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1 Introduction

The electron–positron scattering process (Bhabha process) at small angles is
used for the measurement of the luminosity at LEP I [1]. This technique
provides an experimental accuracy of the O(0.1%), or even better [2]. Such an
accurate theoretical calculation of the Bhabha cross-section was missing [3].
Recently [4] the radiative corrections due to the emission of virtual, real soft
and hard photons and pairs have been calculated up to the three loop providing
an O(0.1%) accurate cross-section. In this work [4] we gave the results of the
performed analytical calculations. The leading (∼ (αL/π)1,2,3) contributions
as well as the next to leading (∼ α/π, (α/π)2L) ones were calculated explicitly
for the processes with the emission of photons where L = lnQ2/m2

e and Q2 ∼
10 (GeV/c)2 is the squared momentum transferred. For a given scattering
angle θ one has Q2 = 2ε2(1 − cos θ) with ε the beam energy. Also the pair
production processes and the contributions due to the emission of virtual,
soft and real hard pairs were considered. However, the production of real
hard pairs was calculated only in the collinear kinematics (CK) limit [4]. In
order to assess the accuracy already obtained within the collinear limit, in
this paper, we carry a systematic study of the hard pair emission within the
semi-collinear kinematics (SCK). We present also the total contribution to the
observable Bhabha cross-section due to the pair production

e−(p1) + e+(p2)→ e−(q1) + e+(q2) + e−(p−) + e+(p+) , (1)

which takes into account the cuts on the detection of the scattered electron
and positron. We accept the convention [1–3] to consider as an event of the
Bhabha process one in which the angles of the simultaneously registered par-
ticles hitting the opposite detectors lay in the range:

θmin < θe < θmax = ρθmin, π − ρθmin < θē < π − θmin, (2)

(θmin ∼ 3◦ , ρ >∼ 1) with respect to the beam direction. The second condition
is imposed on the energy fractions of the scattered electron and positron:

xexē > xc, xe,ē = 2εe,ē/
√
s, s = 4ε2, (3)

where ε is the energy of the initial electron (or positron), εe,(ē) is the energy of
the scattered electron (positron)3.

Our method for the real hard pair production cross-section calculation
within the logarithmic accuracy consists in the separation of the contribu-
tions due to the collinear and semi-collinear kinematical regions [5,6]. In the

3Here and in the following, it is implied that the centre of mass is the reference frame.
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first one (CK) we suggest that both electron and positron from the created
pair go in the narrow cone along to the direction of one of the charged particles
(the projectile (scattered) electron ~p1 (~q1) or the projectile (scattered) positron
~p2 (~q2)):̂~p+~p− ∼ ~̂p−~pi ∼ ~̂p+~pi < θ0 � 1, εθ0/m� 1, ~pi = ~p1, ~p2, ~q1, ~q2 . (4)

The contribution of the CK contains terms of the order of (αL/π)2 and (απ)2L.
In the semi-collinear region only one of conditions (4) on the angles is fulfilled:

̂~p+~p− < θ0, ~̂p±~pi > θ0 ; or ~̂p−~pi < θ0, ~̂p+~pi > θ0 ; (5)

or ~̂p−~pi > θ0, ~̂p+~pi < θ0 .

The contribution of the SCK contains the terms of the form:(
α

π

)2

L ln
θ0

θ
,

(
α

π

)2

L, (6)

where θ = ~̂p−~q1 is the scattering angle. The auxiliary parameter θ0 disappears
in the total sum of the CK and SCK contributions. We systematically omit
the terms without large logarithms; they are of the form (α/π)2 ·const ∼ 10−5.

We restrict ourselves to the case when the electron–positron pair is created.
The effects due to the other pair creation (µ+µ−, π+π−, etc.) are at least one
order of magnitude smaller and can be neglected, as will be seen from the
numerical analysis. All possible mechanisms for pair creation (the singlet and
non-singlet ones) as well as the identity of the particles in the final state are
taken into account. In the case of small-angle Bhabha scattering, only the
scattering-type diagrams are relevant among the the total 36 Feynman tree
level diagrams. Besides, we are convinced of the cancellations of the interfer-
ence between the amplitudes describing the production of pairs moving along
the electron direction and the positron one known as up–down cancellation.

The sum of the contributions due to the virtual pair emission (due to the
vacuum polarization insertions in the virtual photon Green function) and of
those due to the real soft pair emission does not contain cubic (∼ L3) terms,
but depends on the auxiliary parameter ∆ = δε/ε (me � δε � ε, ε is the
energy sum of the soft pair components). The ∆-dependence disappears in the
total sum after adding the contributions due to the real hard pair production.
Before summing one has to integrate the hard pair contributions over the
energy fractions of pair components as well as over the ones of the scattered
electron and positron:

∆ =
δε

ε
< x1 + x2, xc < x = 1− x1 − x2 < 1−∆, (7)

x1 =
ε+

ε
, x2 =

ε−

ε
, x =

q0
1

ε
,

2



where ε± are the energies of the positron and electron from the created pair.
We consider for definiteness the case where the created hard pair moves close
to the direction of the initial (or scattered) electron.

