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Abstract

We propose a de�nite pattern for the breaking of a discrete avor symmetry of the
quark mass matrices which is caused by the masses of the �rst two generations of quarks.
We discuss the consequences of this proposal for the KM matrix.
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1. In this note, we try to express some parameters of the KM matrix V [1] in terms of
the other parameters of the standard model. This approach is guided by the experimental
information on V and a desire to have a simple pattern of avor symmetry breaking. In a
current basis, the charged hadronic currents are

J� � �uL�dL; (1)

where

d =

0
@ d1
d2
d3

1
A ; u =

0
@u1
u2
u3

1
A

denote the d and u quark �elds. We use q for quark �elds when no distinction between d

and u quarks is necessary. The quark mass matrices M(d) and M(u), obtained by taking
the vacuum expectation value of the Higgs �eld in the quark-Higgs coupling, are

�dLM(d)dR + �uLM(u)uR + h:c: (2)

We take M(d) and M(u) as hermitean matrices. Application of the same unitary transfor-
mation to M(d) and M(u) leaves (1) invariant.

2. Following Fritzsch [2], we make the following assumption.

Assumption 1:
a) If M(d) and M(u) both have one zero eigenvalue, then there exists a current basis for

the quark �elds such that

Mij(d) = 0 for i = 1 or j = 1

Mij(u) = 0 for i = 1 or j = 1
(3)

b) If M(d) and M(u) both have two zero eigenvalues, there exists a current basis for the
quark �elds such that the only non-zero elements of M(d) and M(u) are M33(d) and
M33(u).

We call this a heavy basis. Moreover, we assume that the elements of M(d) and M(u) are
continuous functions of the quark masses.

An important consequence of Assumption 1 is the existence of a partial avor (or
horizontal) symmetry. This is a permutation symmetry which is broken by the masses of
the second and �rst generations. As has been noted by several authors [3], the symmetry is
easily visible if we pass from a heavy basis to a coherent basis which we shall do presently.

For the case that M(d) and M(u) have at least one zero eigenvalue each it follows from
Assumption 1(a) that

M =

0
@0 0 0
0 c b

0 b� a

1
A (4)

for both M(d) and M(u). By continuity this M can be written as a sum

M = M3 +M2;
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with

M3 = (m2 +m3)

0
@ 0 0 0
0 0 0
0 0 1

1
A (5)

and

M2 =

0
@ 0 0 0
0 c b

0 b� �c

1
A ; (6)

where M2 approaches zero as m2(d)! 0 and m2(u)! 0.

3. It is instructive to review previous work [4] which was done for the �rst two
generations only. This can be viewed as the limit m3 ! 1 of the general case. For two
generations we have 2� 2 matrices M(2)(d) and M(2)(u), which are in a heavy basis

M(2) =

�
c b

b� a

�
:

Fritzsch [4] made the assumption that there exists a heavy basis where

c(d) = c(u) = 0: (7)

With
M

(2)

diag = diag(m1;�m2);

it follows from this assumption that

a = �m2 +m1 and jbj2 =m1m2:

This determines the Cabibbo angle [5] given by

sin �c = jV (2)

12 j

in terms of md

ms

, mu

mc

and a phase

� = j�(d)� �(u)j

where �(d) = arg b(d)��, �(u) = arg b(u)��: To obtain agreement with the experimental
value of sin �c, the phase � has to be chosen as

� ' �

2
: (8)

For � = �=2,

jV (2)

12 j =
s

(md

ms

+ mu

mc

)

(1 + md

ms

)(1 + mu

mc

)
(9)

2



For our purpose it is of interest to transform

M(2) = (a + c)

�
0 0
0 1

�
+

�
c b

b� �c
�

to a coherent basis. For two generations this amounts to de�ning

M(2)
c = U(2)

c

y
M(2)U(2)

c

where

U(2)
c =

 
1p
2

� 1p
2

1p
2

1p
2

!
: (10)

M
(2)
c is given by

M(2)
c =

(a + c)

2

�
1 1
1 1

�
+

1

2

�
b+ b� �2c+ b� b�

�2c� (b� b�) �(b + b�)

�
:

The �rst term of M
(2)
c has an SL(2) � SR(2) symmetry. This symmetry is broken by the

second term, i.e. it is broken by the non-zero mass of the �rst generation. We observe
that for the case c(d) = c(u) = 0 the symmetry breaking term changes sign under the
transformation

q1c $ q2c: (11)

Equivalently we can say that the symmetry is broken by a term which transforms as the
antisymmetric representation of the diagonal subgroup of SL(2) � SR(2). We take this as
a guide for the symmetry breaking in the case of three generations.

4. In this section we study the case where for three generations M(d) and M(u)
have one zero eigenvalue each. We begin with a simple mathematical observation on a
pair of 2 � 2 hermitean matrices, say H1 and H2. In such a case there exists a unitary
transformation U0 such that Uy

0H1U0 and U
y
0H2U0 are both real. The reason is that H1

and H2 can be expressed in terms of Pauli matrices

H1 = s1 + ~v1 � ~�
H2 = s2 + ~v2 � ~�

Use U0 to rotate the real vectors ~v1 and ~v2 such that they both lie in the 1-3 plane. This
proves the above observation since the Pauli matrices �1 and �3 are real.

