

m�� < 29:9 MeV at 95% CL [234], including the earlier result quoted above.
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ℵ

Figure 3.10: The observed mass and energy of the hadrons in � ! 5��� from ALEPH data [184,

188]. The events labeled as 4 and 25 are identi�ed as � ! 5��0�� . The kinematic boundaries
for a zero and non-zero neutrino mass are indicated, as well as the region most sensitive to
small neutrino masses.

The same analysis technique has been used by ALEPH [184, 188], based on a larger event
sample. The decay modes used are � ! 5��� and � ! 5��0�� . In the opposite hemisphere, a �
decaying into three or less charged particles is admitted. The data sample consists of 23 events
identi�ed as 5� and 2 as 5��0 decays. There is nearly no background other than cross feed
among the two signal channels. The total background in the region sensitive to the neutrino
mass is estimated to be 0:04� 0:03 events. The characteristics of the candidates closest to the

kinematic boundary are displayed in Fig. 3.10.

The method used to extract an upper bound on the neutrino mass is analogous to the OPAL
method. The 2-dimensional likelihood analysis yields m�� < 23:8 MeV at the 95% con�dence

level, including systematic errors. As expected, the upper limit is dominated by the events

labeled 1 and 17 in Fig. 3.10. Using a one dimensional likelihood analysis instead, a weaker
limit of m�� < 40:6 MeV would have been set.

3.3 Oscillations of the � neutrino

The existence of the �� as a light, only weakly interacting particle distinct from �e and ��
has been con�rmed by the precision measurements at LEP [163, 189, 203, 217] and SLC [246],

measuring the number of the light neutrino families, N� = 2:988�0:023 [256]. The experimental
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proof that �� is indeed the weak isospin partner of the � , for instance with the observation of

inverse � decay, ��e
� ! ���e, has not yet been accomplished. Neither has an interaction with

a nucleus, �� + N ! �� + X, ever been observed. Although it has been shown to be light,

�� may well be the heaviest neutrino if neutrinos are not strictly massless. The search for a

massive �� is thus of great interest, not only from the point of view of particle physics, but

also for its impact on cosmology and astrophysics. This impact has been extensively reviewed

elsewhere [257{261] and we restrict our discussion to the arguments directly relevant for particle

physics.

In a cosmological model with a 
at universe, the universe must be �lled with dark matter

that accounts for most of its mass. The � neutrino may be considered a likely candidate, among

the known particles, to be a constituent of dark matter. The expected mass value for such a

neutrino should then be of order 10 eV [261{263], too low to be observed directly in the decay

kinematics (see section 3.2). But also a more massive neutrino, in the MeV range, can be

accommodated in cosmological models [264,265].

If any or all of the three neutrino species have a �nite mass, hadronic and leptonic charged

currents could also share the distinction between weak eigenstates and mass eigenstates. Neu-
trinos could mix in a way analogous to quark mixing by the CKMmechanism. Indirect evidence

for low mass neutrinos could then be found through the observation of oscillations between neu-
trino states. This idea of neutrino oscillations was originally proposed by Pontecorvo [266{268]
in analogy with K0 mesons. The mechanism of oscillation is also a possible solution to the long
standing problem of solar and atmospheric neutrinos (see sections 3.3.1 and 3.3.2).

The neutrino mass eigenstates, (�1; �2; �3), can be linked to the weak interaction eigenstates,
(�e; ��; �� ), with a three by three unitary matrix similar to the CKM matrix for quarks. There

are then at least three angle parameters, (�e�; ��� ; �e� ), that govern neutrino mixing. Neutrino
oscillations could transform an originally pure weak eigenstate into a mixture, if the mass
eigenstates evolve di�erently with time, i.e. if the masses are not degenerate. In the simpli�ed
case of two-neutrino mixing, such as �� $ �� , the probability P of �nding, after a path L, a ��
which started as a �� is given by

P = sin2 2� sin2
2�L

�
(3.8)

where � (= ��� ) is the mixing angle between the two neutrino species, and L is the distance
between source and detection point. The oscillation length is � = 5E�=�m

2, with the mass

di�erence parameter �m2 = jm2
��
�m2

��
j.

Since neutrino masses are small, the mass di�erence parameter must also be small. The
observation point should thus be installed far from the neutrino source and small neutrino

energies are favored. The ranges accessible to di�erent types of oscillation experiments are
summarized in Fig. 3.11. Since the oscillation probability contains two unknown parameters,

experimental results are expressed as limits in the plane of �m2 versus sin2 2�.

There is little theoretical guidance on the values that neutrino masses or mixing angles
might have [269]. In extensions to the Standard Model, like Supersymmetric Grand Uni�ed

Theories [270], the so-called see-saw mechanism [271,272] may generate neutrino masses from

couplings of Dirac neutrinos with Majorana neutrinos. This leads to a mass hierarchy such
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Figure 3.11: The sensitivity regions in L=E and �m2 for di�erent neutrino sources in oscillation

experiments.

that m�e � m�� � m�� [271,272], with mass ratios proportional to a power of the quark mass

ratio [262, 269, 270] or the charged lepton mass ratio [263]. The neutrino masses predicted
in such models are usually too small [270] or too large [262] to respect cosmological limits
on dark matter properties [263{265, 273]. However, due to the mass hierarchy, it can still
be concluded that only the tau neutrino mass can lead to observable oscillations. To this
extent even the relatively weak upper bound on the tau neutrino mass from direct observation

(m�� < 23:8 MeV, see section 3.2) has a larger impact on cosmological models [274] than the
more stringent limits on the other neutrino families (m�� < 0:16 MeV at 90% CL, m�e < 5:1
eV at 95% CL [252]).

Even less is known about expected values for the mixing angles. A reasonable guideline
would be that the structure of the neutrino mixing matrix would follow the pattern seen in

the CKM matrix [263]. Thus, the diagonal elements would be almost one, and the elements be
smaller and smaller the more o�-diagonal they are. The mixing angles might then range from
10�1 to 10�4, with sin2 2�e� � sin2 2��� . Mixing would thus be mainly restricted to neighboring

generations.

3.3.1 Solar Neutrinos

Based on the argument discussed in the beginning of this section, the sun constitutes an ideal

source for the study of possible neutrino oscillations. It abundantly produces low energy elec-
tron neutrinos, such that about 1010 impinge on the earth's surface per square cm and per

second [258, 261, 269]. Its large distance, 149 � 106 km, satis�es the requirement for the study
of very small �m2.

Many experiments have studied the rate of solar neutrinos reaching the earth, for detailed

reviews see [258,259,261,275,276]. The aim of the experiments is to look for the disappearance
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of solar neutrinos on the way from the center of the sun to the surface of the earth. Given

the neutrino energy spectrum and the source-target distance, these experiments are sensitive

to regions of �m2 above 10�11 eV2.

The detection strategy for electron neutrinos is twofold. Radiochemical experiments study

the inverse beta decay reaction induced by neutrinos on massive underground targets, detected

by a small number of converted nuclei. This category includes the pioneering experiment

Homestake [277,278], using a chlorine target, as well as recent experiments with a using gallium

target, like Sage [279{281] and Gallex [282{286]. Underground Cerenkov detectors, on the other

hand, like Kamiokande [287{289] detect the quasi-elastic scattering of neutrinos o� electrons

(see Fig. 3.12). All these experiments indicate, that the 
ux of electron neutrinos from the

sun is lower than expected from the Standard Solar Model [290{293]. The radiochemical

experiments are sensitive to electron neutrinos only, while the Cerenkov experiments have a

reduced e�ciency also for �� and �� , through the neutral current contribution to the cross

section.

The lack of solar electron neutrinos on the earth can be explained by either modifying the

Standard Solar Model [258,290{292], or by postulating that electron neutrinos disappear on the
way. The more interesting latter possibility would mean that either the electron neutrino is not
stable, or that it oscillates into another 
avor that the experiments are not (or less) sensitive
to. There is no evidence for radiative neutrino decay [294] and supernova data indicate a very
long lifetime [295].

Thus if there is no de�ciency in the calculated solar neutrino 
ux, electron neutrinos might
oscillate, either inside solar matter or on the way from the sun to the earth. The �rst mechanism,

oscillations in matter, could be ampli�ed by the fact that the total cross section for low energy
electron neutrinos with ordinary matter is higher than for any other neutrino species (see
Fig. 3.12). This di�erence in interaction probability could lead to an increase in oscillation
probability through resonance e�ects [296]. As a consequence, even small mixing angles could
give rise to appreciable oscillation e�ects. Of course, the same argument applies to interactions
inside the earth.

Z W

e e e- - -

ν ν νe,µ,τ e,µ,τ e e -

νe

Figure 3.12: Low energy neutrino interactions in solar matter. The neutral current process (left)

is available to all neutrino species, while at very low neutrino momenta the charged current
channel (right) exists only for electron neutrinos.

The results of solar neutrino experiments, interpreted in terms of oscillations between �e
and either �� or �� are summarized in Fig. 3.13, as an allowed zone in the plane of �m2,
sin2 2� [258]. The regions of maximum probability are situated between �m2 ' 3 � 10�6 eV2
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and 10�5 eV2. From the mass hierarchy argument one can estimate that �m2 ' m2
��
' 10�5

eV2, and a muon neutrino mass of order 2 meV results. Using a proportionality of the neutrino

masses to the square of quark masses, one can thus predict a mass for the tau neutrino of

m�� ' m��

�
mt

mc

�2
(3.9)

Using the known quark masses (mc = 1:5 GeV [252], mt ' 174 GeV [297, 298]), one thus

arrives at a tau neutrino mass between 30 and 40 eV, which is in the right range required for

tau neutrinos to form dark matter. The tau neutrino oscillation length would be of order 60

m, su�ciently short to be observed by an accelerator experiment (see Section 3.3.3).
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Figure 3.13: Regions of parameter space allowed by recent experiments on solar electron neu-
trinos [258]. The band between the lines is allowed by the experiments at 90% CL. The grey

area is excluded by the combined results. The black regions correspond to the best �t to all
experiments.

It is clear, however, that this interpretation depends heavily on the correctness of the neu-

trino 
ux predicted by the Standard Solar Model. The next generation of solar neutrino experi-

ments thus aims at measuring the rate of all neutrino types simultaneously. Such measurements

would thus be less dependent on absolute 
ux predictions. Experiments under construction are
SNO [299] and Super-Kamiokande [269, 300]; the detectors for Icarus [269, 301] and Borex-

ino [302] are in a prototype stage.
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3.3.2 Atmospheric Neutrinos

The other source of information on possible neutrino oscillations, in particular for �� , are

atmospheric neutrinos. The neutrino spectrum on earth above a neutrino energy of about 100

MeV [258] is dominated by �� and �e produced in cosmic ray interactions inside the atmosphere.

These neutrinos come from the decay of pions and kaons present in air showers. The basic

production and decay scheme is

P +N ! �0s+K 0s

(��=K�) ! �� + (��=���) (3.10)

�� ! e� + (�e=��e) + (���=��)

From this decay chain, the expected 
avor ratio in the atmospheric neutrino 
ux can be simply

estimated: one expects about twice as many muon neutrinos as electron neutrinos and as many

neutrinos as antineutrinos. Calculation of electron and muon neutrino 
uxes [303, 304] have

an uncertainty of 25%, whereas the ratio between these 
uxes is determined to better than

5%. The neutrino 
ux is approximately isotropic. In the presence of neutrino oscillations, the
detected neutrino 
uxes will di�er from expected ones and be di�erent in the upwards and
downwards direction due to interactions inside the earth. While the electron neutrino rates are
quite consistent with prediction, there appears to be a signi�cant de�cit in muon neutrinos.
The rate is usually expressed in terms of the double ratio R = (�=e)data=(�=e)MC, comparing

the observed ratio of electron to muon events with the expected ratio. Kamiokande recently
published a result [305] based on a reanalysis of events with energies less than 1.33 GeV, which
gives R = 0:60+0:06�0:05(stat)�0:05(syst). The same technique gives R = 0:57+0:08�0:07(stat)�0:07(syst)
for high energy events. IMB3 [306, 307] �nds a comparable de�cit, R = 0:54 � 0:05(stat) �
0:12(syst), which is also shown by the lower statistics Soudan2 [308], R = 0:64 � 0:17(stat) �
0:09(syst). No evidence for a de�cit has been found by Frejus [309, 310], R = 0:87 � 0:16 �
0:12 [258], and Nusex, R = 0:96+0:32�0:28 [258,311].

Again, this data has been interpreted in terms of neutrino oscillations [258, 260, 261, 312]
between �� and �� . A summary is reproduced in Fig. 3.14 [258, 305]. Although the evidence
cannot be considered conclusive, hints from solar and atmospheric neutrino experiments indi-
cate that neutrino oscillations might indeed exist, consistent with an meV muon neutrino mass
and a 10 to 100 eV tau neutrino mass.

3.3.3 Accelerator neutrinos

Since the current data allow oscillations of the �� with a reasonable oscillation range, it is

a challenge to con�rm their existence with an accelerator neutrino experiment. Experiments
with a short distance from source to target (baseline) would be sensitive to larger �m2 values,

those with a long baseline to smaller ones. Experiments in muon neutrino beams and beam

dumps have searched for interactions of the type ��N ! ��X, with the � lepton identi�ed
by its decay. None such interactions were found. At present the most stringent limit reached

in �e ! �� oscillations and in �� ! �� was obtained from the E531 collaboration, a hybrid

emulsion spectrometer in the Fermilab wide-band neutrino beam. Figures 3.15 quotes the
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Figure 3.14: a) and b): Regions of parameter space for tau neutrino oscillations, allowed
(shaded) or excluded at 90% CL (above lines) by experiments [258]. The shaded area cor-
responds to the regions allowed by earlier Kamiokande results. c) The recent Kamiokande

results [305]. The thick curve encloses the allowed region (90% CL) for neutrino oscillation
parameters obtained from high energy data. The hatched region combines results from high
and low energy data. The best �t values are shown by the crosses.

resulting limits for �e ! �� and �� ! �� oscillation parameters, together with earlier results
from BEBC [313,314], CCFR [315], CDHS [316], CHARM [317] and CHARM II [318].

There are currently two new experiments running at an accelerator, CHORUS [320,321] and

NOMAD [322, 323], both at CERN. A third one, E803 [324] will be taking data at Fermilab
before the turn of the century. Two further, long baseline experiments far from the neutrino

beam's source project to use the Fermilab neutrino beam with the Soudan 2 detector [325,326],

and the Brookhaven beam with E889 [327]. All these experiments aim at being sensitive to
neutrino oscillation parameters far beyond the current limits (see Figures 3.15).

The CERN experiments [328] aim at observing a �� appearance in a �� beam, through a
charged current interactions ��N ! ��X. The �� contents in these beams is negligible (10�7).
The �� beam is derived from 450 GeV protons of the CERN SPS. It has a mean energy of

E� ' 27 GeV and a small contamination from ��� (6%), �e (0:7%) and ��e (0.2%).

