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CONTROLLING A LARGE PHYSICS EXPERIMENT
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Abstract In the past a physics experiment could be set up in a small laboratory
by a single genius. These days, physics experiments involve international col-
laborations of hundreds of scientists, and the laboratory of the ”crazy scientist”
has been replaced by kilometers of accelarator tunnels, enormous underground
caverns, tons of detector apparatus, hundreds of kilometers of cables, thousands
of electronic boards and dozens of computers. The control of such an experiment
is a complex system involving constraints of reliability, efficiency, reconfigurability
and maintainability. This paper defends that an efficient communication system
is an important issue when building such a control system.
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1.INTRODUCTION

DELPHI (DEtector with Lepton, Photon and
Hadron Identification) (Aarnio at al, 1991) is one
of the four experiments built for the 27 kilometer
long LEP - Large Electron-Positron - collider at
CERN, the European Organization for Particle
Physics.

DELPHI consists of a central cylindrical section
and two end-caps. The overall length and the
diameter are over 10 meters and the total weight
1s 2500 tons.

The electron-positron collisions take place insi-
de the vacuum pipe in the centre of DELPHI,
and the products of the annihilations fly radial-
ly outwards. The products of the annihilations
are "tracked” by several layers of detectors and
read out via some 200,000 electronic channels. A
typical event requires about 1 million bits of in-
formation.

The DELPHI detector is composed of 20 sub-
detectors, as described in Fig.1, which were built
by different teams in the laboratories of the DEL-
PHI collaboration (around 500 scientists from 42
laboratories in 20 different countries all over the
world). The main aim of the experiment is the
verification of the theory known as the ”Standard

Model”.

The DELPHI experiment started collecting data
in 1989 and it has to be up and running for 8
months/year (24h a day) until around the year
2000. During its live time the experiment is
constantly being modified, to allow for different
physics studies. New sub-detectors can be intro-
duced and old ones can be upgraded or replaced.

The control system of the experiment has to en-
sure that the experiment works efficiently and re-
liably during the running periods and it has to al-
low for an easy reconfiguration of any part of the
experiment according to the physicists wishes.
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Fig. 1. The DELPHI Detector

2.DELPHI ONLINE SYSTEM

The online system of a physics experiment is com-
posed of many different parts. Its main tasks are:

e The Data Acquisition System (DAS) (Charpen-
tier et al., 1991) reads event data from the 20
sub-detectors composing DELPHI and writes
it onto tape. In order to provide a high degree
of independence to the individual sub-detectors
the DAS system has been split into 20 au-
tonomous partitions. These partitions are nor-
mally combined to form a full detector but they
can also work in stand-alone mode for test and
calibration purposes.

The main constraints of the DAS system are in
the areas of efficiency and real-time behaviour;
the aim of the system is to record with zero
losses the data produced in all LEP collisions
( one every 11us ). Another important cons-
traint is adaptability; the DAS system has to
cope with the introduction of new detectors,
from their test phase (often in a different en-
vironment) up to their complete integration in
the experiment.

e The Trigger System (Fuster et al., 1992) pro-
vides the DAS system with the information
on whether or not an event is interesting and

Barrel Muon Chambers

Barrel Hadron Calorimeter

Scintillators

Superconducting Coil

High Density Projection Chamber

Outer Detector

Barrel RICH

Small Angle Tile Calorimeter
Quadrupole

Very Small Angle Tagger

Time Projection Chamber

should be written to tape. The final trigger de-
cision is a combination of the partial decisions
of the sub-detectors.

The main constraints of the Trigger system are
also related to timing requirements imposed by
the LEP crossing rate and to the flexibility ne-
cessary for easy modification of the combina-
tory logics between sub-detectors according to
LEP’s behaviour

e The Slow Controls System (SC) (Adye et al.,

1992) controls and monitors slowly moving
technical parameters and settings, like tempe-
ratures and high voltages of each sub-detector,
and writes them onto a database.

The SC constraints are mainly related to safe-
ty and security (of people and of the detec-
tors that could be irreversibly damaged) sin-
ce it controls dangerous parameters, like high
voltages, sensitive gas pressures and tempera-
tures.

e The Lep Communication System (Donszelman

and Gaspar, 1994) controls the exchange of da-
ta between the LEP control system and DEL-
PHI.

The main constraint is the availability of the
system. If wrong information is distributed ei-



ther to the experiment or to LEP the SC sys-
tem could react erroneously and consequently
damage the detector.

e The Quality Checking System (QC) provides
automatic and human interfaced tools for
checking the quality of the data being written
on tape.

The main constraint of the QC system is re-
lated to processing power; all the data pro-
duced by the detector has to be processed and
analysed within a reasonable delay (1/2 hour)
so that faulty parts of the detector can be re-
paired.