In this special heavy basis the matrices M2(d) and M2(u) of equation (6) are

M2 =

0
@ 0 0 0
0 c b

0 b �c

1
A : (60)

with b, c real. We transform M3 and M2 to a coherent basis by de�ning

Mc = Uc
yMUc; (12)
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where, analogous to (10),

Uc =

0
B@

1p
2

� 1p
2

0
1p
6

1p
6

� 2p
6

1p
3

1p
3

1p
3

1
CA : (13)

This transforms M3 and M2 into

M3c =
(m2 +m3)

3

0
@ 1 1 1
1 1 1
1 1 1

1
A (14)

and

M2c =
1

3

0
@A A B

A A B

B B �2A

1
A ; (15)

with
A = � c

2
+
p
2b

B = �2c� bp
2
:

(16)

These formulae show that the mass matrices have a partial avor symmetry: Mc has an
SL(3)�SR(3) symmetry (where (S(3) is the group of permutations of three objects) when
m1(d) = m2(d) = m1(u) = m2(u) = 0. Mc has an SL(2) � SR(2) symmetry for the �rst
two generations if m1(d) =m1(u) = 0. As a consequence,

�qcLM2cqcR

depends only on the quark �elds

q1c + q2c and q3c:

To get an idea of the pattern of breaking of the SL(3) � SR(3) symmetry due to
m2(d) 6= 0 and m2(u) 6= 0 we look back at the case of two generations. There we noted
that the symmetry breaking part changed sign when permuting the two quark �elds in
the coherent basis. We propose now in the present context a de�nite pattern of symmetry
breaking in the form of Assumption 2.

Assumption 2:
The matrix M2c changes sign under the transformation (both for d and u quarks)

q1c + q2cp
2

$ q3c: (17)

It follows then from (16) that

B = �2c� bp
2
= 0
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or

c = � b

2
p
2
:

With reference to equation (6'), we note that the sign of b is not determined since we can
change q2 ! �q2 which changes b!�b. Therefore the above condition is more generally

b2 = 8c2: (18)

We remark that while we were led to Assumption 2 by the symmetry breaking for the
�rst two generations (equation (11)), we treat the second and third generations by �rst
transforming to real matrices M2(d) and M2(u). Di�erent proposals for this symmetry
breaking were made by Tanimoto [6] and by Fritzsch and Holtmannsp�otter [7].

5. We still keep m1(d) = m1(u) = 0 and diagonalize M(d) and M(u) by di�erent
rotations in the (2,3)-plane to

Mdiag = diag(0;�m2;m3):

Using equation (18), the rotation angle �
(0)

23 is found to be

tan �
(0)

23 =
1

4
p
2

�r
(1 +

m2

m3

)2 + 32
m2

m3

� (1 +
m2

m3

)

�
(19)

for b > 0. We note that if we expand �
(0)

23 in powers of m2

m3

�
(0)

23 = O(
m2

m3

)

Since jV (2)

12 j = O(
q

m1

m2

) by equation (9), and the mass ratios m1

m2

and m2

m3

are not very

di�erent, this makes it plausible that

jV23j ' jV12j2;

consistent with Wolfenstein's form [8]. To give an impression of the mixing between second
and third generations which follows from our ansatz, we state that with

ms

mb

= 0:025 and
mc

mt

= 0:005

we obtain from (19)
jV23(m1 = 0)j = 0:045:

The correction due to m1 6= 0 (which is given approximately by m2

m3

! m2

m3

(1 � m1

m2

),
see below) lowers this value by about 5%. To obtain agreement with the experimental
information on jV23j we have to choose a value for ms

mb

near the lower end of the theoretical

estimates [9] of this mass ratio.
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6. We now include the masses of the �rst generation. In this case

M = M3 +M2 +M1

for both M(d) and M(u). In the heavy basis equation (6') still holds for M2. Equation (5)
for M3 is slightly modi�ed to

M3 = (m1 �m2 +m3)

0
@ 0 0 0
0 0 0
0 0 1

1
A ; (20)

where the minus sign is due to our choice of a negative eigenvalue. In the spirit of Assump-
tion 2, we propose the following pattern for the symmetry breaking caused by m1(d) 6= 0,
m1(u) 6= 0.

Assumption 3:
M1c transforms as the antisymmetric representation of a subgroup �S(3) (isomorphic to
the permutation group S(3)) of SL(3)� SR(3). �S(3) must include among its elements

�1 = 1L � 1R
(12) = (12)L � (12)R

(21)

where (12) denotes the transposition of 1 and 2.