The two experiments NOMAD [322] and CHORUS [320] are situated at L ' 800 m away

from the neutrino source. They are sensitive to the range 10 � m�� � 20 eV. The principle used
by NOMAD [322, 323, 328] is to separate �� interactions statistically on the basis of kinematic

quantities like the missing transverse momentum of the reaction. To obtain a high detection
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Figure 3.15: Left: Existing limits for �e ! �� oscillations at the 90 % con�dence level, from

BEBC at the SPS [313], the BEBC beam dump experiment [314] and E531 [319]; the expected

limits for CHORUS [320,321], NOMAD [322,323] and E803 [324] are also presented. Right: Ex-
isting limits for �� ! �� oscillations at the 90%con�dence limit, from CCFR [315], CDHS [316],
CHARM [317], CHARM II [318] and E531 [319]; the expected limits for CHORUS [320, 321],
NOMAD [322, 323] and E803 [324] are also represented. The hatched area emphasizes the
expected improvement.

e�ciency, very good energy, momentum and angular resolution are needed. The NOMAD
detector (see �g 3.16) is installed, with the exception of the forward veto plane and the rear
muon chamber, inside a 0.4T magnetic �eld perpendicular to the beam axis. It is similar to
a classical �xed target neutrino detector, except for a transition radiation detector to enhance

electron recognition. The target consists of the walls of drift chambers used for the momentum
measurement. The main characteristics of the detector are summarized in Tab. 3.2.

Experiment characteristics NOMAD CHORUS E803

Number of CC interactions 1:1 � 106 5 � 105 6 � 106

Expected running time [y] 2+(2) 2+(2) 4
� decay mode e; � � e

�� + (n�0) �� + (n�0) �� + (n�0)
�+���� + (n�0) �+���� + (n�0) -

Sensitivity at large�m2

sin2 ��� 3:8� 10�4 2:8� 10�4 2:8� 10�5

sin2 �e� 2:7� 10�2 1:6� 10�2 5:0� 10�3

Energy 30 GeV 30 GeV wideband ' 10 GeV
Distance 800 m 800 m 470 m

Starting Time 1994 1994 1998

Table 3.2: Summary of characteristics of NOMAD, CHORUS, E803

The detection principle used by CHORUS, see Fig. 3.17 [320, 321, 328], is to recognize the
presence of a �� lepton before its decay. The � decay path expected at these energies should be
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Figure 3.16: Side view of the NOMAD detector. The neutrino beam enters from the left.

shorter than 1 mm. Thus a track sensitive target made of an emulsion stack and a scintillating
�ber tracker forms the core of the apparatus, followed by a spectrometer. A detailed view of
the target is shown in �g 3.18. The bulk of the emulsion stack remains in place for the whole
duration of the experiment, followed by a sheet changed more often to have less occupancy.
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Figure 3.17: Lay-out of the CHORUS detector.

The CHORUS tracker is installed inside a 0.17T toroidal �eld to form a magnetic spectrom-

eter. It is followed by an electromagnetic calorimeter and a muon detector. Using a kinematic
event selection, vertex locations for about 50.000 events, i.e. about 10% of the full event sam-

ple, would be predicted and scanned for in the emulsion. Tracks emerging from the vertex are
then inspected for kinks to single out � decays. A similar experiment, E803 [324], has recently

been approved at Fermilab to start taking data in 1998. The main characteristics of the three

experiments are compared in Table 3.2.

Sensitivity to long oscillation lengths and thus small �m2 can be gained by installing detec-
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Figure 3.18: The CHORUS track sensitive target

tors far away from the neutrino source, outside the limits of the laboratory site. Fermilab plans
to construct a neutrino beam aimed at a massive detector, P822 [326], in a distant underground
laboratory, for example a new 15 KTon detector, 730 Km away in the Soudan laboratory. The
experiment plans to start by the end of this century. The approved E803 (see previous para-
graph) would occupy an underground experimental hall in the same beam. Both long and short
base line experiments could detect the oscillations of �� ! �� , but in di�erent regions. One

would cover the region of interest for cosmology; the other the region pointed at by solar and
atmospheric neutrinos experiments. Another project along the same lines is E889 [327]. The
experiment intends to use a �� beam produced by the Brookhaven AGS. It would use 3 detec-
tors 1, 3, and 24 km away from the neutrino source. Each detector consists of a tank of water
viewed by photomultipliers. The principle of the experiment is to look for the disappearance

of �� by comparing the normalized rate of ��n ! �p in the three detectors. The experiment

can also look for the appearance of �e through the reaction �en! e�p. It is thus not necessary
to know the absolute neutrino 
ux at the three di�erent locations. The �� ! �e oscillations
would be observed by a decrease in the �� rate, with a corresponding increase in the �e rate.

The signal for �� ! �� oscillations would be just the �� disappearance not accompanied by a

corresponding increase in the �e rate.

Most oscillation experiments rely on a detection of tau neutrino charged current interactions,

which has never been observed. So far, the low fraction of tau neutrinos in ordinary neutrino

beams has prevented experiments from observing its interactions. A dedicated experiment

for the observation of �� interactions has been proposed at Fermilab, E872 [329]. Using the
Fermilab 800 GeV proton beam to produce Ds mesons in a beam dump, a reasonably large 
ux

of �� may be expected. The interaction of neutrinos would be observed in an emulsion target

with a subsequent spectrometer.
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3.4 Electric and magnetic moment of the �

Form factors at the 
�� vertex can be used to parameterize non standard electromagnetic

interactions of the tau lepton. The general electromagnetic amplitude, including magnetic and

electric form factors, can be written as [330,331]

< p2jJ�em(0)jp1 >= e�u(p2)[F1

� + (

i

2m�

F2 + 
5F3)�
��q�]u(p1) (3.11)

where p1 and p2 are the four-momenta of the incoming and outgoing leptons, q = p2� p1 is the
photon momentum, and Fi are the form factors of the interaction vertex. In the static limit,

these form factors are related to the static properties of the tau lepton

q� = eF1(q
2 = 0) (3.12)

a� = F2(q
2 = 0) (3.13)

d� = eF3(q
2 = 0) (3.14)

with the charge q� , the anomalous magnetic moment a� and the electric dipole moment d� .
The matrix element describing the Z�� vertex is analogous to Equ. 3.11, with (CV � CA
5)
replacing the second term [332].

Electromagnetic form factors can be measured either with the cross section for e+e� ! �+��

or using real �nal state bremsstrahlung in the process e+e� ! �+��
. Both the total cross
section, the angular distribution and the energy distribution of �nal state photons depend on
the form factors. To give an example, the di�erential cross section as a function of the scattering

angle [333] depends on F2 by linear and a quadratic term, and on F3 by a quadratic term.

The magnetic moment of the � lepton

� = g�
e

2m�

(3.15)

depends on the gyromagnetic ratio g� which, at Born level, is equal to two for a pointlike
fermion. Deviations from this value are described by the anomalous magnetic moment, a� =

(g� � 2)=2, thus by the anomaly quoted above. Analogous to the properties of the electron and

muon, non-zero values of a� in the Standard Model are due to higher order processes [334].
They can be grouped into three categories according to their origin: aQED� for higher order
QED contributions, ahadronic� for hadronic e�ects and aweak� for weak e�ects. The expected

contributions are [334]:

aQED� = (117:319 � 0:001) � 10�5 (3.16)

ahadronic� = (3:5� 0:3) � 10�6 (3.17)

aweak� = (5:560 � 0:002) � 10�7 (3.18)

and sum up to a total expected value of a� = (11773�3)�10�7 . The gyromagnetic ratio should
thus be g� = 2:0023556�0:0000006, only slightly higher than the corresponding one for electron
and muon, ge = 2:002319304280 � 0:000000000056 and g� = 2:00233183804 � 0:00000000154.

Because of the high tau lepton mass, the contributions of hadronic and weak corrections to the
anomalous magnetic moment are signi�cantly higher than for e and �. The ahadronic� is even 50
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times larger than ahadronic� , aweak� is enhanced by a factor (m�=m�)
2. Still these anomalies are

tiny on an absolute scale and it is very di�cult to observe them experimentally.

This is even more so since the classical method for the measurement of this quantity, pre-

cession of the spin vector in a magnetic �eld, is not available because of the short tau lepton

lifetime. However, an analysis of the production cross section and �nal state bremsstrahlung

at least gives a limit on unusually high values of a� . The results are summarized in Table 3.3.

An analysis of data collected at PETRA [335], where the in
uence of Z exchange is limited

to electroweak interference, gives a limit of a� < 0:02 at 95% CL. The high statistics data at

LEP, dominated by Z exchange, give a better limit from the analysis of the Z width into tau

pairs [330, 331]. Using the LEP I data, mW measured at p�p colliders and the CDF top quark

mass, the authors �nd a� < 0:0062 at 68% CL. However, their method of using an e�ective

Lagrangian approach instead of a form factor restricts the validity of the result to a gauge

invariant extensions of the Standard Model [330,331].

A more direct method to obtain a limit on anomalous electromagnetic moments is to study

�nal state radiation of real photons from a tau pair [336] (see Fig. 3.19). Using data from L3

at LEP [204], Grifols and Mendez �rst looked for anomalous production of photons in the total
rate of e+e� ! �+��
 and found a� < 0:11 at 68% CL. This limit was later revised by L3
itself, which found a slightly stronger limit of a� < 0:14 at the 90% con�dence level [337].

e+

e-

Z

e+

e-

Z

τ

τ τ

τ+

-

+

-

Figure 3.19: Contribution of �nal state bremsstrahlung to the process Z ! �+��


a� CL Reference Method

0:0011778 � 0:0000003 [334] theoretical expectation

0:39 � 0:30 68% [338] PEP, PETRA � asymmetry

< 0:02 95% [335] total cross section at PETRA

< 0:11 68% [336] anomalous hard photon production at LEP
< 0:14 90% [337] anomalous hard photon production at LEP

< 0:0062 68% [331] electroweak data at LEP

Table 3.3: Expected value and experimental upper limits (90 % CL) for the � anomalous

magnetic moment.

These limits are still far above the Standard Model expectations for the anomaly. A recent

calculation [339] gives a weak contribution of aweak� (m2
Z) = �(2:10 + 0:61i) � 10�6 at q2 = m2

Z.

This level of accuracy is unreachable even with the full data sample ultimately expected at
LEP.
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As the magnetic moment, the electric dipole moment is experimentally accessible via the

search for anomalies in e+e� ! �+��. As before the observables would be the total and the

di�erential cross section. The results are summarized in Tab. 3.4. A more powerful alternative

is, however, to use the fact that the third term in equation 3.11 is CP violating and thus

extremely small in the SM. CP violating observables can thus be constructed to single out

terms of this kind with high sensitivity. This method will be treated in chapter 7.

Again, the most stringent limits come from PETRA and LEP data. CELLO at PETRA [332]

analyzed possible deviations in the � angular distribution and found a limit of d� < 1:4� 10�16

e cm at the 68% CL. The electroweak data at LEP give [331] d� < 3:4 � 10�17 e cm at 68%

con�dence, when only gauge invariant extensions are considered. Analogous to the magnetic

case, the lack of anomalous �nal state radiation from the � can be interpreted in terms of a

limit on the dipole moment [336]; the authors �nd d� � 6 � 10�16 e cm at 68% CL.

d� [e cm] CL Reference Method

< 6� 10�16 68% [336] Anomalous hard photon production at LEP

< 3:4� 10�17 68% [331] Electroweak data at LEP
< 1:4� 10�16 68% [332] Angular distribution at PETRA

Table 3.4: Upper limits on the � electric dipole moment.

Clearly, the existing limits for the tau electric dipole moment are far above those set for
electron and muon [252], d� = (�3:7� 3:4) � 10�19 e cm and de = (�2:7� 8:3) � 10�27 e cm.
A sign of new physics will, however, often manifest itself in interactions preferentially involving
heavier quarks or leptons such as the � . The sensitivity of anomalous couplings may then be
enhanced by a power of the lepton mass ratio, which is very large [340]. If one assumes an

enhancement by e.g. (m�=me)
3 � 3�1010, the sensitivity of current limits on the tau moments

to new physics is already competitive to the much higher accuracies reached in electron and
muon properties.

3.5 Electric and magnetic moment of the ��

If neutrinos have a �nite mass, they are expected to also have an induced magnetic moment.
This dipole moment is predicted in the Standard Model framework to be, for a massive Dirac

neutrino [341]

�� =
3eGF

8
p
2�2

m� = 3:2� 10�19�B(
m�

1 eV
)

in units of the Bohr magneton �b = e=2me. Given current limits for the neutrino masses,
this seems de�nitely out of experimental reach. On the other hand, a closed universe can be

achieved (see Section 3.3) with a tau neutrino which has an abnormally high magnetic moment,
�� ' 10�6�B [265]. Such a massive neutrino (m�� =1 to 35 MeV) could then be a cold dark

matter candidate. However, it is not even necessary for a particle to have mass in order to have

a magnetic or electric dipole moment [342].

Experimentally, it is impossible to distinguish between electric, ��, and magnetic moment,

�� , of a relativistic neutrino since only (�2� + �2�)
1

2 appears in the Lagrangian. Thus bounds
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on magnetic moments can be translated into bounds on the electric dipole moment. In analogy

to the � coupling in Equ. 3:11, the electromagnetic interaction of its neutrino can be written

as [331]:

< p2jJ�em(0)jp1 >= �u(p2)[(iF2�B + eF �
3 
5)�

��q� ]u(p1) (3.19)

The magnetic moment of the neutrino is (in units of �B)

k� = F �
2 (q

2 = 0) (3.20)

and the electric dipole moment is:

d� = eF �
3 (q

2 = 0) (3.21)

The analysis of electroweak data at LEP I, in this case the information on the invisible width of

the Z boson, gives [331] a�� < 3:6�10�6 and d�� < 6:9�10�17 e cm at 90% CL. For comparison,

bounds coming from astrophysics [265, 343] are reported in Tables 3.5 and 3.6 These tighter

limits are derived in the hypothesis of m�� � O(10) keV, using red giant evolution. Heavier

neutrinos cannot be produced in stellar cores. Again, neutrino experiments give additional

limits. The BEBC beam dump experiment [344] set an upper limit of ��� < 5:4 � 10�7 �B.
This limit is based on assumptions about the Ds production cross section in hadronic processes
and its branching ratio into ��� .

e+

e- ν

Z

e+

e-

Z

ν–

τ

τ ν–τ

ντ

Figure 3.20: Anomalous contributions to the process Z! ���
.

a� [�B] CL Reference Method

< 1� 10�6 [265] Cosmology, m�� = 1� 35 MeV

< 2� 10�12 [343] Astrophysics, m�� � O(10 keV)
< 5:4� 10�7 90% [344] Beam dump BEBC

< 5:6� 10�6 90% [345] Neutrino counting at PEP

< 4:6� 10�6 90% [346] Neutrino counting at PEP and PETRA

< 3� 10�6 68% [331] Electroweak data at LEP
< 5:5� 10�6 90% [347] Di�erential photon cross section at LEP

< 4:1� 10�6 90% [213] Di�erential Photon cross section L3

Table 3.5: Limits on the anomalous magnetic moment of the �� .

