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ABSTRACT

It is shown that the minimal Higgs sector of a generic N=2 supergravity the-

ory with unbroken N=1 supersymmetry must contain a Higgs hypermultiplet and

a vector multiplet. When the multiplets parametrize the quaternionic manifold

SO(4; 1)=SO(4), and the special K�ahler manifold SU(1; 1)=U(1), respectively, a van-

ishing vacuum energy with a sliding massive spin 3/2 multiplet is obtained. Potential

applications to N=2 low energy e�ective actions of superstrings are brie
y discussed.
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The �eld theoretical analysis of the Higgs and the super-Higgs mechanisms has already proven

itself in the past to be a powerful tool to analyse phenomena that may occur in string theory.

Recently, conifold transitions in type II strings compacti�ed on Calabi-Yau manifolds [1]

have been described by Greene, Morrison and Strominger [2] as a Higgs mechanism in which p

hypermultiplets are \eaten up" by p U(1) massless vector multiplets, which become p massive,

long vector multiplets [3] (i.e. multiplets with vanishing central charge), each with spin content

(1; 1=2(4); 0(5)). This Higgs branch is a particular case of a phenomenon, previously noted in

the context of supersymmetric gauge theories [4], where, generically, VEV's of hypermultiplets

can change the rank of the (unbroken) gauge group. This is is contrast with the Coulomb phase

in which VEV's of vector multiplets do not change the rank of the gauge group.

Purpose of the present work is to investigate a much richer structure which emerges in

supergravity theories, in which these branches can induce supersymmetry breaking together

with gauge symmetry breaking.

The new phenomenon which emerges here is that N=2 Fayet-Iliopoulos terms [5] can break

all or half [6] of the supersymmetries depending on whether charged hypermultiplets exist in the

theory [6], which couple both to the graviphoton and to the matter vector multiplets. Partial

supersymmetry breaking is also possible with vanishing vacuum energy [7].

Suppose at �rst that hypermultiplets are not present, but that Fayet Iliopoulos terms are.

Furthermore, choose an Abelian gauge group U(1)nV +1, where nV is the number of matter

vector hypermultiplets. Then the Fayet-Iliopoulos term corresponds to a constant gauge prepo-

tential [8]
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�
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The vacuum energy, in the notations of reference [8], is given by the formula

V (z; �z; �x
�
) = U���x

�
�x
�
� 3�L � �xL � �x: (3)

Here z denotes the scalars of the vector-multiplet manifold, whose metric is gi�|, while

U�� = (@i +
1

2
@iK)L�gi�|(@�| +

1

2
@�|K)�L�; L� = eK=2X�: (4)

The special geometry data X�, K are de�ned below, in the parargraph after eq. (10). In

reference [5] it was shown that for a particular choice of the prepotential, F (X�), it is possible

to have V � 0. However, since hzi is SU(2) invariant, it follows that both gravitini have the

same (sliding) mass [6]. Therefore, this example breaks all supersymmetries, while the U(1)NV +1

symmetry is unbroken. It thus corresponds to the Coulomb phase. In this case gauginos get

masses proportional to the gravitino mass.

A more interesting situation arises when the theory is not in the Coulomb phase, but rather

in the Higgs phase. As in rigid supersymmetry, this can only occur if matter hypermultiplets

are present. The new phenomenon that we want to emphasize here is that the hypermultiplets
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not only can give masses to the U(1)nV +1 gauge bosons, but can also break half of the super-

symmetries rather than all of them, in the presence of Fayet-Iliopoulos terms [7]. Interestingly

enough this is a phenomenon that has no analog in rigid supersymmetric theories (whether or

not they are renormalizable) simply because, as pointed out by Witten [9], in rigid theories the

supersymmetry algebra implies that if one supersymmetry is broken, then the vacuum energy

is strictly positive, implying that all supersymmetries are indeed broken. In supergravity this

is circumvented because the supergravity Ward identities read [10]

�A 
i

L
�B 

j

R
Zij � 3MAC

�MCB = V �B
A
; (5)

Where the �A 
i denote the shift, under the A-th supersymmetry, of the spin one-half fermions,

while MAB is the gravitino mass matrix and Zij is the kinetic term of the fermions. These

identities show that even when V = 0, one may still have, say

�1 
i

L
�1 

j

R
Zij = 3M1CM

C1 = 0; (6)

but instead

�2 
i

L
�2 

j

R
Zij = 3M2CM

C2 6= 0: (7)

In N=2, this corresponds to breaking half of the supersymmetries (N=1 unbroken), at zero

cosmological constant.