The paper is organized as follows: in the second part we consider the
emission of the hard pair in the collinear kinematics. The results turned out to
be very close to the ones obtained by one of us (N.P.M.) in paper [6] for the case
of the pair production in electron–nuclei scattering and applied to the case of
small-angle Bhabha scattering in [4]. For completeness, we present very briefly
the derivation and give the result correcting some misprints in [6]. In the third
part we consider the semi-collinear kinematical regions. The differential cross-
section is obtained there and integrated over the angles and energy fractions of
the pair components. In the fourth part we give the expression of the radiative
corrections to the experimental cross-section due to pair production. The
results are illustrated numerically in tables and discussed in the Conclusions.

2 The Collinear Kinematics

In evaluating the cross-section we see that there are four different CK regions:
when the created pair goes along the direction of the initial (scattered) elec-
tron or positron [4]. We will consider only two of them, corresponding to the
initial and the final electron directions. For the case of the pair emission along
the initial electron, it is useful to decompose the particle momenta into the
longitudinal and transverse components:

p+ = x1p1 + p⊥+, p− = x2p1 + p⊥−, q1 = xp1 + q⊥1 , (8)

x = 1− x1 − x2, q2 ≈ p2, p⊥+ + p⊥− + q⊥1 = 0,

where p⊥i are the transverse two-dimensional momenta of the final particles
with respect to the initial electron beam direction . It is convenient to introduce
the following dimensionless quantities for the relevant kinematical invariants:

zi =

(
εθi

m

)2

, z1 =

(
p⊥−
m

)2

, z2 =

(
p⊥+
m

)2

, 0 < zi <

(
εθ0

m

)2

� 1, (9)

A =
(p+ + p−)2

m2
= (x1x2)

−1[(1− x)2 + x2
1x

2
2(z1 + z2 − 2

√
z1z2 cosφ)],

A1 =
2p1p−

m2
= x−1

2 [1 + x2
2 + x2

2z2], A2 =
2p1p+

m2
= x−1

1 [1 + x2
1 + x2

1z1],

C =
(p1 − p−)2

m2
= 2−A1, D =

(p1 − q1)2

m2
− 1 = A− A1 − A2,

where φ is the azimuthal angle between the planes (~p1p
⊥
+) and (~p1p

⊥
−).
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Keeping only the terms from the squared matrix element module summed
over the spin states module that give non zero contribution to the cross-section
in the limit θ0 → 0, we find that only 8 of the 36 tree level Feynman diagrams
are essential. They are drawn in fig. 1.
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Fig. 1. The Feynman diagram giving logarithmically enhanced contributions in the

kinematical region where the created pair goes along the electron direction. The

signs represent the Fermi–Dirac statistics of the interchanged fermions.

The result has the factorized form (in agreement with the factorization
theorem [8]):

∑
spins

|M |2
∣∣∣
p+,p−‖p1

=
∑

spins

|M0|
2 27π2α2 I

m4
, (10)

where one of the factors corresponds to the matrix element in the Born ap-
proximation (without pair production):

∑
spins

|M0|
2 = 27π2α2

(
s4 + t4 + u4

s2t2

)
, (11)

s = 2p1p2x, t = −Q2x, u = −s− t,

and the quantity I , the collinear factor, coincides with the expression for Ia
obtained in paper [6]. We put it here in terms of our kinematical variables:

I = (1− x2)
−2

(
A(1− x2) +Dx2

DC

)2

+ (1− x)−2

(
C(1− x)−Dx2

AD

)2

+
1

2xAD

[
2(1− x2)2 − (1− x)2

1− x
+
x1x− x2

1− x2
+ 3(x2 − x)

]
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+
1

2xCD

[
(1− x2)2 − 2(1− x)2

1− x2
+
x− x1x2

1− x
+ 3(x2 − x)

]
+

x2(x
2 + x2

2)

2x(1− x2)(1− x)AC
+

3x

D2
+

2C

AD2
+

2A

CD2
+

2(1− x2)

xA2D

−
4C

xA2D2
−

4A

D2C2
+

1

DC2

[
(x1 − x)(1 + x2)

x(1− x2)
− 2

1− x

x

]
. (12)

Rearranging the phase volume of the final particles as follows:

dΓ =
d3q1d

3q2

(2π)62q0
12q

0
2

(2π)4δ4(p1x+ p2 − q1 − q2) (13)

× m42−8π−4x1x2dx1dx2dz1dz2
dφ

2π
,

and integrating over the variables of the created pair, we obtain (see Appendix
A):

Ī =

2π∫
0

dφ

2π

z0∫
0

dz1

z0∫
0

dz2 I =
L0

2xx1x2

{
D1(L0 + 2 ln

x1x2

x
) (14)

+ D2 ln
(1− x2)(1− x)

xx2
+D3

}
, L0 = ln

(
εθ0

m

)2

,

D1 = 2xx1x2

(
1

(1− x)4
+

1

(1− x2)4

)
−

(1− x2)2

(1− x)2
−

(1− x)2

(1− x2)2
+ 1

+
(x+ x2)2

2(1− x)(1− x2)
+

3(x2 − x)2

2(1− x)(1− x2)
−

x2 + x2
2

(1− x)(1− x2)

− 2xx2

(
1

(1− x)2
+

1

(1− x2)2

)
, D2 =

2(x2 + x2
2)

(1− x)(1− x2)
,

D3 =
2xx1x2

(1− x2)2

(
−

8

(1− x2)2
+

(1− x)2

xx1x2

)
+

2xx1x2

(1− x)2

[
x2

xx1

+
2(x1 − x2)

xx1(1− x)
−

8

(1− x)2
+

1

xx1x2
−

4

x(1− x)

]
+ 6 + 4x

[
x2 − x1

(1− x)2

−
x1

x(1− x)

]
+

4(xx2 − x1)

(1− x2)2
−

4(1− x2)x1x2

(1− x)3
+

8xx1x
2
2

(1− x)4

−
xx2

2

(1− x2)4
+

x2

(1− x2)2

[
4(1− x) +

2(x − x1)(1 + x2)

1− x2

]
.