Electromagnetic moments would also lead to anomalous contributions to e+e� ! ���
,

which have been searched for at low and high energies. PEP and PETRA data give [345, 346]
��� < 4� 10�6 �B at 90% CL. Near the Z pole, non vanishing moments can lead to anomalous

contributions to the so-called neutrino counting channel, as indicated in Fig. 3.20 [347]. Using

early data from ALEPH and L3, one �nds [347] ��� � 5:5�10�6 �B at 90% CL. Amore stringent
limit has recently been obtained by L3 [213] analyzing single photon data. Requiring high

32



d� [e cm] CL Reference Method

< 3:9� 10�23 [343] Astrophysics, m�� � O(10 keV)
< 6:9� 10�17 68% [331] Electroweak data at LEP

Table 3.6: Limits on the electric dipole moment of the �� .

energy 
 rays seen in the detector, no excess indicating the presence of additional contributions

was observed. This sets a limit of ��� � 4:1 � 10�6 �B at 90% CL. This result is competitive

(see Tab. 3.5) with limits from low energy experiments and from the Z invisible width. It is one

order of magnitude weaker those derived from the beam-dump experiment, but doesn't rely on

assumptions about the hadronic processes and or branching ratios.
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Chapter 4

Production of � leptons by electroweak

neutral current interactions

The production cross section, angular distribution and polarization of � leptons from e+e�

annihilation are used to study its neutral current couplings. Su�ciently far above threshold,
the Born level total cross section for e+e� ! �+�� can be decomposed into three terms

�0(s) = �0
 + �0Z + �0
Z (4.1)

The purely electromagnetic contribution is �0


�0
 =
4��2

3s
(4.2)

with the �ne structure constant � and the square of the center of mass energy s. The contri-
bution �0Z due to Z exchange can be written in terms of the Z partial widths into electrons, �e,
into tau leptons, �� , and the total width, �Z

�0Z =
12�

M2
Z

�e

�Z

��

�Z

s�2Z
(s�M2

Z)
2 +M2

Z�
2
Z

(4.3)

The multiplicative pole term is obviously small for center of mass energies su�ciently far below
the Z mass, s << M2

Z .

The partial decay widths of the Z to a fermion f can be expressed via its vector- and

axialvector couplings gV (f) and gA(f)

�f =
GFM

3
Z

6�
p
2

�
g2V (f) + g2A(f)

�
(4.4)

In standard electroweak theory, these are universal constants depending only on the fermion

charge, Qf , and the third component, T3, of the weak isospin

gV = T3(f) � 2Qf sin
2 �W (4.5)

gA = T3(f) (4.6)
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The interference term �0
Z

�0
Z =
4��2

3
Jf

s�M2
Z

(s�M2
Z)

2 + s2�2Z=M
2
Z

(4.7)

with Jf ' (GFM
2
Z=
p
2��)g2V , gives only a small contribution to the total cross section at

essentially all energies.

We now specialize the discussion to charged leptons, like the tau, with T3 = �1=2 and

Q = �1. The distribution of the scattering angle �, de�ned as the angle between the incoming

e� and the outgoing ��, can be written (at the Born level) as

d�

d

=
�2

4s

h
a0(1 + cos2 �) + a1 cos �

i
(4.8)

with a symmetric term a0 and an asymmetric one a1

a0 = 1 + 2Re(�)gV (e)gV (� ) + j�j2
�
g2V (e) + g2A(e)

��
g2V (� ) + g2A(� )

�
(4.9)

a1 = 4Re(�)gA(e)gA(� ) + 8j�j2gV (e)gV (� )gA(e)gA(� ) (4.10)

Their properties depend on a pole term �

� =
GFp
8��

sM2
Z

(s�M2
Z) + iMZ�Z

(4.11)

which comes from the ratio of the 
 and Z propagators. It is essentially real for s << M2
Z

and purely imaginary at the Z pole. Integration over the solid angle yields the total cross
section �tot = a0�

0

. Electroweak interference in the angular distribution is negligible only very

far below the Z mass. Already at PETRA and PEP energies, it leads to a sizeable forward
backward asymmetry AFB

AFB �
R+1
0 d�=d
 dcos � � R 0�1 d�=d
 dcos �R+1
0 d�=d
 dcos � +

R 0
�1 d�=d
 dcos �

(4.12)

which is a measure of the relative strength of the asymmetric and symmetric part of the cross
section

AFB =
3a1

8a0
(4.13)

On the Z pole we �nd

AFB(s =M2
Z) =

3

4
AeA� (4.14)

with the coupling parameters Af of the neutral current

Af =
2gV (f)gA(f)

g2V (f) + g2A(f)
(4.15)

for each lepton species, f = e; �; � .

As a rule of thumb one can summarize that for PETRA and PEP energies, s << M2
Z , the

total cross section measures g2V , the angular asymmetry g
2
A. At the Z pole, s ' M2

Z , the total
cross section will be proportional to (g2V + g2A), the angular asymmetry to g

2
V =g

2
A.
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Since the Lorentz structure of the standard electroweak theory involves di�erent left and

right handed couplings to the Z, parity will be violated in neutral current processes. In processes

dominated by Z exchange, parity is in fact violated twice, both in Z production and in Z decay.

As a consequence, the �nal state � leptons will be polarized, even when produced by unpolarized

electrons and positrons. Their degree of polarization will depend on the relative strength of

vector and axial vector couplings as well as on the scattering angle. One de�nes, at each

scattering angle �, a helicity asymmetry A�(�)

A�(�) � �h�=+1=2(�)� �h�=�1=2(�)
�h�=+1=2(�) + �h�=�1=2(�)

(4.16)

which measures the relative production rate � leptons with helicity h� = �1=2. Again at Born

level we have

A�(�) =
A�(1 + cos2 �) + 2Ae cos �

(1 + cos2 �) + 2AeA� cos �
(4.17)

The two parity violations can even be distinguished from each other. Integrating A�(�) over

the scattering angle yields the average �nal state polarization P�Z +1

�1
A�(�) dcos � � �P� = A� (4.18)

which depends only on the � lepton couplings to the Z. Integrating over the forward and
backward hemispheres separately and forming an asymmetry yieldsR+1

0 A�(�) dcos � �
R 0
�1A�(�) dcos �R+1

0 A�(�) dcos � +
R 0
�1A�(�) dcos �

� AFB
pol = �

3

4
Ae (4.19)

which depends only on the electron couplings. For an axialvector dominated neutral current,
like in the Standard Model, both polarization asymmetries will be essentially linear in gV =gA
and measure their relative sign. It is worth noting that the forward-backward asymmetry is
AFB = �AFB

pol � A� and thus does not separate the two parity violation e�ects. Polarization
asymmetries, in contrast to the angular asymmetry, vary slowly with s and are not small even

at s 'M2
Z .

The quantity Ae can also be measured using longitudinally polarized electron beams which
are available at SLC. The asymmetry between the total cross sections of left-handed (�L) and

right-handed electrons (�R) and unpolarized positrons is

ALR � �L � �R

�R + �L
= Ae (4.20)

Like the polarization forward backward asymmetry, Equ. 4.19, ALR is a very sensitive measure
of Ae. Its power is greatly enhanced by the fact that it is not necessary to select a certain �nal

state for the measurement.

Beyond this simple Born level picture, radiative corrections are clearly important [348{352].
They fall into two general categories:

� Real photon bremsstrahlung: These corrections, dominated by initial state photon radi-

ation in the case of � production, are large, O(25%), and experiment dependent. Their
e�ect is essentially to shift the e�ective center of mass energy in each event to lower

values.
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� Propagator and vertex corrections: These are much smaller, O(1%), and experiment

independent, since they do not modify the event kinematics. They are also more inter-

esting since heavy fermion and boson loops appear and since genuine weak corrections

contribute.

The approach to radiative corrections varies from experiment to experiment and with the

required accuracy. At energies below the Z pole, where cross section and asymmetry measure-

ments are statistics limited, a correction of the experimental results with

d�corr =
d�obs

�RC
(4.21)

where �obs is the observed cross section after acceptance and background corrections, is appro-

priate. A radiative correction factor

�RC =
d�theo

d�0
(4.22)

where �theo is the cross section including higher orders, thus converts the observed cross section

into one that can be directly compared to the Born level theory. This approach is adopted by
the experimental groups up to and including TRISTAN energies.

At the Z pole, where the experimental accuracy is high and higher order electroweak e�ects

themselves are a subject of study, this procedure must be replaced by a more elaborate one.
Fortunately, in the vicinity of the Z pole, vertex and propagator corrections factorize such
that a replacement of the bare electroweak couplings (gV and gA) by e�ective ones (�gV and
�gA) gives an accurate result without changing the simple Born level picture [348, 352]. This
does not mean, however, that these corrections are negligible, they are in fact clearly required

by the data. Real photon bremsstrahlung, on the other hand, can be corrected for with a
convolution integral over the photon spectrum, thus including the correction in the theoretical
prediction rather than correcting the data. This procedure has been adopted by the LEP and
SLC collaborations.

The di�erences in the radiative correction schememake it di�cult to directly compare results
from the two energy domains, since this would require detailed knowledge of the experimental
cuts. In �gure 2.1, cross section data spanning the whole available energy domain have therefore

only been presented to give a qualitative impression. Also, since radiative corrections using

the PETRA/PEP/TRISTAN method have been applied, only the data from one high energy
experiment have been included. For quantitative conclusions, it is therefore best to base oneself

on the comparison of the extracted electroweak parameters, rather than the cross section and
asymmetry data themselves. This will be done in the following sections, together with a short

overview of the experimental methods and errors.

4.1 � Production and Electroweak Interference

Many experiments have observed � production in the energy domain from 10 to 60 GeV, where

the production mechanism is dominated by photon exchange and 
-Z interference is observed.
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Figure 4.1: The center-of-mass energy dependence of the �+��cross section and forward-
backward charge asymmetry from experiments in the region of electroweak interference [12{36].
All data have been radiatively corrected to allow for a comparison with electroweak theory at

the Born level, which is indicated by the curve.

Figure 4.1 gives an overview of the measured total cross-sections and forward-backward asym-
metries as a function of the center-of-mass energy. As pointed out earlier, radiative corrections
in this energy domain are dominated by initial state photon bremsstrahlung and corrected by

applying a multiplicative factor to the measured data. Since the cross-section varies slowly
in this energy range, this is accurate enough a method and allows direct comparison of the
experimental results to the Born-level formulae. The data are thus compared to electroweak
theory at this level, taking the \bare" values of electroweak parameters as measured at the Z
resonance.

It is evident that the cross-section, expressed here as the ratio

R�� =
���

�0

(4.23)

follows the expected energy dependence for pointlike fermions with unit charge. It agrees
perfectly in magnitude with the cross-section for muon pair production. In this energy range,

weak neutral current couplings come in only proportional to g2V and the Z pole term. Sizeable

deviations from pure QED in the total cross-section are thus only observed as one approaches
the Z pole. Indeed, at the highest PETRA energies and more pronouncedly at TRISTAN, a

slow rise of the cross section is observed.

Deviations of the cross-section from its expected behavior are traditionally parametrized [353]

by a form-factor applied at the 
�+�� vertex. Given a dipole form of the form-factor, the cross
section would then be modi�ed as

��� = �0��

 
1� s

s� �2�

!
(4.24)
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�� �+

Experiment [GeV] [GeV]

CELLO [17] 231 318
JADE [19] 210 285

MARK J [24] 205 235
PLUTO [26] 101 107

TASSO [30] 169 161

HRS [13] 284 129

TOPAZ [34] 208 134
VENUS [36] 225 234

Table 4.1: 95% CL lower limits on the scale parameter of a hypothetical dipole form-factor at

the 
�+�� vertex.

Experiment g2V g2A
CELLO [17] 0:04 � 0:07 0:22 � 0:06

JADE [354] 0:03 � 0:04 0:26 � 0:04

MARK J [25] 0:04 � 0:03 0:27 � 0:02

TASSO [31] 0:04 � 0:04 0:26 � 0:03

MARK II [15] 0:03 � 0:04 0:23 � 0:05
HRS [12] 0:23 � 0:07

AMY [33] 0:00 � 0:18 0:23 � 0:05
VENUS [36] 0:23 � 0:03

Table 4.2: Results on the vector and axialvector neutral current couplings to leptons from
PETRA, PEP and TRISTAN experiments, assuming lepton universality

with a scale parameter � in momentum space. Since the non pointlike nature of the vertex will
start to be resolved at momentum transfers much below this scale, the good agreement of the
data translates into limits on � of several hundred GeV. Results are summarized in Table 4.1.

More speci�c models of compositeness, which predict larger cross-section modi�cations at low
energies due to contact terms can also be tested [19,33,35,36].

In contrast to the total cross section, the forward-backward asymmetry shows measurable
electroweak interference e�ects already at moderate center of mass energies. Figure 4.1 lists
a compilation of data from PETRA, PEP and TRISTAN. Careful control of systematic errors
allows to observe a non-zero asymmetry already at about 30 GeV. Since the asymmetry in this

energy region mainly depends on g2A, the cross-section on g2V , these data give an error in these

quantities of order 5%. The sensitivity of the measurements is not su�cient to draw separate
conclusions for each lepton species, one has to assume lepton universality of neutral current

couplings. Table 4.2 compiles such results from the PEP, PETRA and TRISTAN experiments.

Although not very accurate, these data clearly show that the weak neutral current is dom-

inated by its axialvector component, i.e. jgV j � jgAj. They thus solve a two-fold ambiguity
in the neutral current couplings left over from the measurement of the cross sections for ��e

�,
���e

�, �ee� and ��ee
� scattering. This is shown in Figure 4.2 [355, 356], which summarizes the

status of leptonic neutral current couplings before the start of the TRISTAN, LEP and SLC

experiments.
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Figure 4.2: Allowed region of gV and gA for leptonic neutral currents [355, 356] before the

Tristan, LEP and SLC experiments, assuming lepton universality. Neutrino-electron cross
sections correspond to ellipses in this plane. Electroweak interference measurements solve the
ambiguity in favor of an axialvector dominated neutral current.

4.2 Z-� Interactions

4.2.1 Cross section and forward-backward asymmetry

Clearly, experiments at the Z pole are best suited to measure the couplings of the weak neutral
current to leptons. The cross-section is enhanced by the Z pole such that rates are high and

the relative contribution of QED is small. The cross section at
p
s = MZ can be expressed as

the product of the Z partial widths to electrons and a given fermion species (see Equation 4.3),
compared to the total width which is measured independently by the width of the excitation
curve. Thus the cross-section, forward-backward asymmetry and polarization all carry infor-
mation about the neutral current couplings. For more detailed reviews of the electroweak LEP

data on tau production, see e.g. [357,358].

Figures 4.3 and 4.4 show the dependence of the total cross section and forward-backward

asymmetry (extrapolated to 4� solid angle) for e+e� ! �+�� on the center of mass energyp
s, as published by the four LEP experiments. The overlayed curve, calculated with ZFIT-

TER [359{361], corresponds to the result of a �t to all electroweak LEP data as compiled

by the LEP Electroweak Working Group [256, 362]. It is convenient to choose the quanti-
ties Rl = �had=�l, the ratio of the Z width into hadrons and lepton species l, and Al

FB, the

forward-backward asymmetries at
p
s = MZ, as observables, since this choice gives minimum

correlations among the parameters. Figure 4.5 shows the latest preliminary results of the four
LEP experiments collected by the LEP Electroweak Working group [362], as 68% CL contours

in the Rl-A
l
FB plane for each lepton species. For electrons, a correction is applied to account for

the in
uence of t-channel Bhabha scattering. It is evident that the observables are compatible
with being the same to high precision among the lepton species, the shape of the Z excitation
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Figure 4.3: The center-of-mass energy dependence of the �+��cross section from experiments
in the region of the Z resonance [41,162,178,180,197,221,229,232]. The solid line corresponds to
the prediction of the Standard Model, with parameters derived from the combined electroweak

results and assuming lepton universality.

curves and the angular distribution is thus independent of the lepton 
avor. For a more quan-
titative analysis, the combined preliminary LEP results [362] are summarized in Tab. 4.3. In

addition to the relative decay widths and asymmetries for the three lepton species, it speci�es

the combined values for the Z mass, the total width and the hadronic peak cross section �0h.