A model that realizes such a situation cannot be obtained from the Lagrangian of De Wit,

Lauwers and Van Proeyen [11], as it was proven in [12]. On the other hand, that is not the

most general N=2 Lagrangian. It uses, in fact, a symplectic basis in which a prepotential F (X)

exists for the vector multiplets. In reference [13], it was shown that this is not generally true,

and that a more general formulation of N=2 supergravity exists, that never makes use of the

prepotential function.

The minimal model that exhibit partial breaking of N = 2 supersymmetry to N = 1 with

zero cosmological constant contains a charged hypermultiplet, whose scalars parametrize the

quaternionic manifold SO(4; 1)=SO(4), coupled to a vector multiplet, whose scalars parametrize

the K�ahler manifold SU(1; 1)=U(1) 3. The latter is formulated in a symplectic basis in which

no prepotential exists.

Note that the presence of both a hypermultiplet and a vector multiplet is needed [14] since,

when N=2 is broken to N=1, the N=1 multiplet containing the massive spin-3/2 �eld has spin

content (3=2; 1; 1; 1=2). Both the graviphoton and the matter vector become massive, together

with one of the gravitini; in other words, this is a Higgs and super-Higgs phase. The spectrum of

this theory contains, besides the massive spin-3/2 N=1 multiplet, two massless chiral multiplets

with sliding �elds, since the vacuum energy vanishes.

The model is determined by the geometry of the hypermultiplet quaternionic manifold and

the geometry of the vector-multiplet manifold, together with the the \D-term" prepotentials

Px

�
[8].

3
This model was constructed in [7] by performing a singular limit on a model constructed within the framework

of the tensor calculus of ref. [11].
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Let us denote the quaternionic coordinates of the hypermultiplet manifold by bu, u =

0; 1; 2; 3. The quaternionic geometry is determined by a triplet of quaternionic potentials,


x = 
x

uv
dbu ^ dbv, x = 1; 2; 3, which are the �eld strenght of an SU(2) connection !x = !x

u
dbu:


x = d!x + (1=2)�xyz!y ^ !z . In our case, the quaternionic manifold is SO(4; 1)=SO(4), and

these quantities read:

!x
u
=

1

b0
�x
u
; 
x

0u
= �

1

2b02
�x
u
; 
x

yz
=

1

2b02
�xyz; x; y; z = 1; 2; 3: (8)

The prepotentials 
x determine the quaternionic metric huv by the identity [8]

hst
x

us


y

tv = ��xyhuv � �xyz
z

uv
: (9)

In our case this equation gives huv = (1=2b0
2

)�uv. To write the fermion shifts one also needs the

symplectic vielbein U�A

u
dbu, �;A = 1; 2 [8]. In our case the vielbein reads:

U�A =
1

2b0
���(db0 � i�xdbx) A

�
; (10)

where �x are the standard Pauli matrices.

The special geometry of the manifold of the vector multiplets is determined in general by

giving 2nV + 2 holomorphic sections [13] X�(z); F�(z), in terms of which the K�ahler potential

reads

K = � log i( �X�F� �X� �F�): (11)

Here the manifold is SU(1; 1)=U(1), � = 0; 1, there is a single holomorphic coordinate z, and

our choice of holomorphic sections is

X0(z) = �
1

2
; X1(z) =

i

2
; F0 = iz; F1 = z: (12)

This choice gives rise to the K�ahler potential

K = � log(z + �z); (13)

and thus to the metric gz�z = 1=(z+�z)2. It is important to remark that our choice of holomorphic

sections is such that no prepotential F (X�) exists [13] 4.

Any global symmetry of the hypermultiplet manifold can be gauged. If the corresponding

Killing vectors are ku
�
, the gauge covariant derivative is D�b

u = @�b
u + A�

�
ku
�
. In our case the

gauge group is U(1)2, where one of the U(1) factors comes from the N=2 graviphoton, and the

other from the matter vector. Therefore, we need two commuting Killing vectors. Since the

metric of our quaternionic manifold is �uv(1=2b
0
2

), the manifold is symmetric under arbitrary

constant translation of the coordinates b1; b2; b3. Thus, we can for instance choose to gauge the

translations along b1 with the graviphoton, and the translations along b2 with the matter vector.