By doing the same also in the case of a pair moving in the direction of the
scattered electron, integrating the obtained sum over the energy fractions of
the pair components, and finally adding the contribution of the two remaining
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CK regions (when the pair goes along the positron direction) we obtain:

dσcoll =
α4dx

πQ2
1

ρ2∫
1

dz

z2
L

{
R0(x)

(
L+ 2 ln

λ2

z

)
(1 + Θ) (15)

+ 4R0(x) lnx+ 2Θf(x) + 2f1(x)
}
, λ =

θ0

θmin
,

Θ ≡ Θ(x2ρ2 − z) =

{
1, x2ρ2 > z,
0, x2ρ2 ≤ z,

R0(x) =
2

3

(1 + x2)

1− x
+

(1− x)

3x
(4 + 7x+ 4x2) + 2(1 + x) lnx,

f(x) = −
107

9
+

136

9
x−

2

3
x2 −

4

3x
−

20

9(1− x)
+

2

3
[−4x2 − 5x+ 1

+
4

x(1− x)
] ln(1− x) +

1

3
[8x2 + 5x− 7−

13

1− x
] lnx−

2

1− x
ln2 x

+ 4(1 + x) lnx ln(1− x)−
2(3x2 − 1)

1− x
Li2(1− x),

f1(x) = −x<ef(
1

x
) = −

116

9
+

127

9
x+

4

3
x2 +

2

3x
−

20

9(1− x)
+

2

3
[−4x2

− 5x+ 1 +
4

x(1− x)
] ln(1− x) +

1

3
[8x2 − 10x− 10 +

5

1− x
] lnx

− (1 + x) ln2 x+ 4(1 + x) lnx ln(1− x)−
2(x2 − 3)

1− x
Li2(1− x),

Li2(x) ≡ −

x∫
0

dy

y
ln(1− y), Q1 = εθmin, L = ln

zQ2
1

m2
,

Some misprints in the expressions for f(x) and f1(x) in [4,6] are corrected here.

3 The Semi-Collinear Kinematics

We will restrict ourselves again to the case when the created pair goes close
to the electron momentum (the initial or final one). Analogous considerations
can be made in the CM system in the case when the pair follows the positron
momentum. There are three different semi-collinear regions, which contribute
to the cross-section within the required accuracy of O(0.1%). The first region
includes the events with a very small invariant mass of the created pair:

4m2 � (p+ + p−)2 � |q2|,

when the pair escapes the narrow cones (defined by θ0) along both the pro-
jectile and the scattered electron momentum directions. We represent this

6



semi-collinear kinematics (SCK) region with the notation ~p+ ‖ ~p−. Only the
diagrams in fig. 1(1) and fig. 1(2) do contribute to this region and this is
because of the smallness of the virtuality of the pair producing photon.

The second SCK region includes the events where the invariant mass of the
created positron and the scattered electron is small: 4m2 � (p+ + q1)2 � |q2|,
with the restriction that the positron should escape the narrow cone along the
initial electron momentum direction. We represent it by ~p+ ‖ ~q1 and note that
only two diagrams fig. 1(3) and fig. 1(4), contribute here.

The third SCK region includes the events when the created electron goes
inside the narrow cone along the initial electron momentum direction but the
created positron does not. We represent it by ~p− ‖ ~p1. Only the diagrams
fig. 1(7) and fig. 1(8) are relevant here.

The differential cross–section takes the following form:

dσ =
α4

8π4s2

|M |2

q4

dx1dx2dx

x1x2x
d2p⊥+d2p⊥−d2q⊥1 d2q⊥2 δ(1− x1 − x2 − x) (16)

× δ(2)(p⊥+ + p⊥− + q⊥1 + q⊥2 ) , |M |2 = −Lλρp2λp2ρ,

where x1 (x2), x and p⊥+ (p⊥−), q⊥1 are the energy fractions and the perpen-
dicular momenta of the created positron (electron) and the scattered electron
respectively; s = (p1 +p2)2 and q2 = −Q2 = (p2− q2)2 = −ε2θ2 are the centre-
of-mass energy squared and the squared momentum transferred; the leptonic
tensor Lλρ has different forms for different SCK regions.

3.1 ~p+ ‖ ~p− region

For the region of small (p+ + p−)2 we can use the leptonic tensor obtained in
paper [6]. Keeping only the relevant terms, we present it in the form:

P 4

8
Lλρ =

4P 2q2

(1)(2)
[−(p1p1)λρ − (q1q1)λρ + (p1q1)λρ]

− 4(p+p−)λρ

(
1−

q2P 2

(1)(2)

)
−

4

(1)
[q2(p1q1)λρ − 2(p1p+)(q1p−)λρ

− 2(p1p−)(q1p1)λρ]−
4

(2)
[P 2(p1q1)λρ − 2(p+q1)(p1p−)λρ

− 2(p−q1)(p1p+)λρ]−
32(p1p+)(p1p−)

(1)2
(q1q1)λρ −

32(q1p+)(q1p−)

(2)2
(p1p1)λρ

+
8(p1q1)λρ
(1)(2)

[P 2(p1q1)− 2(p1p+)(p−q1)− 2(p1p−)(q1p+)], (17)

where

P = p+ + p−, (aa)λρ = aλaρ, (ab)λρ = aλbρ + aρbλ,
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q = p1 − q1 − P, (1) = (p1 − P )2 −m2, (2) = (p1 − q)
2 −m2.