Information about the physical characteristics
(timing properties) involved in data logging and
triggering in such high-energy physics experi-
ments were described by Zalewski (1993).

The complexity of controlling such a system
comes from the fact that although the different
parts of the system have different requirements
and constraints, they have to work together for
the common goal of providing ”good” data for
physics analysis.

In previous experiments the control of the diffe-
rent areas was always designed separately by dif-
ferent experts, using different methodologies and
tools resulting in a set of dedicated control sys-
tems.

DELPHI noticed that due to the diversity of the
different systems and of their interfaces the inter-
action between the different domains was practi-
cally impossible, the operation of the experiment
was complicated and the evolution and mainte-
nance of the system was in serious danger. DEL-
PHI went through a re-investigation of the com-
plete needs of the system and decided to take a
common approach to the full ”experiment con-
trol” system. The result was the design of a sys-
tem that can be used for the control and moni-
toring of all parts of the experiment, and conse-
quently for obtaining a system that is easier to
operate, because it 1s homogeneous, and easier to
maintain and upgrade.

The full online readout and control system is com-
posed of around 40 VAX machines of different
types running VMS, 70 Fastbus (M68020) pro-
cessors running OS9, 80 G64 (M6809) processors
and thousands of other items of electronic equip-
ment (digitizers, timing units, etc.).

The online control system is characterized by a
highly distributed architecture; like most current
computer control systems, it consists of work-
stations interconnected by a local area network.

Each workstation (through a Graphical User In-
terface - GUI) controls and monitors a part of the
system, either a sub-detector (Det) or a central
task, like DAS or SC, as shown in the diagram of
Fig. 2.
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Fig. 2. The Online System

The need for the multiple tasks composing the
DELPHI control application to run in different
machines give rise to the problem of communi-
cating easily, effectively and reliably among pro-
cesses and processors.

The possibility of using a dedicated distributed
operating system, like Amoeba (Tanenbaum et
al., 1991), which would have allowed a better use
of the available computing power and facilitated
the coding of the application, was not considered
due to the need for the use of commercial soft-
ware, the reluctance of users to abandon their
preferred operating system and also the cons-
traints imposed by maintenance and support.

A communication system providing a transparent
network extension to the chosen operating sys-
tem could nevertheless allow the same goals to
be achieved.

After a careful investigation of the products avail-
able in the market, 1t was discovered that either:

e they did not fullfill all the requirements needed
(see next section), or

e they were not capable of handling such a large
system, or

e they did not provide an easy interface to the
user code, or

e they were self contained, i.e., they provided
their own main loop and took over all oper-
ating system resources, not allowing the user
to write or use his own software freely.

The final decision was therefore taken to design
a new communication system - DIM (Distributed
Information Management System) (Gaspar and



Dénszelman, 1993).

3.DESIGN REQUIREMENTS

The control system of the experiment is com-
posed of more than 500 processes, distributed
over around 40 workstations. The basic control
consists of sending commands and getting back
status reports in a tree-like structure, from the
main operators down to the different hardware
modules. Another very important part is moni-
toring: the monitoring of the experiment involves
large amounts of data produced by the various
machines dealing with specific parts of the sys-
tem. In order to process, check and display these
quantities a considerable amount of communica-
tion among stations has to take place.

The main purpose of the DIM System is to make
data available where and when it 18 necessary,
both for control and for monitoring purposes, in-
dependently of where it is produced.

In order to accomplish its mission DIM was de-
signed according to the following requirements:

e Efficient Communication Mechanism

DELPHI has some requirements for what con-
cerns the communication mechanism. In the
Online system most of the processes should be
able to react to asynchronous changes of con-
ditions and the communication package should
allow for this. Another important requirement
1s one-to-many communications, as in the case
of change of conditions in most cases more
than one process has to be notified. For DEL-
PHI’s purposes an efficient communication me-
chanism 1s one that respects these requirements
and 1s, of course, fast.

e Uniformity

The DIM system should be capable of handling
all exchanges within the online system, All pro-
cesses 1nvolved with control, monitoring, pro-
cessing or display should use the same com-
munication system. A homogeneous system is
much easier to program and to maintain.

e Run-time Transparency

An important goal for a distributed commu-
nication system is transparency. No matter
where a process runs, it should be able to com-
municate with any other process in the system,
using a single mechanism that is independent
of where the processes are located.

The DIM system should allow processes to

move freely from one machine to another. All
communications should be automatically re-
established. This feature would allow for load
balancing between machines, using either ma-
nual balancing for a static evaluation or dyna-
mic balancing using automatic methods like the
”Bidding Algorithm” (Ferguson, et al., 1988).

o User-coding Transparency

Distributed applications are often very difficult
to program. When coding a distributed appli-
cation the user should not be concerned with
machine boundaries; the communication sys-
tem should provide a location-transparent in-
terface.