From these data one can determine the partial width of the Z into the three lepton species to
be 83:92 � 0:17 MeV, 83:92� 0:23 MeV and 83:85� 0:29 MeV, for electrons, muons and taus,

respectively. Evidently this is in excellent agreement with the assumption of lepton universality
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Figure 4.4: The center-of-mass energy dependence of the �+��forward-backward asymmetry
from experiments in the region of the Z resonance [41, 162, 178, 180, 197, 221, 229, 232]. The
apparent di�erences in accuracy are mainly due to di�erent binning of the data. The solid
line corresponds to the prediction of the Standard Model, with parameters derived from the

combined electroweak results and assuming lepton universality.

Parameter Average Value

MZ (GeV) 91:1885 � 0:0022
�Z (GeV) 2:4963 � 0:0032

�0h (nb) 41:488 � 0:078

Re 20:797 � 0:058

R� 20:796 � 0:043

R� 20:813 � 0:061
Ae
FB 0:0157 � 0:0028

A�
FB 0:0163 � 0:0016

A�
FB 0:0206 � 0:0023

Table 4.3: Average Z line shape and asymmetry parameters (at Q2 = M2
Z) from preliminary

data of the four LEP experiments [362]. The �2 per degree of freedom for the average is 36.1/27.

in neutral currents.
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Figure 4.5: 68% CL contours for the pole forward-backward asymmetries for e+e� ! e+e�,
�+�� and �+�� versus the peak cross section ratio Rl = �had=�l as measured at LEP. The
dashed contour gives the allowed region assuming lepton universality. The dotted lines corre-
spond to the prediction of the Standard Model for top quark masses between 100 and 250 GeV
with two di�erent Higgs boson masses, 60 and 1000 GeV.

4.2.2 Tau polarization in Z decays

Z decays into � leptons are the only ones where �nal state polarization is observable in addition.
Since the couplings of the � to the charged current are compatible with being a pure V � A

interaction (see Chapter 5), one assumes maximum parity violation, such that �� decays only to
lefthanded �� and the �+ only to righthanded ��� . The � helicity then determines the direction
of the neutrino emission as illustrated in Fig. 4.6. In the massless limit, the �� and �+ helicities
are completely anticorrelated.

Since the neutrino escapes detection, its direction of emission must be inferred from the
observable �nal state. In the simplest case of the decay �� ! ���� , all information is contained
in the decay angle ��, the angle between the � line of 
ight and the pion in the � rest frame. In

the laboratory system, this angle is measured by the ratio of the pion energy to the � energy, the

latter one being approximated by the beam energy. This is also the only polarization sensitive
observable in three-fermion decays, � ! e=���, where a lot of sensitivity is lost by the additional

neutrino. As an example, Figure 4.7 shows the charged particle spectra from � ! e��, ���
and �� as measured by ALEPH [187] in terms of the scaled energy x = E=Eb ' E=E� . Also

shown are the spectra expected for positive and negative helicity and for the background, as

well as the combination of them that best �ts the data. It is this combination that determines
the average polarization.

For decays into vector mesons, � ! ��� and � ! a1�� , the spin orientation of the decay
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Figure 4.6: Use of the simplest � decay into pion and neutrino to statistically determine the

degree of polarization from the pion momentum distribution. Thin arrows indicate particle

momenta, thick arrows indicate the spin orientation. Negative helicity for the �� leads to a

linearly falling pion energy distribution, positive helicity to a linearly rising one.
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Figure 4.7: The distributions of the scaled energy x = E=Eb in � ! e��, ��� and �� as

measured by ALEPH [187]. Also shown are the Monte Carlo best �t (solid histogram), the

contributions from positive helicity (dotted histogram), negative helicity (dashed histogram)

and the non-� background (hatched area).

hadron can be transverse or longitudinal. Thus, there are more observables that carry helicity

information. For the � decay, these are [363,364]: ��, the angle between the � and the � line of


ight in the tau rest frame, and  �, the angle between the � and the � line of 
ight in the � rest
frame. For the a1 decay, an additional angle is de�ned using the orientation of the three-pion
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system with respect to its decay plane. These angles and their correlation can be used in a

multidimensional �t or combined to form an optimum observable [365]. As an illustration,

Figure 4.8 shows the distributions of  � in bins of cos �� for � ! �� as measured by L3 [211].

Figure 4.9 shows the distribution of optimal observables ! for � ! �� and � ! a1� as measured

by ALEPH [187]. Again, the helicity and background components as well as the best �t to the

data are also shown.
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Figure 4.8: The distributions for � ! �� of  � in four ranges of cos �� from L3 [211]. Also

shown are the Monte Carlo best �t (solid histogram), the contributions from positive helicity

(dashed histogram), negative helicity (dotted histogram) and the non-� background (shaded
area).

It is in fact bene�cial, but not really necessary to completely identify the tau decay mode

in order to measure its polarization. One can thus also do an inclusive measurement that

mixes several decay modes together [199]. Since the helicities of �+ and �� are anti-correlated,
correlation observables, like the acollinearity of charged decay products, can be used in addition.
Figure 4.10 shows the acollinearity distribution of �� ! �X �nal states (where X is any one

prong � decay) from L3 [211], with the contributions from helicities and background indicated.

Putting together results from all channels and all methods as a function of the scatter-

ing angle cos �, one arrives at the angular dependence of the mean polarization as shown in
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Figure 4.9: The distributions of optimal variables for the decays � ! �� and a1� as measured
by ALEPH [187]. Also shown are the Monte Carlo best �t (solid histogram), the contributions

from positive helicity (dotted histogram), negative helicity (dashed histogram) and the non-�
background (hatched area).

Figure 4.11. Analyzing this dependence as indicated in Equ. 4.17, one obtains the results sum-
marized in Table 4.4 for the asymmetry parameters Ae and A� of electron and � lepton. The
combined preliminary results of the LEP collaborations yield [362]

Ae = 0:139 � 0:009 (4.25)

A� = 0:142 � 0:008 (4.26)

This measurement, with percent precision, is again in excellent agreement with lepton uni-

versality of neutral currents. As mentioned earlier, the total cross section asymmetry ALR

(see Equ. 4.20) observed with polarized beams at SLC is an alternative way to measure the
asymmetry parameter Ae. One obtains [247,248]

Ae = 0:155 � 0:004 (4.27)

in agreement with the LEP measurement within errors.

Using all electroweak results from LEP and SLC, Figure 4.12 summarizes the latest results

on the e�ective neutral current couplings to leptons [357, 362]. Quantitative results are shown
in Tab. 4.5. The sign of gV is chosen to agree with the results of neutrino electron scattering

(see Section 4.1). Universality of the leptonic neutral current is clearly con�rmed by these data,

the couplings are compatible with being independent of lepton 
avor with permill precision.
The impressive improvement obtained from the LEP/SLC experiments with respect to previous

results is obvious from a comparison to Figure 4.2.
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Figure 4.10: The distributions of the acollinearity angle � for �� ! �X from L3 [211]. Also
shown are the Monte Carlo best �t (solid histogram), the contributions from positive helicity
(dashed histogram), negative helicity (dotted histogram) and the non-� background (shaded
area).

Experiment Ae A�

ALEPH [187] 0:129 � 0:016 � 0:005 0:136 � 0:012 � 0:009
DELPHI [199] 0:136 � 0:027 � 0:003 0:148 � 0:017 � 0:014
L3 [215] 0:156 � 0:016 � 0:005 0:152 � 0:010 � 0:009

OPAL [244] 0:134 � 0:015 � 0:004 0:134 � 0:010 � 0:009

Table 4.4: Results on the asymmetry parameter of electrons and � leptons from the LEP
experiments' analysis of � polarization. The L3 [215] and OPAL [244] results are preliminary

and replace the published ones [211,235]. The �rst error is statistical, the second systematic.

Coupling Combined Result (LEP+SLC)

�gV (e) �0:0385 � 0:0009

�gV (�) �0:0354 � 0:0036
�gV (� ) �0:0369 � 0:0018

�gA(e) �0:5010 � 0:0005

�gA(�) �0:5012 � 0:0008

�gA(� ) �0:5015 � 0:0009

Table 4.5: Results for the e�ective vector and axial vector couplings derived from the combined

LEP and SLC data without the assumption of lepton universality [362].
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Figure 4.11: The dependence of the � polarization on the scattering angle at the Z reso-

nance [187, 199, 211, 235]. The solid line corresponds to the prediction of the Standard Model,
with parameters derived from the combined electroweak results and assuming lepton universal-

ity.
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Chapter 5

Decays of � leptons by weak charged

current interactions

The weak decays of tau leptons are of special interest because of the speci�c range of momentum
transfer that they allow to study. On one hand, the mass of � , which limits phase space, is

high enough to allow for hadronic decays, which are absent for the light leptons. On the other
hand, the mass is low so that the decay �nal states are of low multiplicity. Thus, the interesting
process of hadronic resonance production by the weak charged current becomes experimentally
accessible. In this region of momentum transfer, the only other ways of studying the hadronic
charged current are charm decays [368] and low energy neutrino nucleon scattering [369], where

the conclusions are limited by the complications of hadronic structure in the initial state.

However, the �rst task in the study of tau lepton decays is to understand in detail the
leptonic currents. The study of tau production properties concludes that it can be regarded
as a pointlike lepton up to the highest momentum transfers probed so far. Thus according to
the Standard Model, which imposes lepton universality of charged as well as neutral couplings,
the charged weak current in tau decays should be identical to the one in muon decays up to

mass e�ects. Since the total muon decay rate de�nes the e�ective leptonic charged current

coupling strength GF , the Fermi constant, the decays width of �� ! e���e�� should be related
to �� ! e���e�� by a simple phase space factor. The space-time structure of the decay, as
measured by e.g. the Michel parameters, should be V � A. Maximum parity violation in the

decay should lead exclusively to lefthanded tau neutrinos in the �nal state.

When studying hadronic tau decays, it is primordial to observe a maximum of all decay
channels in order to make sure that no unusual �nal states pass unobserved. Since the q2 region

in question falls into the domain of single �=K and low mass hadronic resonances, multiparticle

decay amplitudes can be related to amplitudes of weak meson decay as well as low energy e+e�

experiments by current algebra techniques. Tau decays into pions and kaons, non-strange and
strange resonances can thus provide valuable information on the mechanism by which a virtual

W turns into hadrons at low q2.
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5.1 Total and leptonic decay width

The �rst test in search for a deviation from universality of the leptonic charged current is the

comparison of the total coupling strength of electron, muon and tau to the W boson. The total

muon decay rate [370]

�(�� ! e���e��) =
G2
Fm

5
�

192�3
[1 + �m(ye)] (1 + �W ) (1 + �rad) (5.1)

in fact de�nes the total coupling strength, measured by the Fermi constant GF . The �rst explic-

itly written term speci�es the Born level result for a point-like V �A four-fermion interaction

with a massless �nal state. The correction �m takes into account the �nite mass of the charged

lepton in the �nal state

�m(ye) = �8ye + 8y3e � y4e � 12y2e ln ye (5.2)

with ye = m2
e=m

2
� ' 2�10�5, such that this correction is 0.2 permill for muon decays, negligible

for �� ! e���e�� and 2.7% for �� ! �������. The W propagator e�ects lead to a correction

�W = +
3

5

m2
�

m2
W

� 2
m2

e

m2
W

(5.3)

which is negligible for muon as well as tau decays. QED radiative corrections introduce the
largest correction for muon decays

�rad = ��(m�)

2�

�
�2 � 25

4

�
(5.4)

which is almost 5 permill. For the muon, the total decay rate is equal to the one into this
particular decay channel to better than one part in 1010; the leptonic width is thus simply the
inverse of the muon lifetime.

The vertex factor for tau decays and muon decays is the same under the hypothesis of
lepton universality in charged currents. Thus, the width of �� ! e���e�� can be obtained from

the above formulae with the replacement m� ! m� . Since QCD corrections to the total tau
decay width are non-negligible (see chapter 6), one does not directly compare the total widths
of muon and tau. Instead, one uses the lifetime and the leptonic branching ratio to obtain the
partial width of the tau into electrons

�(�� ! e���e�� ) = �� BR(�
� ! e���e�� ) =

BR(�� ! e���e��)
��

(5.5)

Given a precisely measured mass of the � lepton, universality in the leptonic charged cur-

rent thus requires that the leptonic branching fraction and the lifetime be proportional; the
proportionality constant, including radiative corrections, is known to high precision.

Early tests of this universality relation [251], based on the 1990 Review of Particle Prop-
erties [371] as well as preliminary CLEO and LEP data, indicated a rather serious deviation:

the lifetime appeared high and/or the electronic branching fraction low. With the now much

more precisely known tau mass (see chapter 3), the universality test can be repeated with high
sensitivity.
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5.1.1 The tau lifetime

The �rst ingredient, the tau lifetime, �� , giving the total decay width, has seen important

experimental improvements since the availability of high precision silicon vertex detectors in

collider experiments. The lifetime is short, such that the tau decays inside the beam pipe.

Thus, the decay vertex cannot be directly observed, the lifetime must be inferred from the

decay secondaries. The principles of the measurement and its observables are visualised in

Fig. 5.1. The measurement is usually done in projection onto the plane perpendicular to the

beam axis. The decay length is thus L = 
��� sin �, with the boost factor 
� = p�=m� and

the polar production angle �. The impact parameter � = 
��� sin � sin �, with the projected

decay angle � in the laboratory system, allows to have a measure of the lifetime transverse to

the 
ight direction.

φ+

L

+δ−

φ−a) b)

+

δ δ+
x x

Figure 5.1: Schematic drawing to show the di�erent observables used for the tau lifetime
measurement. The beam spot is shown as an ellipse, the assumed production point as a plus,
the actual tau production point as a cross. a) De�nitions of the decay length L and the impact

parameter �. b) Correlation of the two observed impact parameters in an event with two

1-prong decays with the decay angle �.

Since no tracks emerge from the e+e� vertex, the tau production vertex can only be de-

termined on average, from the position of the luminous region. Its position and pro�le are

measured using simultaneously taken e+e� annihilations into hadrons. The size of this lu-

minous region depends on the accelerator and its optics, typical values for LEP (SLC) are
�y ' 5�m (0:8�m) in the vertical plane and �x ' 150�m (2:6�m) in the horizontal plane.
Since the beam pro�le is gaussian in shape, the size of the luminous region enters as a gaussian

error into the decay length measurement. For three prong tau decays, the decay vertex can be

determined from the charged �nal state (decay length method, see upper part of Fig. 5.1a). Its

covariance matrix can be estimated using single track measurement errors as well as multiple
scattering errors in
uencing the backward extrapolations towards the decay vertex. From the

positions and covariance matrices for the two vertices, a most likely decay length (and its error)
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can be extracted event by event. Since the tau momentum is equal to the beam energy up to

radiative corrections, thus almost constant, the observed decay length distribution gives a true

representation of an exponential when measured with su�cient precision. Fig. 5.2 shows an

example from OPAL at LEP [236]. The observed distribution is well described by the convo-

lution of an exponential with the experimental resolution function, tails are understood down

to the level of a few events in several thousands. The distribution can be analysed in terms

of a moments or maximum likelihood method to extract a tau lifetime. Recent preliminary

results from this method are summarised in Fig. 5.3 and compared to the 1994 Review of Par-

ticle Properties [252]. The results of the experiments are consistent within errors and not yet

dominated by systematics.
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Figure 5.2: Decay distance distribution in linear and logarithmic scale from OPAL [236]. The
data (dots) are compared to the result of the maximum likelihood �t, convoluting the decay

distribution with the experimental resolution function.