After some algebraic transformations the expression for |M |2 entering the
cross-section can be put in the form:

1

q4
|M |2 = −

2s2

q4P 4

{
−

4P 2q2

(1)(2)
[(1− x1)

2 + (1− x2)
2]

+
128

(1)2(2)2
[(q1p) (p+p1)− x(p1p) (q1p+)]2

}
, (18)

where p = p− − x2p+/x1, (q⊥2 )2 = −q2. In the considered region we can use
the relations

(1) = −
1− x

x1
2(p1p+), (2) =

1− x

x1
2(q1p+). (19)

It is useful to represent all invariants in terms of the Sudakov variables
(energy fractions and perpendicular momenta), namely

q2
1 =

1

x1x2
((p⊥)2 +m2(1− x)2), 2(q1p+) =

1

xx1
(xp⊥+ − x1q

⊥
1 )2, (20)

2(p1p+) =
1

x1
(p⊥+)2, 2(p1p) =

2

x2
1

p⊥p⊥+, 2(q1p) =
2

x2
1

(p⊥ [xp⊥+ − x1q
⊥
1 ]),

p⊥ = x1p
⊥
− − x2p

⊥
+ .

The large logarithm appears in the cross-section after the integration over
p⊥. In order to carry out this integration we can use the relation

δ(2)d2p⊥+d2p⊥− =
1

(1− x)2
d2p⊥, (21)

which is valid in the region ~p+ ‖ ~p−. After the integration we derive the
contribution of the first SCK region to the cross-section:

dσ~p+‖~p− =
α4

π
L dx dx2

d(q⊥2 )2

(q⊥2 )2
·

d(q⊥1 )2

(q⊥1 + q⊥2 )2
(22)

×
dφ

2π
·

1

(q⊥1 + xq⊥2 )2

[
(1− x1)

2 + (1− x2)
2 −

4xx1x2

(1− x)2

]
,

where φ is the angle between the two dimensional vectors q⊥1 and q⊥2 .
At this stage it is necessary to use the restrictions on the two dimensional

momenta q⊥1 and q⊥2 . They appear when the contribution of the CK region
(which in this case represents the narrow cones with the opening angle θ0 along
the momentum directions of both initial and scattered electron) is excluded.
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Fig. 2. The kinematics of an event in the angular perpendicular plane corresponding

to the SCK region ~p+ ‖ ~p−.

The kinematics of the events corresponding to the region ~p+ ‖ ~p− in the
perpendicular plane is shown in fig. 2. The circles radius θ0 represent in the
figure the forbidden collinear regions. The elimination of those regions gives
the following restrictions:

|
p⊥+
ε+
| > θ0, |r⊥| = |

p⊥+
ε+
−
q⊥1
ε2
| > θ0, (23)

where ε+ and ε2 are the energies of the created positron and of the scattered
electron respectively. In order to exclude p⊥+ from the above equation we use
the conservation of the perpendicular momentum in the region p+ ‖ ~p−:

q⊥1 + q⊥2 +
1− x

x1
p⊥+ = 0. (24)

It is useful to introduce the dimensionless variables z1,2 = (q⊥1,2)
2/(εθmin)2,

where θmin is the minimal angle at which the scattered particles (electron and
positron) are recorded by the detector. Here we consider only the symmetrical
circular detectors. The conditions (23) can be rewritten as follows:

 1 > cosφ > −1 + λ2(1−x)2−(
√
z1−
√
z2)2

2
√
z1z2

, |
√
z1 −

√
z2| < λ(1− x),

1 > cosφ > −1, |
√
z1 −

√
z2| > λ(1− x), λ = θ0/θmin,

(25)

 1 > cosφ > −1 + λ2x2(1−x)2−(
√
z1−x

√
z2)2

2x
√
z1z2

, |
√
z1 − x

√
z2| < λx(1− x),

1 > cosφ > −1, |
√
z1 − x

√
z2| > λx(1− x).

(26)
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The restrictions in eq.(25)[(26)] exclude the phase space, corresponding to
the narrow cone along the direction of the initial [scattered] electron.

The conditions of the LEP I experiment are:

θ0 �
m

ε
≈ 10−5 and θmin ∼ 10−2. (27)

This is the reason for considering λ � 1. The procedure of integration of
the differential cross-section over regions (25) and (26) is described in detail
in Appendix B. Here we give the contribution of the SCK region ~p+ ‖ ~p− to
the cross-section provided that only the scattered electrons with the energy
fraction x exceeding xc could be recorded:

σ~p+‖~p− =
α4

πQ2
1

L

ρ2∫
1

dz

z2

1−∆∫
xc

dx

1−x∫
0

dx2

[
(1− x1)2 + (1− x2)2

(1− x)2

−
4xx1x2

(1− x)2

]{
(1 + Θ) ln

z

λ2
+ Θ ln

(x2ρ2 − z)2

x2(xρ2 − z)2

+ ln

∣∣∣∣∣(z − x2)(ρ2 − z)(z − 1)

(z − x)2(z − x2ρ2)

∣∣∣∣∣
}
, L = ln

ε2θmin
m2

, (28)

where Q2
1 = ε2θ2

min, ρ = θmax/θmin (θmax is the maximal angle of the final
particle registration), Θ ≡ Θ(x2ρ2 − z), z ≡ z2. The auxiliary parameter ∆
entering eq. (28) defines the minimal energy of the created hard pair: 2m/ε�
∆ � 1. Note that we replaced L by L because we do make no difference
between them at the single logarithmic level.