The programming interface should hide from
the user all communication issues and reduce to
the minimum the necessity for additional user
code.

e Reliability and Robustness

In an environment with many processes, pro-
cessors and networks, it often happens that a
process, a processor or a network link breaks
down. The loss of one of these items should not
perturb the rest of the application. DIM should
provide for automatic recovery from crash situ-
ations or the migration of processes.

e Wide-area Transparency

DELPHI is an international collaboration; any
necessary information should be available to
the outside world, using the same system.

By fullfilling such requirements, a communica-
tion system can greatly improve the development
and performance of the complete system. It pro-
vides a decoupling layer between software modu-
les, that makes coding, maintenance and upgrad-
ing of the system easier and improves efficiency
and reliability at run-time.

4.COMMUNICATION MECHANISM
CONSIDERATIONS

When designing a distributed control system, the
choice of the communication mechanism to be
used is an important issue.

Distributed applications are often based on re-
mote procedure calls (RPC) (Birrell and Nelson,
1984). In the RPC mechanism the client sends a
message containing the name of a routine to be
executed and its parameters to a server, the serv-
er executes the routine and sends a message back
containing the result. This implies that the com-
munication is point-to-point and synchronous,



since the client always waits until the routine fi-
nishes execution, as shown in the diagram of Fig.
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Fig. 3. RPC mechanism

For an application like DELPHI (but probably
also for others such as industrial control or real-
time applications) the RPC mechanism is very
heavy and ill-suited. In most of these applica-
tions important tasks are the monitoring of pa-
rameters (sensors) and reacting to predefined or
exceptional conditions; furthermore these tasks
are normally repetitive and have to be executed
indefinitely.

The solution that semmed the best in this case
is for clients to declare an interest in a service
provided by a server only once (at startup), and
then to get updates at regular time intervals or
when the conditions change, i.e., an asynchronous
and one-to-many (group communications) proto-
col (Kaashoek and Tanenbaum, 1991), as depic-
ted in Fig. 4.

Server _Client

Request (Once at startup, |
Busy T Busy
| Repl '
doing * doing

his his
own f—* own
job | job

—— ey

Fig. 4. DIM’s mechanism

This mechanism - interrupt-driven, as opposed to
RPC’s polling approach - involves twice less mes-
sages sent over the network, 1.e. it is faster and

saves in network bandwidth. It has also the ad-
vantages of allowing parallelism (since the client
does not have to wait for the server to reply and
so can be busy with other tasks) and of allowing
multiple clients to receive updates in parallel.

This approach, together with the possibility of
sending commands to servers (more RPC-like),
are the main features of the DIM communication
mechanism.

5.DESIGN PHILOSOPHY

DIM, like most communication systems, is based
on the client/server paradigm.

The basic concept in the DIM approach is the
concept of "service”. Servers provide services to
clients. A service is normally a set of data (of
any type or size) and it is recognized by a name
- "named services”. The name space for services
is free.

Four commonly used types of services have been

identified :
e ONCE-ONLY: The client requests information.

e TIMED: The client requests the information to
be updated at regular time intervals.

¢ MONITORED: The client requests the informa-
tion to be updated whenever it changes (avai-
lability depends on whether the server can pro-
vide it).

o COMMAND: The client sends a command to
the server.

The TIMED and MONITORED services are only
requested once by the client (normally at start-
up); the service will then be updated automati-
cally by the server.

When using MONITORED services, the server
will update the information sent to all clients
whenever it changes, thus making sure the data
is coherent over all the clients of a certain service.

The updating mechanism can be of two types,
implemented either by executing a client callback
routine or by updating a client buffer with the
new set of data, or both. In fact this last type
works as if the clients maintain a copy of the
server’s data in cache, the cache coherence being
assured by the server.

In order to allow for the required transparency
(i.e, a client does not need to know where a server
is running) as well as to allow for easy recovery
from crashes and migration of servers, a name
server was introduced.



Servers ”publish” their services by registering
them with the name server (normally once, at
startup).

Clients ”subscribe” to services by asking the
name server which server provides the service and
then contacting the server directly, providing the
type of service and the type of update as para-
meters.

The name server keeps an up-to-date directory of
all the servers and services available in the sys-
tem.