The corresponding Killing vectors are

ku
0
= g�u1; ku

1
= g0�u2; (14)

4
One can �nd these sections by the symplectic transformation X1

! �F1, F1 ! X1
of the basis speci�ed by

the prepotential F (X�
) = iX0X1

, which reads, explicitly, X�;F� = @F=@X�
.
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where g and g0 are arbitrary constants (the gauge couplings of the two U(1)'s). The Killing

vectors of a quaternionic manifold are derived from a triplet of \D-term" prepotentials, Px

�
by

the equation [8]

ku
�
=

1

6

3X
x=1

hvwrvP
x
x

wt
htu: (15)

In our case one has

Px

0
= g

1

b0
�x1; Px

1
= g0

1

b0
�x2: (16)

It is easily checked that the \quaternionic Poisson braket [8]" of these prepotentials is zero, as

it must be for an Abelian gauge group

fP0;P1g
x � 
x

uv
ku
0
kv
1
�

1

2
�xyzPy

0
Pz

1
= 0: (17)

The relation between our prepotentials and Killing vectors can be summarized by the following

formula

Px

�
=

1

b0
kx
�
: (18)

At this point, we have determined all quantities necessary to write the fermion shifts. The

formulae of reference [8] give the following expression for the (constant part of the) gaugino

shift

���z
A
= �igz�z(�x) C

A
�BCP

x

�
eK=2(@z + @zK)X�(z)�B � W �z

AB
�B: (19)

Here �A is the N=2 supersymmetry parameter.

The shifts of the hyperini is instead

��� = �2�ABU
�B

u
ku
�
eK=2X�(z)�A � N �

A
�A: (20)

Finally the gravitino shift reads

� A� =
i

2
(�x) C

A
�BCP

x

�
eK=2X�(z)
��

B � iSAB
��
B: (21)

By substituting into these formulas the explicit expressions we obtained for all quantities in-

volved, we �nd that all fermionic shifts are proportional to a single matrix:

W �z

AB
= �i(z+�z)1=2

1

b0
XAB; N �

A
= �i(z+�z)�1=2

1

b0
���X�A; SAB = �

1

2
(z+�z)�1=2

1

b0
XAB; (22)

where

XAB = �
g

2
(�1) C

A
�CB + i

g0

2
(�2) C

A
�CB =

 
g

0
�g

2
0

0 g
0
+g

2

!
: (23)

In these normalizations, the Ward identity relating the scalar potential to the fermionic shifts

reads

�ABV = �12(SAC)
�SCB + gz�z(W

�z

AC
)�W �z

CB
+ 2(N �

A
)�N �

B
: (24)

Upon substituting eq. (23), we �nd that this formula gives V = 0 identically, for any value of g

and g0. The model has always a 
at potential, and sliding VEVs for the scalar �elds z and bu.
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The gravitino mass matrix is equal to 2SAB (compare eq. (5) with eq. (24)); thus, the ratio of

the mass of the two gravitini is independent on the scalar VEV and equal to j(g+ g0)=(g � g0)j.
When the gauge coupling of the two U(1)'s are equal in magnitude g = �g0 (and nonzero),

one of the two gravitini is massless, and N=1 supersymmetry is unbroken. Obviously, all the

fermionic shifts along the unbroken supersymmetry generator vanish.

It is apparent that the model presented here describes the minimal sector responsible for the

breaking of half of the supersymmetries. It is thus conceivable that its Lagrangian would also

provide a model-independent description of the interactions of the half-supersymmetry breaking

sector of a very large class of interesting theories.

We may wonder whether phenomena such as have been just described here may occur in

string theory. If the N=2 theory under consideration is coming from a type IIA theory, then

the vectors are R-R states, and the hypermultiplets carry R-R charges [2, 15]. On the other

hand, the breaking of half of the supersymmetries is only possible if a Fayet-Iliopoulos term

is introduced. In our case the prepotentials Px

�
are Fayet-Iliopoulos terms since, as shown by

eq. (16), they are independent of the vector multiplets and they are always nonzero at any point

on the hypermultiplet manifold.

It is interesting to remark that, as recently noted in ref. [16], a kind of Fayet-Iliopoulos term

was introduced by Romans [17] in type IIA supergravity. It induces an anti-Higgs mechanism for

a U(1) 10-D vector �eld, which is eaten by the b�� tensor, that thus becomes massive. Ref. [16]

also discusses a 10-D form in type II theory which induces a supersymmetry breaking in string

theory. It is plausible that the mechanism discussed in this paper, or a generalization thereof,

may �nd applications in the understanding of non-perturbative phenomena in superstring dy-

namics.
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