3.2 ~p+ ‖ ~q1 region

As was already mentioned, in the SCK region ~p+ ‖ ~q1 only diagrams fig. 1(3)
and fig. 1(4) contribute. The leptonic tensor could in this case be derived from
eq. (17) by the substitution p− ↔ q1, and the squared matrix element could
be written as

|M |2~p+‖~q1
= −

4s2

q′1
2~q22
·

1

(1′)(2)

{
(1− x1)

2 + (1− x2)
2

+
32

q′1
2~q22
·

1

(1′)(2)
[(p1p+)(p−p

′)− x2(p−p+)(p1p
′)]2
}
, (29)

where

p′ = q1 − p+x/x1, q′1
2 = (q1 + p+)2,

(2) = 2(p+p−)(1− x2)/x1, (1′) = −2(p1p+)(1− x2)/x1.

10



The integration of the matrix element over (p⊥1 )2 and (p⊥−)2 could be carried
out analogously to the previous case, and the contribution of the ~p+ ‖ ~q1 region
could be presented in the following form:

dσ~p+‖~q1 =
α4

π
L dx dx2

d(q⊥2 )2

(q⊥2 )2
·
d(q⊥1 )2

(q⊥1 )2

×
dφ

2π
·

1

(q⊥1 + xq⊥2 )2
·

x2

(1− x2)2

[
(1− x)2 + (1− x1)2

(1− x2)2
−

4xx1x2

(1− x2)2

]
.

(30)

The restriction on the phase space, coming from the exclusion of the
collinear region when the created pair flies inside the narrow cone along the
scattered electron, leads to the relation:∣∣∣∣∣p⊥−ε− − q⊥1

ε2

∣∣∣∣∣ > θ0. (31)

In eq. (31) we have to exclude p⊥− using the conservation of the perpendicular
momentum in the case under consideration: p⊥− + q⊥2 + q⊥1 (1− x2)/x = 0. In
terms of the dimensionless variables z1, z2 and the angle φ, eq. (31) could be
rewritten as 1 > cosφ > −1 +

λ2x2x2
2−(
√
z1−x

√
z2)2

2x
√
z1z2

, |
√
z1 − x

√
z2| < λxx2,

1 > cosφ > −1, |
√
z1 − x

√
z2| > λxx2.

(32)

The integration of the differential cross-section (30) over the region defined
in eq. (32) leads to the following result for the contribution of the ~p+ ‖ ~q1 SCK
region:

σ~p+‖~q1 =
α4

πQ2
1

L

ρ2∫
1

dz

z2

1−∆∫
xc

dx

1−x∫
0

dx2

[
(1− x)2 + (1− x1)2

(1− x2)2

−
4xx1x2

(1− x2)4

]{
ln

z

λ2
+ ln

(ρ2 − z)(z − 1)

x2
2ρ

2

}
. (33)

3.3 ~p− ‖ ~p1 region

In the SCK region ~p− ‖ ~p1, only diagrams fig. 1(7) and fig. 1(8) contribute to
the cross-section within the required accuracy. In this case, the leptonic tensor
could be derived from eq. (17) by the substitution p1 ↔ −p+, and the squared
matrix element has the form:

|M |2~p−‖~p1
= −

4s2

q′2
2~q22
·

1

(1)(2′)

{
(1− x)2 + (1− x1)

2

+
32

q′2
2~q22
·

1

(1)(2′)
[x1(p1p̃)(p1p+) + x(p+p̃)(q1p1)]

2
}
, (34)

11



where

p̃ = p− − x2p1, q′2
2 = (p1 − p−)2,

(2′) = −2(p1q1)(1− x2), (1) = −2(p1p+)(1− x2).

The integration of the matrix element over (p⊥+)2 and (p⊥−)2 leads to the
differential cross-section

dσ~p−‖~p1
=

α

4π
L dx dx2

d(q⊥2 )2

(q⊥2 )2
·
d(q⊥1 )2

(q⊥1 )2

×
dφ

2π
·

1

(q⊥1 + q⊥2 )2

[
(1− x)2 + (1− x1)2

(1− x2)2
−

4xx1x2

(1− x2)4

]
. (35)

The restriction due to the exclusion of the collinear region when the created
pair flies inside a narrow cone along the initial electron has the form:

|p⊥+|

ε1
> θ0, p⊥+ + q⊥1 + q⊥2 = 0, (36)

or  1 > cosφ > −1 +
λ2x2

1−(
√
z1−
√
z2)2

2
√
z1z2

, |
√
z1 −

√
z2| < λx1,

1 > cosφ > −1, |
√
z1 −

√
z2| > λx1.