Figure 5 shows a small example of the use of the
DIM system within the DELPHI Online System

@ Server Library e Client Library

@ Service Registration (publishing)
(@ Service Request/Reply (subscription)
@) Services: — DATA/-----. »CMNDS

Fig. 5. DIM example

Whenever one of the processes (a server or even
the name server) in the system crashes or dies
all processes connected to 1t will be notified and
will reconnect as soon as it comes back to life.
This feature not only allows for easy recovery, it
also allows for the easy migration of a server from
one machine to another (by stopping it in the first
machine and starting it in the second one), and so
for the possibility of balancing the machine load
of the different workstations.

6. IMPLEMENTATION ISSUES

e Transparency/Ease-of-use

The user-coding transparency required by users
is achived by hiding all communications, both
server-client, and with the name server, insi-
de library routines. These routines implement
all the server and client functionality and allow
any process to become a server or a client by
doing a subroutine call.

Once a server has ”published” its services or a
client has ”subscribed” to the services it needs,

the handling of client requests or server updates
can be done (if desired) without any notifica-
tion or intervention of the user process.

e Monitoring and Debugging

The behaviour of complex distributed applica-
tions can be very difficult to understand with-
out the help of a dedicated tool.

The DIM System provides a tool - DID, the
Distributed Information Display - that allows
the visualization of the processes involved in
the application as shown in Fig. 6.

DID provides information on the servers and
services available in the system at a given mo-
ment and on the clients using them.
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Fig. 6. DID - Display Tool
o World-Wide Access

An application built using DIM can be dis-
tributed across the world provided that either
TCP/IP or DECNET is available.

The information available as DIM services can
also be accessed by WWW (World Wide Web)
through a WWW-gateway. The WWW page
can be composed with the help of a dedicated
editor.

7.CURRENT DEVELOPMENTS

Although the DIM system is currently in use in
the DELPHI experiment, the project is not fini-



shed. Its installation on different platforms and
over other network protocols would be of great
use to both DELPHI and other potential users.

The DIM system is available for the moment un-
der VMS and UNIX operating systems but not
in mixed environments. It uses as network sup-
port TCP/IP and/or DECNET. The extension to
a mixed platform environment supporting UNIX,
0S9 and VMS over TCP/IP is being studied with
the associated problems of different data repre-
sentations over different machines. The main
change is the need to describe the structure of
the service data (that was previously irrelevant)
in order to be able to convert to the local machine
format.

The data formats and the network protocol to be
used on each connection will have to be negoti-
ated between the server, the client and the name
server.

8.SYSTEM ENGENEERING

The engineering of the complete DELPHI Online
System was a very large project. DIM is only a
layer in the system, but this layer provides ser-
vices to all the (500) processes composing the on-
line system as if 1t was an extension to the oper-
ating system providing high-level networking ca-
pabilities.

The ”heart” of the online system was developed
by a small set of people (around 5 to 10) but the
complete system includes work done by several
members of the collaboration (mainly physicists
wishing to set up the control and monitoring of
their detector-specific parts). The development of
software by external users of the system has large-
ly benefited from a well-defined interface. Users
could freely develop their software, using their
preferred languages, tools or methodologies, but
all exchanges with the outside were regulated by
the DIM protocol.

9.CONCLUSIONS

DELPHI is one of the largest physics experiments
in the world; its online control system is com-
posed of many different components, distributed
over many machines. In order to allow for efficient
communication among machines and processes; a
communication system - DIM - was developed.

The design of this system involved some of the
main features of the engineering of complex com-
puter systems:

e Apart from the functional aims (mainly high
speed data acquisition and control), important
non-functional objectives were the availability,
flexibility, fault-tolerance and safety of the final
system.

e The multi-disciplinary cooperation (physicists,
electronics engineers and software engineers)
was a key issue in the design of the system.

e Due to the need for evolution, parts of the sys-
tem have to be re-engineered periodically, bear-
ing in mind an overall view of the system.

DIM has greatly simplified the coding and main-
tenance of the DELPHI online software, by pro-
viding a network-transparent inter-process com-
munication mechanism. The distribution of and
access to up-to-date information of all parts of the
system takes place with the minimum addition of
user code.

DIM’s asynchronous communication mechanism
allows for task parallelism and multiple destina-
tion updates. Its characteristics of efficiency and
reliability have considerably improved the perfor-
mance and robustness of the complete online sys-
tem. The number of crashes was reduced from
once a week (taking about two or three hours to
recover) to none during the last year.

Access to the DELPHI information is possible
from all over the world, either directly through
DIM or via WWW through a WWW-DIM gate-

way.

DIM is responsible for most of the communica-
tions inside the DELPHI Online System; in this
environment 1t makes available around 15000 ser-
vices provided by 300 servers. DIM is now also
being used by other experiments at CERN.

The extension of the DIM system to other plat-
forms would be of great use to DELPHI (and
other users), and is being studied.
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