The transverse distance of tau decay products to the average production vertex, the impact
parameter (see lower part of Fig. 5.1a), is also a sensitive measure of the tau lifetime. It has the

advantage that 1 prong decays can be used, thus the statistical accuracy is good. Clearly for an
optimum measurement the position of the tau production vertex and the tau direction of 
ight

would have to be known. While the former is approximated by the e+e� beam spot just as in the

decay length measurement, the latter needs to be estimated from e.g. the thrust axis direction
in the event. The transverse distance of closest approach is then given a sign depending on

where the track appears to be crossing the estimated line of 
ight of the tau lepton. This
introduces an additional uncertainty, essentially on the sign of the impact parameter. The

impact parameter as such has recently been used by L3 [378], OPAL [236] and CLEO [372] to

extract an updated tau lifetime value. As an example, Fig. 5.4 shows the impact parameter
distribution from L3; overlaid is the result of a maximum likelihood �t.
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τ LIFETIME DECAY LENGTH

250 300 350

ALEPH 290.0 ±  5.8 ±  2.1

DELPHI 286.7 ±  4.9 ±  4.0

L3 312.0 ± 19.0 ± 10.0

OPAL 288.9 ±  3.6 ±  1.7

CLEO 290.0 ±  4.0 ±  6.0

SLD 288.0 ± 18.0 ±  4.0

250 300 350

τ LIFETIME 1-PRONG

270 295 320

ALEPH IPS 298.2 ±  3.4 ±  4.6

ALEPH 3D 290.8 ±  4.3 ±  2.7

ALEPH IPD 288.1 ±  5.4 ±  1.2

DELPHI IPD+IPS 290.6 ±  3.1 ±  2.6

L3 IP 296.4 ±  6.4 ±  4.4

OPAL IP 287.2 ±  3.4 ±  2.0

CLEO IP 294.0 ±  7.0 ± 12.0

SLD IP 302.0 ± 12.0 ±  5.0

SLD IPD 298.0 ± 13.0 ±  7.0

270 295 320

Figure 5.3: Left: Recent results from CLEO [372], SLD [373] and the LEP experiments [205,
209, 236, 374, 375] on the tau lifetime (in fs) from three-prong decays. Right: Recent results

from CLEO [372], SLD [373] and the LEP experiments [236, 373, 376{378] on the tau lifetime
(in fs) using impact parameter methods. IPS and IPD stand for impact parameter sum and
di�erence, 3D for three dimensional impact parameter. Other measurements use single impact
parameter distributions.
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Figure 5.4: Impact parameter distribution in linear and logarithmic scale from L3 [378]. The
data (dots) are compared to the result of the maximum likelihood �t, convoluting the decay

distribution with the experimental resolution function.
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It is rather easy to see (see Fig. 5.1b) that the sum and di�erence of the two impact parame-

ters in an event where there are two one prong tau decays (1-1 topology) separates uncertainties

from the production vertex and the tau direction. While the sum of impact parameters (also

called the miss distance) is insensitive to the production point, their di�erence is insensitive to

the tau direction of 
ight. Both quantities are thus used in recent measurements by ALEPH

and DELPHI [376,377]. Again, the observed distributions are analysed by a moments method

or subjected to a maximum likelihood �t, using an underlying physics function (basically ex-

ponential) folded with the experimental resolution function. The example in Fig. 5.5 shows the

mean impact parameter di�erence as a function of the projected acoplanarity between the two

tau decay tracks. The slope of the line is directly related to the lifetime.
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Figure 5.5: The mean impact parameter di�erence as a function of the projected acoplanarity
from DELPHI [196]. The slope of the straight line is directly related to the tau lifetime.

It is well known [379{381] that even in a �+�� event with two hadronic decays in the �nal
state, where two neutrinos are unobserved, the tau direction can be reconstructed up to a
two-fold ambiguity, when the constraints from energy-momentum conservation are used and

radiative corrections are neglected. This fact has been used by ALEPH [376] to construct a

three dimensional impact parameter, perpendicular to the plane going through the two solutions

for the tau direction. This impact parameter can then be analysed as a function of the sum of

the track angles with respect to the plane in order to extract a lifetime.

All recent, partially preliminary results on the tau lifetime from impact parameter methods

are summarised in Fig. 5.3. The results from di�erent methods and di�erent experiments are
consistent with each other.

The results evaluated inside one experiment can be correlated by partial overlap in the

samples, common tracking uncertainties, bias corrections etc. Therefore, each experiment gives

a best estimate of the tau lifetime using a combination of all results. On the other hand,
correlations among di�erent experiments can basically only come from the common use of

Monte Carlo to evaluate background, the mixture of decays accepted and the decay kinematics
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including radiative corrections. The systematic errors from such sources are small, thus it is

reasonable to neglect correlations among experiments at this point. Fig. 5.6 shows a synopsis

of all recent results, including preliminary ones, compared to the Particle Data Group's 1994

average. A new world average, taking into account partial correlations to earlier results within

each experiment has been prepared by Wasserbaech [375, 382]. The result is �� = 291:3 � 1:6

fs, smaller than the previous world average [252] of �� = 296:6� 3:1 fs but not in disagreement

with it. The error has shrunk by a factor of two, showing the impressive progress that is made

by the introduction of silicon microvertex detectors.

τ LIFETIME

270 295 320

PDG94 296.6 ±   3.1

ALEPH 292.5 ±   3.2

DELPHI 290.7 ±   3.6

L3 296.4 ±   7.8

OPAL 288.8 ±   2.6

CLEO 291.0 ±   7.6

SLD 297.0 ±  10.3

270 295 320

Figure 5.6: Recent preliminary results on the tau lifetime (in fs) from CLEO, SLD and the
LEP experiments [375,382].

5.1.2 The leptonic branching fractions

The improvements in the measurement of the total tau decay width are matched by similar

re�nements in the measurement of the leptonic branching fractions. Important factors in these
measurements are the good resolution, coverage and homogeneity of modern e+e� detectors.
Redundant methods in particle identi�cation also allow to reduce systematic errors. Electrons

are usually identi�ed by measuring dE=dx in a tracking device, requiring a short, slim and

symmetric shower in the electromagnetic calorimeter and comparing tracking and calorimetric
information, i.e. matching energy and momentum, impact point and shower center of gravity.

Muons are singled out by observing a minimum ionising, long range particle in the hadronic
calorimeter and/or an isolated track in the muon detection system.

The homogeneity of the detectors already ensures that the e�ciency of lepton identi�cation
will not vary rapidly with solid angle or momentum. Nevertheless, in order to reach permill

precision, an experimental cross check on the e�ciency which is usually extracted from detailed

Monte Carlo simulation, is necessary. Therefore, electrons or muons from e+e� ! l+l�(
) and
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e+e� ! e+e�l+l� are used as control samples to verify the absolute value and the momentum

dependence of the e�ciencies.

Latest, partially preliminary results from the LEP experiments [200,239,375,382{385] are

shown in Fig. 5.7. The agreement of the new measurements among each other and to the

previous world average [252], which contains earlier LEP results, is good. A new world average

can be extracted [375], neglecting correlations among experiments and replacing superseded

data, and one gets

BR(�� ! ������� ) = (17:33 � 0:09)% (5.6)

BR(�� ! e���e�� ) = (17:79 � 0:09)% (5.7)

where statistical and systematic errors are added in quadrature. It is again observed that the

new measurements substantially improve on previous ones, statistically as well as systematically.

This new average is dominated by the LEP results.

τ Branching Fraction into Electrons %

16.5 17.5 18.5

PDG94 17.90 ±  0.17

ALEPH 17.76 ±  0.11 ±  0.07

DELPHI 17.51 ±  0.23 ±  0.31

L3 17.69 ±  0.17 ±  0.08

OPAL 18.04 ±  0.19 ±  0.27

16.5 17.5 18.5

τ Branching Fraction into Muons %

16.5 17.5 18.5

17.44 ±  0.23

17.31 ±  0.11 ±  0.07

17.02 ±  0.19 ±  0.24

17.36 ±  0.17 ±  0.07

17.36 ±  0.17 ±  0.21

16.5 17.5 18.5

Figure 5.7: Recent, partially preliminary results on the leptonic branching fractions of the tau
from the LEP experiments [200,239,375,382{385].

5.1.3 Universality of the leptonic charged weak current

Given all the ingredients we can now test the universality of the leptonic charged current

interaction. If we factorize the Fermi constant GF into e�ective couplings Gl for each lepton
species, such that

G2
F ! G�Gl (l = e; �) (5.8)

Gl =
g2lp
32M2

W

(l = e; �; � ) (5.9)

where gl is the coupling at the W-l-�l vertex, we �nd that all three couplings can be tested for
equality by looking at leptonic tau decays. First, the ratio of the branching fraction into muons

and electrons
BR(�� ! ������� )
BR(�� ! e���e�� )

=
1 + �m(y�)

1 + �m(ye)

g2�

g2e
(5.10)
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should be unity up to a phase space factor which makes it equal to 0.9726 in case of lepton

universality. The experimental result is

BR(�� ! �������)
BR(�� ! e���e��)

= 0:9741 � 0:0071 (5.11)

Translated into coupling constants, this gives�����g�ge
����� = 1:001 � 0:004 (5.12)

in excellent agreement with the hypothesis of e-� universality. The accuracy of this measure-

ment is still about a factor of two away from the best existing test, the comparison of �� ! �����
to �� ! e���e, which gives g�=ge = 1:0012 � 0:0016 [386{388].

Given the fact that the e and � couplings are compatible, we are allowed to enhance the

accuracy by forming a combined leptonic branching fraction of the tau

BR(�� ! l���l�� ) =
1

2

 
BR(�� ! e���e��) +

BR(�� ! �������)
0:9726

!
= (17:80 � 0:06)% (5.13)

With these recent measurements of the leptonic branching fraction and the lifetime as quoted
above, we �nd consistency with the linear relation predicted by the Standard Model as shown

in Fig. 5.8. Extracting the partial width of tau decays to electrons and comparing to the total
muon decay width, we �nd �����g�g�

����� = 0:999 � 0:003 (5.14)

in excellent agreement with �-� universality in the charged current sector. It must, however,
be pointed out that our way of averaging experimental results is somewhat naive. Correlations

among experiments do exist, for the LEP experiments the normalization to the number of
produced tau leptons and the use of KORALZ [389] is an example of common elements in
the analysis. A common e�ort to take these into account properly, in the style of the LEP
Electroweak Working Group, would thus be welcome.

5.2 The Lorentz structure of charged currents

Once the overall coupling strength has been �xed to the Fermi constant, one can use the tau
decay angles to investigate the Lorentz structure of the W-� -�� coupling. In the Standard
Model, there is maximum parity violation and the structure is V � A only. The invariant

amplitude of the most general lepton number conserving four-fermion interaction for leptonic

tau decays takes the form [390,391]

M =
4GFp
2

X

=S;V;T

X
�;�=R;L

g
�� (�u
�
l �
v�l)

�
�v���
u

�
�

�
(5.15)

where 
 labels the transformation properties of the current (S; V; T = scalar, vector and tensor),

� and � label the handedness (L;R = left-, righthanded) of the chiral spinors u for the charged
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Figure 5.8: The new world average tau lifetime versus its leptonic branching fraction, compared
to the previous world average [252] and the linear relation (sold line) predicted by the Standard

Model using the new world average of the tau mass.

leptons. The helicity of the chiral neutrino spinor v is then given by the combination of 
,
� and � together with conservation of angular momentum. In this representation, the pure
V �A case of the Standard Model corresponds to gVLL = 1, with all other couplings zero. In the
most general case, there are 10 complex couplings g to be determined by experiment. Since a
four-fermion interaction does not require factorisation at two separate vertices, the couplings

could in principle also depend on the �nal state, i.e. they could be di�erent for �� ! �������
and �� ! e���e�� .

It has been shown [391,392] that without information on the polarization of the �nal state
particles, the combinations �, �, � and �� of the couplings, the Michel parameters, can be
determined from the decay angles of leptonic � decays and their correlations in e+e� ! �+��.
To give an example, the decay lepton spectrum of a tau with average polarization P� can be

expressed as
1

�

d�

dx
= h0(x) + �h�(x) + �h�(x)�P� (�h�(x) + ��h��(x)) (5.16)

The intervening Michel parameters are [393]

� =
3

16

�
jgSRRj2 + jgSLRj2 + jgSRLj2 + jgSLLj2

�
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+
3

4

�
jgVRRj2 + jgVLRj2 + jgTRLj2 + jgTLLj2 +Re(gSLRg

�T
LR + gSRLg

�T
RL)

�
(5.17)

� =
1

2
Re(6gVRLg

�T
LR + 6gVLRg

�T
RL + gSRRg

�V
LL + gSRLg

�V
LR + gSLRg

�V
LR + gSLLg

�V
RR) (5.18)

� = �1

4

�
jgSRRj2 + jgSLRj2 � jgSRLj2 + jgSLLj2

�
�
�
jgVRRj2 � jgVLLj2 � 3jgVLRj2 + 3jgVRLj2

�
+5

�
jgTLRj2 � jgTRLj2

�
� 4Re(gSLRg

�T
LR � gSRLg

�T
RL) (5.19)

�� = � 3

16

�
jgSRRj2 + jgSLRj2 � jgSRLj2 + jgSLLj2

�
� 3

4

�
jgVRRj2 � jgVLLj2

�

+
3

4

�
jgTLRj2 + jgTRLj2

�
� 3

4
Re(gSLRg

�T
LR � gSRLg

�T
RL) (5.20)

up to a common normalization factor. At Born level, the spectral functions hi(x) are polyno-

mials [351] in the reduced energy of the charged lepton, x = El=E� ' El=Eb, which do not

contain any couplings. The values expected for the Michel parameters with a pure V � A

charged current are listed in Tab. 5.1.

Also for hadronic � decays, an analogous decomposition into spectral functions can be
made [391]

1

�

d�

dx
= g0(x) + P��hg1(x) (5.21)

where �h is the chirality parameter, which in principle could be di�erent for each decay mode,

and gi are the corresponding spectral functions of x = Ehad=E� , the scaled hadron energy. In
models which admit only V and A type interactions, �h is given by the average �� helicity. The
Standard Model thus gives �h = 2h� = �1 for all hadronic decays.

It follows from the above formulae that single decay spectra, not using the correlation
between the two tau decays in an event, will not be able to disentangle the complete set of
Michel parameters. If we instead consider the full information from observing both decay
products A and B in e+e� ! �+�� ! A+B�+�'s, mixed terms allow to extract the maximum
information. The double di�erential decay distribution is of the form

1

�

d2�

dxAdxB
= H

(A)
0 (xA)H

(B)
0 (xB) +H

(A)
1 (xA)H

(B)
1 (xB)

+P�

�
H

(A)
1 (xA)H

(B)
0 (xB) +H

(A)
0 (xA)H

(B)
1 (xB)

�
(5.22)

The functions H for leptons are

H
(l)
0 = h0(x) + �h�(x) + �h�(x) (5.23)

H
(l)
1 = �h�(x) + ��h��(x) (5.24)

with the same leptonic spectral functions hi as above. For hadrons (j = �; �) one �nds

H
(j)
0 = g

(j)
0 (x) (5.25)

H
(j)
1 = �hg

(j)
1 (x) (5.26)

These Born level spectra have to be radiatively corrected and detector acceptance and resolu-

tion must be taken into account. A maximum likelihood �t to the observed doubly di�erential
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ARGUS [105,394] ALEPH [186] L3 [214] EPS95 [394] �! e�� [252] V �A
� 0:74 � 0:04 0:75� 0:05 0:81 � 0:05 0:750 � 0:023 0:7518 � 0:0026 3=4
� +0:03 � 0:22 �0:04 � 0:19 +0:10 � 0:23 +0:02 � 0:12 �0:007 � 0:013 0

� 0:97 � 0:14 1:18� 0:16 0:95 � 0:25 1:04 � 0:10 1:0027 � 0:0085 1
�� 0:65 � 0:12 0:88� 0:13 0:73 � 0:19 0:75 � 0:08 0:751 � 0:007 3=4

�h �1:02� 0:04 �1:01 � 0:04 �1:02� 0:08 �1:01� 0:03 �1
Table 5.1: The Michel parameters from leptonic tau decays and the chirality parameter from

hadronic tau decays, compared to the world average for muon decays [252] and the expectations

for a pure V �A current. The errors correspond to statistical and systematic errors added in

quadrature. Note that correlations among the parameters and to the simultaneously measured

tau polarization are not negligible. The average labeled EPS95 was evaluated for the 1995

EPS-HEP conference [394].