(37)

The integration of the differential cross-section (35) over the region defined
in eq. (37) leads to

σ~p−‖~p1
=

α4

πQ2
1

L

ρ2∫
1

dz

z2

1−∆∫
xc

dx

1−x∫
0

dx2

[
(1− x)2 + (1− x1)2

(1− x2)2

−
4xx1x2

(1− x2)2

]{
Θ ln

z

λ2
+ Θ ln

(x2ρ2 − z)2

x2
1x

4ρ4
+ ln

∣∣∣∣∣ρ2(z − x2)

z − x2ρ2

∣∣∣∣∣
}
. (38)

The total contribution of the semi-collinear kinematics to the cross-section
is the sum of eqs. (28), (33), and (38):

σs-coll = σ~p+‖~p− + σ~p+‖~q1 + σ~p−‖~p1
. (39)

4 The Total Contribution Due to the Real and

Virtual Pair Production

In order to obtain finite expression for the cross-section we have to add to
eq. (39) the contribution of the collinear kinematics region (eq. (15)) as well

12



as the ones due to the production of virtual and soft pairs. Taking into ac-
count the leading and next-to-leading terms we can write the full hard pair
contribution in the following form:

σhard =
α4

πQ2
1

ρ2∫
1

dz

z2

1−∆∫
xc

dx
{
L2R(x) + L[Θf(x) + f1(x)] (40)

+ L

1−x∫
0

dx2

[(
Θ ln

(x2ρ2 − z)2

x2
+ ln

∣∣∣∣∣(z − x2)(ρ2 − z)(z − 1)x2

z − x2ρ2

∣∣∣∣∣
)
ϕ

− (Θ ln(xρ2 − z)2 + ln(z − x)2)ϕ(x, x2)

− (Θ ln(x2
1x

2ρ4) + lnx2
2)ϕ(x2, x)

]}
, L = ln

Q2
1z

m2
, L = ln

Q2
1

m2
,

where

ϕ = ϕ(x, x2) + ϕ(x2, x),

ϕ(x2, x) =
(1− x)2 + (x+ x2)2

(1− x2)2
−

4xx2(1− x− x2)

(1− x2)4
,

R(x) =
1

3
·
1 + x2

1− x
+

1− x

6x
(4 + 7x+ 4x2) + (1 + x) lnx.

Integrating over x2 in the right-hand side of eq. (40) we obtain the final ex-
pression for the cross-section of hard pair production at small angle electron–
positron scattering:

σhard =
α4

πQ2
1

ρ2∫
1

dz

z2

1−∆∫
xc

dx
{
L2(1 + Θ)R(x) + L[ΘF1(x) + F2(x)]

}
,

F1(x) = d(x) + C1(x), F2(x) = d(x) + C2(x),

d(x) =
1

1− x

(
8

3
ln(1− x)−

20

9

)
,

C1(x) = −
113

9
+

142

9
x−

2

3
x2 −

4

3x
−

4

3
(1 + x) ln(1− x) (41)

+
2

3
·
1 + x2

1− x

[
ln

(x2ρ2 − z)2

(xρ2 − z)2
− 3Li2(1− x)

]
+ (8x2 + 3x − 9−

8

x

−
7

1− x
) lnx+

2(5x2 − 6)

1− x
ln2 x+ β(x) ln

(x2ρ2 − z)2

ρ4
,

C2(x) = −
122

9
+

133

9
x+

4

3
x2 +

2

3x
−

4

3
(1 + x) ln(1− x)

+
2

3
·
1 + x2

1− x

[
ln

∣∣∣∣∣(z − x2)(ρ2 − z)(z − 1)

(x2ρ2 − z)(z − x)2

∣∣∣∣∣+ 3Li2(1− x)
]
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+
1

3
(−8x2 − 32x− 20 +

13

1− x
+

8

x
) lnx+ 3(1 + x) ln2 x

+ β(x) ln

∣∣∣∣∣(z − x2)(ρ2 − z)(z − 1)

x2ρ2 − z

∣∣∣∣∣ , β = 2R(x) −
2

3
·
1 + x2

1− x
.

Formula (41) describes the small angle high energy cross-section of process
(1) in the case where the created hard pair flies along the direction of the
initial electron three-momentum, and we now have to double σH to take into
account the production of a hard pair flying along the direction of the initial
positron beam.

In order to pick out the dependence on the parameter ∆ in σH we will use
the following relation:

ρ2∫
1

dz

1−∆∫
xc

dx Θ(x2ρ2 − z) =

ρ2∫
1

dz
[ 1−∆∫
xc

dx−

1∫
xc

dx Θ̄
]
, (42)

Θ̄ = 1−Θ(x2ρ2 − z).

Therefore

ρ2∫
1

dz

1−∆∫
xc

Θ
dx

1− x
=

ρ2∫
1

dz
[
ln

1− xc
∆

−

1∫
xc

dx

1− x
Θ̄
]
, (43)

ρ2∫
1

dz

1−∆∫
xc

dxΘ
ln(1− x)

1− x
=

ρ2∫
1

dz
[
1

2
ln2(1− xc)−

1

2
ln2 ∆] (44)

−

1∫
xc

dx
ln(1− x)

1− x
Θ̄.