This Assumption 3 is motivated by the considerations of section 3, namely the antisym-
metry under the transformation q1c $ q2c expressed by equation (11). From Assumption
3 we �nd that there are only two possibilities for M1c:

(i) �S(3) is the diagonal subgroup. Then it follows that

M1c = constant �
0
@ 0 i �i
�i 0 i

i �i 0

1
A : (22)

(ii) �S(3) has the elements

(p�1
i )L �

�
(12)pi(12)

�
R
; (23)

where pi(i = 1; 2; � � � ; 6) is an element of S(3). Then

M1c = constant �
0
@ 1 0 �1

0 �1 1
�1 1 0

1
A : (24)

In the heavy basis these two M1's are respectively

M1 = d �
0
@ 0 i 0
�i 0 0
0 0 0

1
A (220)
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and

M1 = d �
0
@ 0 1 0
1 0 0
0 0 0

1
A : (240)

This agrees with the result for the �rst two generations in the limit m3 ! 1 stated in
equations (7) and (9) if we choose (i) for the u-quarks and (ii) for the d-quarks or vice
versa. It supports the idea that � = �

2
.

7. To summarize, our scheme of symmetry breaking has led to the following mass
matrices:

M(d) =

0
@ 0 d(d) 0
d(d) c(d) b(d)
0 b(d) a(d)

1
A (25)

and

M(u) =

0
@ 0 id(u) 0
�id(u) c(u) b(u)

0 b(u) a(u)

1
A (26)

where
b2(d) = 8c2(d)

b2(u) = 8c2(u):

We can change d(d)! id(d), id(u)! d(u). With (25) and (26), we have expressed M(d)
and M(u) in terms of three real parameters each; they can be expressed in terms of the
six quark masses. The presence of i in one of the matrices (25) or (26), which implies
CP -nonconservation, is needed for agreement with the experimental value of the Cabibbo
angle. This connection has been noted before [10].

8. The diagonalization of mass matrices (25) and (26) to Mdiag = diag(m1;�m2;m3)
is performed by

M(d) = R(d)Mdiag(d)R
T (d)

M(u) = diag(�i; 1; 1)R(u)Mdiag(u)R
T (u)diag(i; 1; 1)

(27)

where R(d) and R(u) are orthogonal matrices. The expressions for a; c; d in terms of the
eigenvalues are

a + c =m3 �m2 +m1

8c2 + d2 � ac =m3m2 �m3m1 +m2m1

ad2 =m1m2m3

(28)

both for d and u quarks. This leads to a cubic equation for the parameters.
We simplify these equations by an approximation which gives the elements of V to suf-

�cient accuracy. We neglect the small term (a�m3)d
2

m3

3

. Then equation (28) is approximated

by
a + c =m3 �m2 +m1

8c2 � ac =m3m2 �m3m1

d2 =m1m2:

(29)
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Equation (29) leads to a simple form of the rotation matrices (27),

R = R23(�23) �R12(�12) (30)

where R12 and R23 are rotations in the 1-2 and 2-3 planes respectively. A mass matrix
which can be diagonalized by a rotation (30) was proposed by Tanimoto [6], who chose M1

such that (30) is an exact relation. His R23 is di�erent from ours. Explicitly,

R12 =

0
@ cos �12 +sin �12 0
� sin �12 cos �12 0

0 0 1

1
A (31)

and

R23 =

0
@ 1 0 0
0 cos �23 +sin �23
0 � sin �23 cos �23

1
A ; (32)

with

tan �12 =

r
m1

m2

(33)

and

tan �23 =
1

4
p
2

hr
(1 +

m2 �m1

m3

)2 + 32(
m2 �m1

m3

) � (1 +
m2 �m1

m3

)
i
: (34)

This leads to an approximate unitary KM matrix

~V = RT
12(u)R

T
23(u)diag(i; 1; 1)R23(d)R12(d)

=

0
@ ic1c2 + s1s2c3 ic1s2 � s1c2c3 �s1s3
is1c2 � c1s2c3 is1s2 + c1c2c3 c1s3

s2s3 �c2s3 c3

1
A (35)

where
c1 = cos �12(u) c2 = cos �12(d) c3 = cos(�23(d) � �23(u))

s1 = sin �12(u) s2 = sin �12(d) s3 = sin(�23(d) � �23(u)):
(36)

9. Remarks
a) The ~V given by equation (35) has only three parameters. Therefore, the absolute

values of its matrix elements satisfy one relation:

j ~V12j2
h
j ~V31j2 + j ~V32j2

i2
+ j ~V13j2

h
j ~V31j2 � j ~V32j2

i
�
h
j ~V31j2 � j ~V13j2j ~V32j2

ih
j ~V31j2 + j ~V32j2

i
= 0: (37)

b) It follows from equation (35) that [11]

~JCP = Im( ~V11 ~V33 ~V
�
13
~V �
31) = �s1c1s2c2s23c3:
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The sign of ~JCP is undetermined since we can change i! �i in equation (35).

10. We conclude with some sample numerical values. For

md

ms

= 0:05
ms

mb

= 0:025

mu

mc

= 0:004
mc

mt

= 0:005

we get
jV12j = 0:226

jV23j = 0:043

jV13j
jV23j = 0:06

jJCP j = 2:6� 10�5:
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