Figure 5.9: Con�dence ellipses in the �-�� plane from ALEPH data [186] corresponding to 39, 63

and 78% con�dence levels. The open trapezoid encloses the physical region for the parameters,
the hatched area delimits the region allowed for � = 3=4. The Standard Model expectation is

marked by a star.

distributions can then give a measurement of the Michel parameters and the mean tau polar-
ization (if present).

ALEPH [186] and ARGUS [105] have recently published an analysis of this type, and pre-
liminary data from L3 are also available [214]. Table 5.1 summarizes the results. Clearly all

data are in excellent agreement with the Standard Model assignment of a pure V �A charged

current for the � lepton. This conclusion is also true when correlations among the Michel
parameters and with the tau polarization are taken into account. Fig. 5.9 shows the allowed

region in the �-�� plane as de�ned by the ALEPH data [186]. For comparison, the correspond-

ing world average values of the Michel parameters from muon decay are also shown in Tab. 5.1.
It is obvious that the measurement accuracy for the tau lepton decay structure has a way to

61



go before it can compete with the precision reached in muon decays.

5.3 Tau decays and the hadronic charged current

In analogy to the purely leptonic tau decays, the invariant amplitude for semileptonic tau

decays can be written in the form of a current-current interaction

M(�� ! h��� ) =
GFp
2
jVhjL�J� (5.27)

where h� stands for a given hadronic system, Vh is the corresponding element of the Cabibbo-

Kobayashi-Maskawa matrix (Vud for non-strange h, Vus for strange h). L� describes the leptonic

� current

L� = �v��
�(1� 
5)u� (5.28)

The hadronic transition current J� is the piece of interest here. It describes how the hadronic

system h is formed, from the vacuum, by the weak charged current. Restricting to a V � A

structure, one can write

J� =< hjV�(0) �A�(0)j0 > (5.29)

With a non-strange current, hadronic systems of spin-parity JP = 0�, 0+, 1� or 1+ can be
produced. The vector part of the current leads to �nal states with even G-parity, e.g. an even
number of pions, while the axialvector part couples to odd G-parity states, i.e. an odd number
of pions. The Conserved Vector Current hypothesis (CVC) limits the vector part to produce
only vector states. The vector current can then be related to the cross section for e+e� ! h0,
where h0 is a hadronic system related to h by an isospin rotation.

Taking this factorized invariant amplitude, the tau width into h��� can be expressed in a
form-factor ansatz [395,396]

d�(�� ! h��� ) =
G2
F

4m�

jVhj2L��H��dPS (5.30)

with the leptonic and hadronic tensors L�� and H�� and the Lorentz invariant phase space

element dPS. In the rest system of h�, the tensor product simpli�es to a sum over structure

functions Wi and kinematic factors [395].

For the long-lived hadronic states h� = ��=K�, the structure functions reduce to delta

functions such that the tau partial widths are directly related to the corresponding weak decay
rate

�(�� ! ����) =
G2
F

16�
f2� jVudj2m3

�

 
1� m2

�

m2
�

!2
(5.31)

where the pion decay constant f� is de�ned by the pion decay width

�(�� ! �����) =
G2
F

8�
f2� jVudj2m�m

2
�

 
1� m2

�

m2
�

!2
(5.32)

Radiative corrections to these relations are small [370, 397{399]. The corresponding relations
for �� ! K��� follow by replacing the masses and f�jVudj by fKjVusj.
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Mode WA94 BR (%) Theory

h�� 11:77 � 0:14 11:67 � 0:06

��� 11:09 � 0:15 10:95 � 0:06

K�� 0:68 � 0:04 0:72 � 0:01

h��0� 25:36 � 0:21 25:1 � 0:6

���0� 24:91 � 0:21 24:9 � 0:7

K�� 1:36 � 0:08 1:1 � 0:1

h�2�0� 9:18 � 0:14

��2�0� 9:09 � 0:14
K�2�0� 0:09 � 0:03 0:12 � 0:04

h�3�0� 1:15 � 0:15

��3�0� 1:08 � 0:05

h�4�0� 0:16 � 0:07

h�K0� 1:03 � 0:09

K�K0� 0:13 � 0:04 0:12 � 0:03

h��0K0� 0:53 � 0:06

���0K0� 0:41 � 0:07

K��0K0� 0:12 � 0:04

h�K0K0� 0:08 � 0:04 0:044 � 0:032
h��0�� 0:18 � 0:03

���0�� 0:130 � 0:018

h�!� 2:12 � 0:07

��!� 1:79 � 0:14

h�!�0� 0:35 � 0:12P
1 prong excl. 84:66 � 0:38P
1 prong incl. 85:41 � 0:23

3h� 9:24 � 0:21

���+��� 8:64 � 0:24
K��+��� 0:40 � 0:09

K�K+��� 0:20 � 0:07 0:20 � 0:07

3h�0� 4:45 � 0:14

2���+�0� 4:20 � 0:29

3h2�0� 0:51 � 0:05
3h � 3�0� 0:20 � 0:07P

3 prong excl. 14:40 � 0:27P
3 prong incl. 14:49 � 0:23

5h� 0:073 � 0:007
5h�0� 0:021 � 0:006

3��2�+�0� 0:027 � 0:005P
5 prong excl. 0:09 � 0:01P
5 prong incl. 0:10 � 0:01P
7 prong incl. < 0:012 (95%CL)P
all excl. 99:15 � 0:46

Table 5.2: The world average branching fractions of the tau lepton compiled at the 1994

Workshop on Tau Lepton Physics [400], compared to theoretical predictions [6, 401{404]. h�

stands for �� or K�. The �� branching fraction have been obtained from the semi-inclusive
h� numbers by subtracting the K� branching fraction where available.63



The description of hadronic resonance production in tau decays by this ansatz is complicated

by the structure of such resonances itself. However, for the even G-parity states, only the

vector current contributes and CVC gives a convenient way to relate the decay width to the

cross section for e+e� ! hadrons [405, 406]. Thus for the hadronic systems with JPG = 1�+,
h� = 2n�; !�; ��� etc, predictions can be based on e+e� data. One �nds [401]

d�

dq2
=
G2
F jVudj2
32�2m3

�

(m2
� � q2)(m2

� + 2q2)
q2

4��2
�I=1e+e�(q

2) (5.33)

up to small radiative corrections [370]. The analysis of the e+e� data is not straight forward

since one requires that only the (strong) isovector part of the cross section be measured [401,

402]. To give an example, the measured cross section for e+e� ! �+�� can be used to predict

the width for �� ! ���0�� , only after the contribution from e+e� ! ! ! �+�� has been

subtracted including interference.

An excellent survey of recent experimental results on the hadronic branching fractions of the

tau lepton has been prepared by Heltsley for the 1994 Workshop on Tau Lepton Physics [400].

His overview of new world average branching fractions is reproduced in Table 5.2, obtained

using the error scaling method of the Particle Data Group [252]. New results that became
available since then are summarized in Table 5.3. The results are to a large extent dominated
by the recent ALEPH results.

Many results have only recently become available, especially in the strange sector. This has
been made possible by the advances in detector technology (RICH, accurate TOF and dE=dx
measurements) to identify charged kaons, �ne grain electromagnetic calorimeters able to resolve
electromagnetic showers from high energy �0 and hadronic calorimeters to �nd and separate o�
showers from K0. Attention has to be payed to the way in which semi-inclusive branching ratios

are split for exclusive ones. While the Particle Data Group used to advise experimentalists to
group modes with a K0

L into the semi-inclusive mode without K0, new e�orts to actually see
and classify these modes allow to properly account for them.

Because of the complex dynamics involved in decays to K�K �nal states, predictions for
the branching fractions are non trivial. A cascade of resonances can contribute, e.g. W !
a1 ! �(�; !;�)! K�K or W ! a1 ! KK�! �K�. Recently, Finkemeier and Mirkes [404] have
derived predictions for a complete set of two and three meson �nal states, based on form factors
predicted by chiral Lagrangians and accounting for low lying resonances. The agreement with

measured branching fractions is generally satisfactory [404].

It is evident from the tables that the strive of recent experiments, especially ALEPH, to

cover and classify all decay modes of the tau lepton has successfully removed doubts about
substantial branching fractions into unobserved modes. Their method to classify all �nal states

into generic classes and extract the branching fractions by careful cross-feed corrections was
pioneered by CELLO [115] and successfully applied at LEP [170]. The exclusive branching

fractions now sum up to the corresponding topological ones without apparent loss. The total
sum of exclusive modes falls short of one by less than a percent, with an error of half a percent.

Rare decay modes at the level of less than 10�4 can of course only be observed by the high

statistics sample of CLEO until new data from B- and �C-factories become available.

Hadronic decay modes beyond �� ! ���� and �� ! K��� are dominated by the production
of hadronic resonances. Examples of hadronic mass distributions are shown in Fig. 5.10, 5.11
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Mode Experiment BR (%)

e��� OPAL 18:04 � 0:33

e�e+e��� CLEO 2:7 � 1:4 10�3

���� OPAL 17:36 � 0:27

��e+e��� CLEO < 3:1 10�3 (90% CL)

h�� DELPHI 11:84 � 0:56

OPAL 14:96 � 0:24

K�� OPAL 0:59 � 0:08

���0� DELPHI 24:09 � 0:67

��K0� L3 0:95 � 0:16
��K0�0� L3 0:41 � 0:12

��K0
S � 0�0� OPAL 0:72 � 0:08

��K�� ARGUS 0:25 � 0:11

���� ARGUS < 0:035 (90% CL)

K��0� DELPHI 0:69 � 0:25

K� � 1�0� OPAL 0:55 � 0:10
K�K�� ARGUS 0:20 � 0:06

K�K0
S � 0�0� OPAL 0:20 � 0:06

h�K0
S� ALEPH 0:43 � 0:05

DELPHI 0:80 � 0:12
h�K0

S � 0�0� DELPHI 0:72 � 0:12

h�K�K+ � 0�0� DELPHI 0:20 � 0:09
h�K0

S�
0� ALEPH 0:30 � 0:04

h�K0
SK

0
L� ALEPH 0:13 � 0:04

��K0K0� L3 0:31 � 0:13

���� CLEO < 0:025 (95% CL)

K��� CLEO 0:026 � 0:06
���0�� CLEO 0:17 � 0:03

ALEPH 0:23 � 0:06
��!� CLEO 1:95 � 0:13

3h� OPAL 9:87 � 0:26
CLEO 9:51 � 0:21

���+��� DELPHI 8:35 � 0:42

3h�0� OPAL 4:57 � 0:25

CLEO 4:23 � 0:23

3h > 1�0� OPAL 5:09 � 0:25

Table 5.3: New branching fraction measurements that appeared since the 1994 Workshop on

Tau Lepton Physics [212,375,407{420].

and 5.12. The mode �� ! ���0�� appears saturated by the �� resonance, just like the decay

�� ! K��0�� is dominated by the K� resonance. The three prong decay �� ! ���+����
shows the broad peak in the mass spectrum corresponding to the a1 resonance.

Hadronic tau decays can thus probe the dynamics of the hadronic charged current in sub-

stantial detail, far beyond the simple decay rate measurement. Model independent meth-
ods to determine the structure functions have been developed especially for the decay �� !
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Figure 5.10: Hadronic mass distribution in candidate events for �� ! ���0�� from L3. The
data (dots) are compared to a Monte Carlo Calculation with � dominance for this channel
(histogram), including background.

Figure 5.11: Hadronic mass distribution in candidate events for �� ! K��0�� from ALEPH
(left) [182] and DELPHI (right) [198]. The data (dots) are compared to a �t (line) to the K�

resonance and background.

���+���� [380, 395, 421, 422]. ARGUS [103, 105] and OPAL [242] have recently analyzed tau

decays to a1 along these lines. Fig. 5.13 shows the four structure functions Wi, compared to

the model predictions of K�uhn et al. [422] and Isgur et al. [421]. This analysis then allows to
�x the parameters of the a1 resonance as introduced in the respective model.

66



0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3
Q2 (GeV2)

C
ou

nt
s

OPAL

Figure 5.12: Hadronic mass distribution in candidate events for �� ! ���+���� from

OPAL [242]. The data (dots) are compared to a Monte Carlo with a1 dominance (histogram)

and background (hatched histogram).

OPAL

Q2(GeV2)

w
A
 (

G
eV

4 )

OPAL

Q2(GeV2)

w
C
/w

A

Q2(GeV2)

w
D
/w

A

Q2(GeV2)

w
E
/w

A

0

1000

2000

3000

4000

5000

1 2
-1

0

1

2

3

4

5

1 2

-4

-3

-2

-1

0

1

2

1 2
-1

-0.5

0

0.5

1

1 2

Figure 5.13: Structure functions Wi measured in the decay �� ! ���+���� by OPAL [242].

The data (dots) are compared to the model calculations of Isgur et al. (dashed line) [421] and
K�uhn et al. (solid line) [422].

It is clear that analysis of this kind are far from conclusive at this stage but have just

scratched the surface of this �eld. However the power of tau decays in understanding the low
q2 hadronic charged currents starts to become evident. One can thus predict a lively future for
this topic in tau physics.
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Chapter 6

Strong interactions and � decay

The � is the only lepton heavy enough to decay into hadrons. Since its mass is substantially

larger than �QCD, it makes sense to try and determine the QCD running coupling constant
from its hadronic decays. As usual, the more inclusive the measurement, the better the mea-
surement of �s is expected to be, since hadronization details of the �nal state play a lesser rôle.
For � decays, the most inclusive measurement is the total hadronic decay width which receives
substantial perturbative QCD corrections, analogous to the total hadronic rate in e+e� reac-

tions. The perturbative series for this quantity has been calculated up to order O(�3s) and non
perturbative corrections have been estimated [423{426]. Experimentally, the hadronic width
is readily derived from the total width and leptonic branching fractions (see Chapter 5). The
main interest to determine �s at low momentum transfer is that it provides a long lever arm
when compared to analogous measurements at q2 =M2

Z and thus allows to directly observe the

running of the coupling using only inclusive measurements.

On a somewhat less inclusive level, the spectral moments of hadron mass distributions have
also been calculated to order O(�s3) and measured with high precision. We will shortly discuss
the main features of both methods for a determination of �s and some problems involved,

referring to recent reviews for a more extensive discussion [427{429]. Since the mass of the �
is not far beyond the hadronic scale, there is no theoretical consensus yet on the estimate of
the theoretical error in the determination of �s from � decays and its extrapolation to higher
momentum transfers.