The contribution to the cross-section of the small-angle Bhabha scattering
connected with real soft (with an energy less than ∆ · ε) and virtual pair
production is defined [2] by the formula:

σsoft+virt =
4α4

πQ2
1

ρ2∫
1

dz

z2

{
L2
(

2

3
ln∆ +

1

2

)
+ L

(
−

17

6
+

4

3
ln2 ∆ (45)

−
20

9
ln∆−

4

3
ζ2

)}
.

Using eqs. (43) and (44) one can check that the auxiliary parameter ∆ is
cancelled in the sum σtot = 2σhard + σsoft+virt, and we can write the total
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contribution σtot as follows:

σtot =
2α4

πQ2
1

ρ2∫
1

dz

z2

{
L2(1 +

4

3
ln(1− xc)−

2

3

1∫
xc

dx

1− x
Θ̄) + L

[
−

17

3
(46)

−
8

3
ζ2 −

40

9
ln(1− xc) +

8

3
ln2(1− xc) +

1∫
xc

dx

1− x
Θ̄ · (

20

9
−

8

3
ln(1− x))

]

+

1∫
xc

dx[L2(1 + Θ)R̄(x) + L(ΘC1(x) + C2(x))]
}
, R̄(x) = R(x)−

2

3(1− x)
.

The right-hand side of eq. (46) is the master expression for the small-
angle Bhabha scattering cross-section connected with the pair production. It
is finite and could be used for numerical estimates. Note that the leading term
is described by the electron structure function Dē

e(x), which represents the
probability to find a positron inside an electron with virtuality Q2 provided
that the electron loses the energy part (1− x) [9].

In table 1 we present the ratio of the RC contribution due to the pair
production σtot (46) to the normalization cross–section σ0,

σ0 =
4πα2

ε2θ2
min

. (47)

In table 2 we illustrate the comparison between the non-leading contribu-
tion (containing L1 = lnQ2

1/m
2) and the total one (containing L2 and L1).

Table 1. The ratio S = σtot/σ0 in percents, as a function of xc, for NN (ρ = 1.74,

θmin = 1.61 rad) and WW (ρ = 2.10, θmin = 1.50 rad) counters,
√
s = 2ε = MZ =

91.187 GeV.

xc 0.2 0.3 0.4 0.5 0.6 0.7 0.8
SNN , % -0.018 -0.022 -0.026 -0.029 -0.033 -0.038 -0.046
SWW , % -0.013 -0.019 -0.024 -0.029 -0.035 -0.042 -0.052

Table 2. Values of RNN and RWW as functions of xc, where R represents the ratio

of the non–leading contribution in eq. (46) with respect to the total one, for NN and

WW counters.

xc 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RNN 0.036 -0.122 -0.194 -0.238 -0.268 -0.335 -0.465
RWW 0.179 -0.021 -0.088 -0.120 -0.179 -0.271 -0.415
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5 Conclusions

The result derived in this paper combined with those derived earlier in [4,5,6]
thus give the full analytical description of the small angle electron–positron
scattering cross-section at LEP I energies with one and two photon radiation
as well as pair production. The description takes into account the leading
and next-to-leading logarithmic approximations and gives the possibility to
describe the cross-section with an accuracy not worse than 0.1% provided that
the scattered electron and positron are recorded by symmetrical circular detec-
tors. By using the above derivation it is possible to carry out the calculations
also for non-symmetrical detectors.

Numerical calculations of the virtual and real pair production RC contri-
butions show their compensation at the level of 10−3% for the given angular
apertures and xc range. Table 2 shows that the next-to-leading contribution
is comparable with the leading one. Their ratio is sensitive to xc and angle
ranges.

We note that, in a realistic case, one has to take into account the fact that
detectors cannot distinguish a single particle event from the one when two or
more particles hit the same point of the detector simultaneously. In that case
the obtained results could be easily changed: starting from the presented dif-
ferential cross-sections the integration must be done by imposing experimental
restrictions.

We want also to emphasize that the method and some of the derived results
could be used for calculating radiative corrections to deep inelastic scattering
as well as for cross-sections of some normalization processes at HERA. We
hope to consider these questions in a future publication.
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Appendix A

We give here a list of the relevant integrals for the collinear kinematical region,
calculated within the logarithmic accuracy. The definitions of eq. (9) are used.
We imply, in the left-hand side of the relations below the general operation:

〈(. . .)〉 ≡

z0∫
0

dz1

z0∫
0

dz2

2π∫
0

dφ

2π
(. . .) , (A.1)
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and suggest z0 = (εθ0/m)2 � 1, L0 = ln z0 � 1. The details of the calcula-
tions can be found in the Appendix of paper [5]. The results are:

〈

(
x2D + (1− x2)A

DC

)2

〉 =
L0

(1− x2)2

{
L0 + 2 ln

x1x2

x
− 8 (A.2)