6.1 Strong coupling from the total hadronic width

An inclusive measurement of the strong coupling constant can be achieved using the quantity

R�

R� =
�(� ! �� + hadrons)

�(� ! ��e ��e)
(6.1)

where the denominator is the leptonic width calculated according to Equ. 5.13. This quantity

is thus de�ned in analogy with the ratio between the total hadronic and leptonic cross sections
in e+e�, R = �(e+e� ! hadrons)=�(e+e� ! �+��).
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Since only u �d and u�s states can contribute to hadronic tau decays, the naive quark-parton

model predicts R� = Nc(jVudj2+ jVusj2) ' 3, with the number of colors Nc and the contributing

CKM matrix elements. The experimental value of R� = 3:6174� 0:034 [252] shows a deviation

of � 20% from this prediction, due to �nal state strong interactions. The extraction of �s
from this measurement has been extensively studied in a series of papers by Braaten, Narison

and Pich [426], Le Diberder [430{432] and more recently by Altarelli, Nason and Ridol� [433],

Neubert [434] and Ball, Beneke and Braun [435]. We refer to these papers for a complete

review.

The theoretical expression for R� can be written as an integral over the squared hadronic

mass, s [426]:

R� = 6�i
Z

jsj=m2
�

ds

m2
�

(1� s

m2
�

)2[(1 + 2
s

m2
�

)�(1)(s) + �(0)(s)] (6.2)

where �(J) is the hadronic spectral function for a hadron of spin J . In terms of correction

factors to the quark parton result, this can be written as

R� = Nc(jVudj2 + jVusj2)�ew[1 + �p(�s(m�)) + �np + �0ew] (6.3)

where �ew = 1:0194 and �0ew = 0:010 are electroweak corrections [426].
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Figure 6.1: The theoretical predictions for the quantity �p (solid line) [434]; principle value
of the Borel integral (dash-dotted line) [435]; resummation of Le Diberder and Pich (dashed

line) [431]; exact order �s
3 result (dotted line) [434].

The perturbative term �p is known up to terms of order �s
3. Published theoretical predic-

tions di�er mainly in the treatment of the missing higher order (�s
4 and higher) terms [431,433{

435] (see Fig. 6.1). The non perturbative corrections �np, classi�ed according to the operator
product expansion along the line of the SVZ [436] approach, are quite small [426], since the

�rst power correction (excluding the small e�ects proportional to powers of the quark masses)
is already suppressed by 4 powers of m� .

69



Experiment R� �s(m�)

PDG94 [252] 3:522 � 0:035 0:306 � 0:024

ALEPH [439] 3:645 � 0:017 0:369 � 0:028

CLEO [83] 3:559 � 0:035 0:327 � 0:025

DELPHI [193] 3:44 � 0:24 0:26+0:09�0:12
L3 [384] 3:656 � 0:039 0:373 � 0:046
OPAL [239] 3:654 � 0:038 0:375+0:032�0:025

Table 6.1: The ratio R� of hadronic and leptonic decay width and the corresponding value

of the strong coupling constant. The error includes experimental errors and the experiments'

assessment of theoretical errors. Potential additional uncertainties as discussed in the text are

not included.

It has been argued [433,437,438] that certain ambiguities in the resummation of the pertur-

bative expansion (the so called ultraviolet renormalons) behave e�ectively as a power correction

of the order 1=m2
� . Attempts to circumvent this problem generally enlarge the error in the �s

determination. Thus, the method used in ref. [433] yields a theoretical error ��s(m� ) = 0:06
due to this source. According to ref. [434], the error should be ��s(m� ) = 0:05. In ref. [435], a
range ��s(m�) = 0:035 is proposed, but with their method the central value is shifted downward

by an amount roughly equal to the error. In ref. [431], a method is proposed which resums part
of the perturbative expansion, enhanced by powers of �, but ignores the infrared renormalon
problem, leading to the smaller error ��s(m�) = 0:03.

At this stage we can thus only conclude that the theoretical error coming from missing
higher orders lies between an optimistic value of ��s(m�) = 0:03 and an error that is the
envelope of all other determinations, ��s(m�) = 0:06. The error in �s is reduced by a factor of
10 when evolving from q2 = m2

� to q
2 = m2

Z.

Experimentally, R� can be derived from the leptonic branching fractions as

R� =
1 � BR(� ! e�e��)� BR(� ! �����)

BR(� ! e�e�� )
(6.4)

Alternatively, since the agreement of the leptonic width with electroweak theory has been
veri�ed (see Chapter 5), the leptonic widths can be substituted by their predicted values
�SM (� ! l��l�� ). R� then follows from the total width �tot = 1=�� as

R� =
(1=�� )� �SM (� ! e�e�� )� �SM (� ! ����� )

�SM (� ! e�e�� )
(6.5)

Measurements of this type are summarized in Tab. 6.1. The agreement among the recent

experiments is good. The lack of agreement to the value deduced on the basis of the Particle

Data Group's 1994 averages re
ect the deviation of recent precision measurements of lifetime
and leptonic branching fractions (see Fig. 5.8).
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6.2 Strong coupling from spectral moments

Additional information is contained in the shape of the hadronic spectrum and can be exploited

taking moments of the q2 or hadronic mass distribution. If the QCD predictions holds for the

integrated quantity R� , it should also be valid for its moments Rkl
� and its normalized moments

Dkl
� [432]:

Rkl
� �

m2
�Z

0

ds

 
1 � s

m2
�

!k  
s

m2
�

!l
d�had

ds
(6.6)

Dkl � Rkl
�

R�

(6.7)

The comparison of these predictions with data permits to extract �s and non perturbative

power terms simultaneously. For the normalized moments, this determination of �s(m�) is

independent of the one based on the total hadronic width and depends on di�erent systematics.

Again, if all hadronic �nal states are summed over, non perturbative corrections are expected

to be small and can in fact be estimated experimentally.

An extraction of �s(m�) from the measured spectral moments has been carried out by
the ALEPH [175, 439] and CLEO [83, 439] collaborations. Due to di�erent acceptances and

resolutions for the di�erent hadronic decay channels, the reconstruction of the inclusive hadronic
mass spectrum is quite complex. First, hadronic decay channels are classi�ed according to their
apparent topology. Acceptance, background and cross feed are then corrected and the resolution
unfolded. Finally, the mass distributions are added up using the � branching fractions to form
an inclusive spectrum. The resulting spectra from ALEPH and CLEO are reported in Fig. 6.2

and agree with each other quite well, although the reconstruction techniques for �0 and the cross
feed corrections di�er substantially. The lowest moments of these distributions are summarized
in Tab. 6.2. They are found to be in excellent agreement among the two experiments.
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Figure 6.2: Inclusive distribution of invariant mass squared from CLEO and ALEPH [439] for

hadronic � decays, with the exception of � ! ��, after unfolding detector e�ects.
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Moment CLEO [83] ALEPH [439]

D1;0
� 0:7283 � 0:0037 0:7217 � 0:0063

D1;1
� 0:1553 � 0:0013 0:1556 � 0:0019

D1;2
� 0:0559 � 0:0007 0:0570 � 0:0013

D1;3
� 0:0249 � 0:0004 0:0259 � 0:0008

Table 6.2: The measured normalized moments of the hadronic invariant mass squared distri-

butions from ALEPH and CLEO. The errors correspond to statistical and systematic errors

added in quadrature.

The measured values of R� and the spectral moments (D1l; l = 0; 3) are used in a global

�t to extract a value of the strong coupling constant together with three non perturbative

expansion coe�cients. The resulting CLEO values for �s are

�s(m� ) = 0:306 � 0:024 (6.8)

where the PDG94 value of R� (see Tab. 6.1) is used for normalization. ALEPH obtains

�s(m� ) = 0:355 � 0:021 (6.9)

with R� taken from their own measurement (see Tab. 6.1). Both errors include theoretical and
experimental uncertainties, with the exception of the perturbative uncertainty discussed above
which exceeds the quoted errors. The discrepancy of about two standard deviations between

these two results is due to the discrepant values of R� , since the spectral moments are in perfect
agreement.

The extrapolation of �s to the Z mass, for ALEPH data, yields:

�s(mZ) = 0:121 � 0:002(theo+exp)� 0:001(ext) (6.10)

where the �rst error sums experimental and theoretical uncertainties with exception of the
perturbative uncertainty. The second error estimates the uncertainty due to the extrapolation
from q2 = m2

� to q
2 = m2

Z. For CLEO one obtains

�s(mZ) = 0:114 � 0:003(theo+exp)� 0:001(ext) (6.11)

The discrepancy of the two values is ampli�ed by extrapolation, which lets the errors shrink
by about a factor of 10. To account for the additional perturbative uncertainty, a theoretical

error of between 0.003 and 0.006 should be added.

Conclusions are thus hampered by both experimental and theoretical uncertainties. The
evolution of world average values for R� , together with an increased accuracy, signi�cantly
a�ects the deduced values of �s. Theoretical errors are known only up to a factor of two,

might be as large as 0.006 and thus dominate experimental errors. Comparing to other in-

clusive determinations of the strong coupling, one notices that the higher ALEPH result is
in excellent agreement with the value deduced from the total hadronic Z width, �s(mZ) =

0:125 � 0:004(stat+syst) � 0:002(mH), where the second error is due to the uncertainty in the

Higgs boson mass [362]. The smaller CLEO value agrees better with the strong coupling de-
duced from deep inelastic scattering experiments, �s(mZ) = 0:112�0:002(stat+syst)�0:004(q2),
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where the second error estimates the scale uncertainty [252]. The tau measurement, even though

its value is surprisingly accurate given the low scale at which it applies, thus fails to remove

the apparent discrepancy between these two values. More work is needed, on the theoretical as

well as on the experimental side, to fully exploit these excellent measurements.
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Chapter 7

New physics with � leptons

Tau lepton �nal states are almost ubiquitous in the searches for new interactions and new

particles [440]. This is especially true in searches for Higgs bosons, since these couple to mass
and thus prefer to decay to heavy �nal states. Moreover, most experimental signatures for
new particle production involve missing energy and/or multiple leptons, for which tau lepton

production is an important background.

Instead of discussing these searches by arti�cially reducing to signatures involving tau lep-
tons, we will restrict ourselves to two particular subjects which are more speci�c to the physics
of the � lepton proper: leptonic CP violation and lepton number or lepton 
avor violation in tau
production and decay. The main reason is that although neither of the two is predicted by the
Minimal Standard Model, both e�ects could be quite readily accommodated. The observation
of CP violation in leptonic charged currents could restore symmetry between the quark and the

lepton sector by introducing a mixing matrix for leptons analogous to the CKM matrix [441]
(see also Section 3.3). However, CP violation in neutral currents would be an unambiguous
sign of new physics. Flavor conservation in the Standard Model is not protected by a gauge
symmetry and in fact absent in hadronic charged currents. It thus makes sense to concentrate
the discussion on these two somewhat less solid points of the Standard Model.

7.1 CP violation in � production

The violation of CP symmetry, where C stands for charge conjugation and P for parity is still
one of the fundamental mysteries in particle physics. So far, CP violation has been observed

only in the decay of neutral kaons [442]. In the Standard Model, the CP violation of electroweak
interactions with three fermion families is described by a phase in the CKMmixing matrix [441],

which enters into the weak charged current coupling among quarks. In neutral current reactions,

violation of CP symmetry has not been observed and the Standard Model does not predict any

observable e�ect. However, extensions to the Standard Model have been proposed that can

generate CP violations [443]. Formally CP violation can be introduced in a process, if the
produced fermions possess an electric (d� ) or a weak (dweak� ) dipole moment, without any a

priori connection between their magnitudes. In extensions to the Standard Model, the dipole

74



moments are expected (see Section 3.4) to scale with the third power of the fermion mass, thus

favoring the search with heavy leptons.

As discussed earlier (see Section 3.4) limits on the electric dipole moment can be obtained

searching for anomalous photon radiation from �+�� �nal states. In the context of CP violation,

CP odd observables can be constructed in addition and their expectation values measured to

obtain more stringent limits [444{446]. These are then normally expressed as limits on the

weak dipole moment of the tau lepton.
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τ -
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+

Figure 7.1: Form factor ansatz for the vertices � ��
 and � ��Z

In analogy to the electromagnetic form factors introduced in Equ. 3.11, the neutral current

Lagrangian LSM of the Standard Model can be extended, in a model independent way, by an
e�ective CP violating term, a�ecting the � ��
 and � ��Z vertices. Taking into account operators
with dimension � 6 one �nds

LCP = � i
2
�u���
5u(d�F�� + dweak� Z��) (7.1)

(see Fig. 7.1), where F�� and Z�� are the electromagnetic and weak �eld tensors. The strength
of CP violating amplitudes is governed by the two form factors, d� and d

weak
� , which are complex

and depend on q2. The �rst d� (see Section 3.4), describes the � coupling to the photon, the

second dweak� , the weak dipole form factor, describes the CP violating coupling of the � lepton
to the Z. On the Z peak, the photon contribution is negligible and the weak dipole moment
dweak� (q2 = m2

Z) is dominating.

Deviations from the Standard Model are thus encountered both by CP conserving cross
section modi�cation proportional to jLCPj2 and by interference between LSM and LCP, which
is CP violating. The cross section modi�cation [445]:

���� � jdweak� j2m
3
Z

24�
(7.2)

is in itself not a CP violating e�ect, but indirectly limits dweak� when one assumes that it is

the only deviating contribution to the partial Z width. Using recent results from LEP [447],

��� = (84:26 � 0:34) MeV, and the corresponding width expected from the Standard Model,
�SM�� = 83:7 � 0:4 MeV [448], one obtains a limit of jdweak� j < 2:3� 10�17e cm at 95 % C.L.

7.1.1 CP violating observables

Direct limits on CP violation can be obtained by measuring the expectation value of CP odd
observables. Any non zero value would indicate CP violation and thus be a sign for new physics.
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Such observables can be constructed from the kinematic variables characterizing � production

e+(~p+) + e�(~p�)! �+(~k+) + ��(~k�) (7.3)

where ~pi are the momenta of the unpolarized beams and ~kj the � momenta. For double one

prong tau decays

�+�� ! A(~q�) + �B(~q+) +X (7.4)

the momenta ~q�; ~q+ are used in addition.

CP odd observables can then be constructed from the unit vectors ~̂k = ~k=k and the spin

vectors ~S of both tau leptons. Since these are not directly observed, the momenta ~q of the decay

products or their directions ~̂q = ~q=q can be substituted. The observables can be arranged as a

traceless tensor [445]

Tij = (~q� � ~q+)i(~q� � ~q+)j + (i$ j) (7.5)

or its normalized form

T̂ij = (~̂q� � ~̂q+)i
(~̂q� � ~̂q+)j
j~̂q� � ~̂q+j

+ (i$ j) (7.6)

where the indices i; j (1 � i; j � 3) label the Cartesian coordinates with the third component
along the beam axis. The expectation values < Tij >A �B change sign under CP transformation
and are directly related to the weak dipole moment by

< Tij >A �B= dweak� CA �B

mZ

e

0
B@ �1

6
0 0

0 �1
6

0
0 0 1

3

1
CA (7.7)

The proportionality constants CA �B [445] depend on the � decay mode and are related to the
sensitivity of the decay mode as a � spin analyzer. The third component, < T33 >A �B, is a
particularly sensitive observable and also the least in
uenced by systematic e�ects.

The OPAL collaboration, measuring < T33 > on a sample of �+�� decaying semi-inclusively
to lepton-lepton, lepton-hadron or hadron-hadron pairs, �rst deduced a limit of [225]:

jdweak� j � 7:0� 10�17ecm 95%C:L: (7.8)

The ALEPH Collaboration, using < T̂33 > on a sample with exclusively identi�ed decay modes
� ! e��; � ! ���; � ! �(K)� and � ! �(K�)�, obtained [173]:

jdweak� j � 3:7� 10�17ecm 95%C:L: (7.9)

This limits has been recently improved, using a larger sample, a better selection and including
the � decay into a1, to [185]:

jdweak� j � 1:5� 10�17ecm 95%C:L: (7.10)

Using the same method, DELPHI obtained a preliminary limit of [201]

jdweak� j � 2:1� 10�17ecm 95%C:L: (7.11)
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Figure 7.2: Monte Carlo simulation for MCP

MSM
in the �+�� ! �+���� ��� decay for zero dweak�

(left side) and Re(dweak� )= Im(dweak� ) = 8� 10�17e cm (right side). [237]

A new method based on optimal CP odd observables constructed from the � 
ight and
spin directions has recently been introduced by OPAL [237]. The result achieved was a more
sensitive measurement of the real part and, for �rst time, the imaginary part of the weak dipole
moment. The new observables, one CP odd and T odd (T �) and an another CP odd and T
even (T +), are constructed by taking the ratios of the respective amplitudes:

OT +

=
MRe

CP
MSM

OT � =
MIm

CP
MSM

(7.12)

These amplitudes can be expressed as:

MRe
CP = (~̂k+ � ~̂q�)(~̂k+ � (~S+ � ~S�) � ~̂q�) (7.13)

MIm
CP = (~̂k+ � ~̂q�)[(~̂k+ � ~S+)(~̂q� � ~S�)� (~̂k+ � ~S�)(~̂q� � ~S+)] (7.14)

MSM = 1 + (~̂k+ � ~̂q�)2 + ~S+ � ~S�(1 � (~̂k+ � ~̂q�)2) � 2(~̂q� � ~S+)(~̂q� � ~S�) (7.15)

+2(~̂k+ � ~̂q�)[(~̂k+ � ~S+)(~̂q� � ~S�) + (~̂k+ � ~S�)(~̂q� � ~S+)] (7.16)

where ~̂q� is the direction of the electron beam, ~̂k+ is the 
ight direction of the positive � and

the ~S� are the spin vectors of the �� leptons in their respective rest frame. Neither the ��

direction nor its spin can be measured directly. The reconstruction is thus complex [237] and

described in detail elsewhere [449].

The mean values of these observables, < OT +

> and < OT � >, are related to the real and

imaginary parts of the weak dipole moment

< OT � >A �B=
mZ

e
dA �BRe(d

weak
� ) (7.17)

< OT +

>A �B=
mZ

e
fA �BIm(dweak� ) (7.18)
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The dimensionless proportionality constants dA �B and fA �B are sensitivities (as CA �B in Equ. 7.7)

and depend on the decay channel. A non zero expectation value for < O+ > or < O� >, that
would correspond to a non vanishing weak dipole moment, would be observed as an asymmetric

tail in the O distribution. This is veri�ed by Monte Carlo calculation, see Fig. 7.2.

The measured distribution of CP odd observables are symmetric (see Fig. 7.3) with no

evidence for a non zero expectation value. Consequently, real and imaginary part of dweak� are

found to be compatible with zero for all decay modes and angular regions. Fig. 7.4 shows this

for real part alone. An upper limit on the weak dipole moment is then set by a weighted mean

over all these channels:

jRe(dweak� )j � 7:8 � 10�18ecm (7.19)

jIm(dweak� )j � 4:5 � 10�17ecm (7.20)

at 95% con�dence level.

Figure 7.3: Distribution of the measured CP odd, T odd observables in Z! �+�� events from

OPAL [237].

In summary, no CP violating e�ects have been detected in Z ! �+�� neutral current

processes. The current experimental limits come close to the range where CP violating e�ects

are expected from models beyond the Standard Model.
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Figure 7.4: The real part of the weak dipole moment extracted from di�erent � decay channels

in di�erent geometrical regions of the OPAL detector [237].

7.2 Lepton number and lepton 
avor violation

In the Standard Model, lepton 
avor is strictly conserved, in charged as well as in neutral
currents. In particular, the Z only couples to pairs of leptons carrying the same 
avor (see
Fig. 7.5a). Since, however, lepton 
avor conservation is not protected by a gauge symmetry,
extensions to the Standard Model can accommodate 
avor changing transitions (see �g 7.5b),

either directly or indirectly, such as models with neutral heavy leptons, left-right symmetric
models, SUSY and superstring models [450{465]. The Z branching fractions to �e or �� are in
fact predicted to be quite large as shown in Tab. 7.1.
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Figure 7.5: a) Standard Model neutral currents; b) lepton 
avor violating Z decays; c) lepton


avor violating decay � ! eee.

Flavor changing neutral currents would manifest themselves both in Z decays to di�erent
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Reference Model Br(Z! e� ) Br (Z ! �� )

[461] Superstrings,E6 grand uni�ed theory � 3:4� 10�4 � 4:2� 10�4

(new exotic family-blind fermions)
[463] Scalar triplet model � 7:9� 10�6 � 5:9� 10�6

(Majorons)
[462] Superstring inspired Standard Model � 10�7 � 10�6 � 10�7 � 10�6

(new neutral leptons)

[464] Lepton 
avor violation by neutral gauge < (4� 6)� 10�7 < 3� 10�9

couplings (extra exotic gauge bosons:

Z'-Z mixing)

[465] Soft supersymmetry breaking terms � 10�9 � 10�8 � 10�9 � 10�8

(scalar lepton mixing )

Table 7.1: Theoretical predictions for branching ratios Z ! e� and Z ! ��

lepton 
avors (Fig. 7.5b) and in 
avor violating lepton decays (Fig. 7.5c). Factorization requires

that the two rates are related. Best limits on muon and electron 
avor violations thus come

from muon decays. The measured limit on �! eee, Br(�! eee) < 1:0�10�12 at 90% CL [466],
sets an upper limit on the corresponding Z decay, Z! e� of [467]:

Br(Z! e�) < 0:74 � 10�12 (90%CL) (7.21)

much below the accessible range for direct observation of this process in Z decays. For � 
avor
changing neutral currents, on the other hand, the sensitivity of the search in Z decays and �
decays are of comparable sensitivity.

7.2.1 Lepton 
avor violation in Z decays

Z decays into e� and �� would be observed as a peak at the end point of the momentum
spectrum in candidates for Z! �+�� ! e=�X. As an example, Fig. 7.6 shows the electron

and muon spectra in �� candidate events from L3 [468] near the endpoint. The expected
monochromatic contribution from lepton 
avor violation is also indicated, with a normalization
corresponding to an arbitrary branching fraction. Clearly, no indication for such a process is
observed.

The corresponding preliminary limits on lepton 
avor changing neutral currents [216] are
given in Table 7.2, which summarizes the status of direct limits on lepton 
avor violation in Z

decays. Common limits can be estimated [467] from the current LEP measurements [468], at

95% CL:

Br(Z! e�) < 0:62 � 10�6 (7.22)

Br(Z! e� ) < 4:4 � 10�6 (7.23)

Br(Z! �� ) < 6:6 � 10�6 (7.24)

The present and future limits on Z! e� are obviously not competitive to those obtained

from muon number violating decay processes. However, for � 
avor violation the sensitivity
reaches the level where extensions to the Standard Model predict observable branching fractions.
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Figure 7.6: Left: Distribution of the electron energy in Z! e� candidates. Right: Distribution

of the muon energy for Z! �� candidates [210].

Experiment Br(Z! e�) Br(Z! e� ) Br(Z! �� )

ALEPH [467] < 3:7� 10�6 < 17 � 10�6 < 35 � 10�6

DELPHI [202] < 4� 10�6 < 36 � 10�6 < 15 � 10�6

L3 [216] < 2:0� 10�6 < 7:3� 10�6 < 10 � 10�6

OPAL [240] < 1:7� 10�6 < 9:8� 10�6 < 17 � 10�6

Table 7.2: Direct experimental limits for branching ratios of Z! e�, Z! e� and Z! ��

7.2.2 Neutrinoless � decays

The search for 
avor changing lepton decays is another way to probe the basic assumptions
of the Standard Model. In extensions to the Standard Model, neutrinoless lepton decay rates

are enhanced for heavy leptons. In some models, the rate for 
avor changing � decays is
even increased by a factor (m�=m�)

5 with respect to muon decay [460]. The expected decay

rate of each channel depends however strongly on the model considered. As an example, the
branching ratio [460] for the decays � ! 
�, � ! l�, � ! 3l and � ! l� in a model with heavy

neutral leptons has a strong dependence on the heavy lepton mass and ranges from ' 10�10,
corresponding to a few tens of GeV mass, to ' 10�6 for masses above 4 TeV. The predictions
also depend on unknown coupling constants.

A particularly interesting case is the radiative decay �� ! ��
 since its branching ratio is
related to the rate of �� ! e�
. The latter has been searched for in dedicated experiments at

TRIUMF [469] and LAMPF [470], yielding an upper limit for its branching fraction of Br(�� !
e�
) < 4:9�10�11 at 90% C.L. The expected enhancement factor for �� ! ��
, primarily due
to the mass dependent coupling, ranges between 105 and 106, making this channel particularly
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attractive to pursue experimentally. SUSY model predictions for this decay are [457]

Br(� ! �
)

Br(�! e
)
� (

m�

me

)2
1

5
� 106 (7.25)

In string models [458], the same factor is approximately 2� 105. The corresponding branching

fraction for �� ! ��
 should thus be of order 10�6 and close to being observable. The same

conclusion holds for predictions from left right symmetric theories [455]. The limit obtained by

CLEO for this decay [74] is more stringent than many theoretical estimations for lepton 
avor

violations:

Br(�� ! ��
) < 4:2� 10�6 90%C:L: (7.26)

This limit improves on a previous one obtained by ARGUS [99] (< 3:4� 10�5 at 90% C.L.) by

a factor of eight. Similar results have been obtained by DELPHI [202].

New bounds have been recently been set by CLEO [81] also on others forbidden lepton


avor and number violating � decays. A search has been made for 22 neutrinoless modes, with

a lepton plus two other charged particles in �nal state. No signi�cant signal has been found.

The results are summarized in Tab. 7.3 together with the corresponding values reported by
the Particle Data Group [252]. The improvement reached in many cases is impressive. The

limits on branching ratios for channels containing additional neutrals still come from older
ARGUS [99] and Crystal Ball [107] studies.

The channels �� ! �+(e+)h�h+, �� ! ��
 and �� ! ���0 limit lepton number violations,
while all other modes are testing for lepton 
avor violations. Neither e�ect has been observed
at the level of a few times 10�6. Simultaneous lepton and baryon number violations have also
been searched for by ARGUS [99]; limits are of the order 10�3 only.

By factorization, the limits for �� ! e�e+e� and �� ! ��e+e� can be translated into

corresponding limits on Z! �� and Z! e� . One obtains [467]:

Br(Z! e� ) < 14 � 10�6 (7.27)

Br(Z! �� ) < 18 � 10�6 (7.28)

at 90% CL, less stringent than the direct limits obtained at LEP (see Tab. 7.2).

82



Channel Experiment Upper Limit Particle Data Group
[10�6] [10�6]

�� ! e�e+e� CLEO <3.3 < 13

�� ! ��e+e� CLEO <3.4 <14

�� ! �+e�e� CLEO <3.4 < 14
�� ! e��+�� CLEO <3.6 < 19

�� ! e+���+ CLEO <3.5 <16

�� ! ���+�� CLEO <4.3 < 17

�� ! e��+�� CLEO <4.4 <27

�� ! e�K+�� CLEO <4.6 <58

�� ! e��+K� CLEO <7.7 <29
�� ! e+���� CLEO <4.4 <17

�� ! e+e���K� CLEO <4.5 <20
�� ! �+���+�� CLEO <7.4 <36

�� ! �+��K+�� CLEO <15 <77

�� ! �+���+K� CLEO <8.7 <77
�� ! �+���� CLEO <6.9 <39
�� ! �+��K� CLEO <20 <40

�� ! e��0 CLEO <4.2 <19
�� ! e�K�0 CLEO <6.3 <38

�� ! e� �K�0 CLEO <11 -

�� ! ���0 CLEO <5.7 <29
�� ! ��K�0 CLEO <9.4 <45

�� ! �� �K�0 CLEO <8.7 -

�� ! ��
 CLEO [74] <4.2 <4.2

�� ! ���0 ARGUS <44 <44

�� ! e�
 ARGUS <120 < 120
�� ! e��0 Crystal Ball [107] <140 <140

�� ! ��
 ARGUS <280 < 280

�� ! ���0 ARGUS <370 < 370
�� ! e�� ARGUS <63 < 63

�� ! ��� ARGUS <73 <73

�� ! �p
 ARGUS <290 <290

�� ! �p�0 ARGUS <656 <656

�� ! �p� ARGUS <1290 <1290

Table 7.3: Upper limits (95 % CL) for neutrinoless � decays, from CLEO [81], ARGUS [99]

and Crystal Ball [107]. For comparison, the limits from the Data Particle Group [252] are also

listed.

83



Chapter 8

Conclusions and outlook

Tau physics has entered the short list of precision subjects in particle physics, such that results

on tau leptons are now gauged against muon physics results. This has been made possible by
the tremendous progress in accelerator and detector technology that the recent generation of

experiments has pro�ted from. The main experimental break-throughs may be characterized
as follows:

� Static properties: The mass of the tau lepton is now, twenty years after its discovery,

known with sub-MeV precision. This measurement removes substantial freedom in the
interpretation of tau physics results and makes high precision tests of electroweak theory
possible. Although the tau neutrino yet remains to be seen through its interactions with
matter, its mass is known to be less than 24 MeV. It is not excluded that the tau neutrino
has a mass, and that it oscillates to other neutrino species.

� Electroweak properties: The tau lepton has pointlike electroweak vertices up to q2 = m2
Z.

Its couplings to the electroweak currents are the same as those of electron and muon with
permill precision.

� Hadronic decays: Nearly all expected tau decays with branching fractions down to a few
times 10�5 have actually been observed. On one hand, more and more exclusive analysis

and improved particle identi�cation technology has allowed to di�erentiate more and more
decay modes. On the other hand, semi-inclusive classi�cation of �nal states has allowed

to verify the completeness of observed �nal states with percent precision. The structure

of the hadronic charged current at large distances has become a subject of study on its
own.

� New physics: Tau leptons provide a powerful tool for the search of deviation from the
current orthodoxy. Their high mass often enhances expected e�ects with respect to the

�rst two lepton generation. No unexplained e�ects have, however, been detected to date.
Especially, the tau and its neutrino seem to indeed have their own lepton 
avor, conserved

to the level of a few times 10�6.

In conclusion, one is thus entitled to say that, for all we know, the tau is just another sequential

lepton. There has thus been little progress in understanding why nature has provided replicas
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of the lowest lying fermion family.

However, as impressive as recent progress in tau physics may be, the �eld has still a long

way to go until precision really matches the scale set by muon physics. Moreover, we have only

just scratched the surface of the rich �eld of study opened up by the possibility to produce

resonant hadronic �nal states out of the vacuum. It thus stays true that when one looked

without �nding anything, one just has not looked hard enough.

In fact the prospects for looking more closely at the physics of tau leptons appear excel-

lent. The CLEO and the LEP experiments are still taking high statistics data with excellent

detector technology and �rst class analysis techniques. The experiments at future B-factories

will multiply the world statistics of observed tau leptons by a large factor [471]. Last but not

least, feasibility studies for a facility dedicated to this physics, a � -charm factory [472] are be-

ing conducted and are endorsed by the physics community. With all the e�ort going into this

fascinating subject, we will surely �nd out what (if anything) is "wrong" with the tau lepton,

and we might �nally understand why it exists at all.
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