+
(1− x)2(1− x2)2

xx1x2

}
, 〈

1

DC
〉 =

L0

x1x2(1− x2)
[
1

2
L0 + ln

x1x2

x
] ,

〈
(
x2A1 − x1A2

AD

)2

〉 =
L0

(1− x)2

{
L0 + 2 ln

x1x2

x
− 8 +

(1− x)2

xx1x2
−

4(1− x)

x

}
,

〈
x1A2 − x2A1

AD2
〉 =

(x1 − x2)L0

xx1x2(1− x)
, 〈

1

D2
〉 =

L0

xx1x2
,

〈
1

AD
〉 =

−L0

x1x2(1− x)
[
1

2
L0 + ln

x1x2

x
], 〈

1

C2D
〉 =

−L0

x1(1− x2)3
,

〈
1

AC
〉 =
−L0

x1x2
2

[L0 + 2 ln
x1x2

x
+ 2 ln

xx2

(1− x)(1− x2)
], 〈

1

A2D
〉 =

−L0

(1− x)3
,

〈
A

C2D2
〉 =

x2L0

x1(1− x2)4
, 〈

C

A2D2
〉 =

−x2L0

(1− x)4
,

〈
A

CD2
〉 =

−L0

x1(1− x2)2
[
1

2
L0 + ln

x1x2

x
] + L0

x2x− x1

xx1x2(1− x2)2
,

〈
C

AD2
〉 =

−L0

x1(1− x)2
[
1

2
L0 + ln

x1x2

x
]− L0

(
x1 − x2

x1x2(1− x)2
+

1

xx2(1− x)

)
.

Appendix B

Here we derive eq. (28), starting from eq. (38), by integration over regions (26)
and (26), taking into account the aperture of the detectors. Let us note first
that

d(q⊥2 )2

(q⊥2 )2
·

d(q⊥1 )2

(q⊥1 + q⊥2 )2
·

dφ

2π(q⊥1 + xq⊥2 )2
=

1

Q2
1

·
dz2

z2
·

dz1dφ

2π(1− x)(z2x− z1)

·
[
−

1

z1 + z2 + 2
√
z1z2 cosφ

+
1

(z1/x) + xz2 + 2
√
z1z2 cosφ

]
. (B.1)

Integrating the right-hand side of eq. (B.1) we have to keep in mind that
the first term in the brackets is sensitive to region (26) and the second to region
(26). The aperture of the symmetrical circular detector is shown in fig. 3.
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Fig. 3. The aperture of the symmetrical circular detector for the integration over z1
and z2 in the case when only the initial electron loses energy for the pair creation;

δ = 2
√
z2λ(1− x).

We present in detail only the integration of the first term in the brackets
in the right-hand side of eq. (B.1). If |

√
z1−
√
z2| < λ(1−x) then the angular

integration gives

1

2π

∫ dφ

z1 + z2 + 2
√
z1z2 cosφ

=
2

π

φmax∫
0

dφ

z1 + z2 + 2
√
z1z2 cosφ

(B.2)

=
2

π
√
a2 − b2

arctan (
a− b
√
a2 − b2

tan
φ

2
)

∣∣∣∣∣
φmax

0

,

where

φmax = arccos(−1 +
λ2(1− x)2 − (

√
z1 −

√
z2)2

2
√
z1z2

),

a = z1 + z2, b = 2
√
z1z2.

Because of the smallness of the values λ2(1−x)2 and |
√
z1−
√
z2| with respect

to z1 and z2, we can rewrite the last term in eq. (B.2) in the following form:

J =
1

π
·

1
√
z2 |
√
z1 −

√
z2|

arctan
|
√
z1 −

√
z2|√

λ2(1− x)2 − (
√
z1 −

√
z2)2

. (B.3)

18



Let z2 > z1, then in the region under consideration we have
√
z1 >

√
z2 −

λ(1− x), and we can carry out the subsequent integration over z1 in eq. (B.1)
by taking z1 = z2 in the factor (xz2 − z1)−1 and introducing the new variable
t = λ(1− x)(

√
z2 −

√
z1) in J . Thus we obtain:

J = 2
2

π

1∫
0

dt

t
arctan

t
√

1− t2
= 2 ln 2, (B.4)

where the additional factor 2 is due to the contribution when z1 > z2. From
fig. 3 we see that the region |

√
z1−
√
z2| < λ(1−x) contributes only if z2 < x2ρ2.

That is why we have to write the contribution corresponding to |
√
z1−
√
z2| <

λ(1− x) in eq. (B.1) as:

1

Q2
1

ρ2∫
1

dz2

z2
2

1

(1− x)2
2Θ ln 2, Θ = Θ(x2ρ2 − z). (B.5)

If now |
√
z1 −

√
z2| > λ(1 − x) the angular integration is trivial and the

subsequent integration over z1 and z2 is reduced to the integration of the
function {(z1−xz2)|z1−z2|}−1 over the rectangle 1 < z2 < ρ2, x2 < z1 < x2ρ2

without the narrow strip of width 2δ (δ = 2
√
z2λ(1− x)). The result reads:

1

Q2
1

ρ2∫
1

dz2

z2
2

1

(1− x)2

{
ln

∣∣∣∣∣(z1 − x2)(xρ2 − z2)

(x− z2)(z2 − x2ρ2)

∣∣∣∣∣+ Θ
(
−2 ln 2 (B.6)

+ ln
(x2ρ2 − z2)

2

(xρ2 − z2)2x2

)}
.

It easy to see that the full contribution of the first term in brackets in eq. (B.1)
is reduced to eq. (B.6) without −2Θ ln 2 in the latter.

The integration of the second term in brackets in eq. (B.1) can be done in
full analogy. The result could be written as:

1

Q2
1

ρ2∫
1

dz2

z2
2

1

(1− x)2

{
ln
z2

λ2
+ ln

∣∣∣∣∣ (ρ2 − z2)(z2 − 1)

(x− z2)(z2 − xρ2)

∣∣∣∣∣
}
, (B.7)

and formula (28) becomes obvious.
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