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1 Introduction

It is the purpose of the present paper to extend our previous work on Abelian gauge

theories to the case of the SU(2) Yang-Mills non-Abelian gauge �eld [1]. This extension

is not at all straightforward.

It is well-known that, in local quantum �eld theories, one encounters divergences which

arise from taking products of �eld operators at the same space-time point. As a result,

these products do not have a well-de�ned meaning. More than sixty years ago, Dirac [2]

suggested point splitting as a remedy for this di�culty: instead of taking all the �eld

operators at the space-time point x, a �xed four-vector � is introduced so that only �eld

operators with di�erent arguments (x, x� �, : : :) appear in their product. As long as � is

taken to be di�erent from 0, the products of �eld operators is well-de�ned and the theory

can be expected to be free of divergences, i.e., the theory is regularized. At the end of

the calculation, the limit �! 0 is taken, in order to recover the original theory.

A priori, there are many ways in which such a point splitting procedure can be im-

plemented [3, 4]. For gauge theories, however, one must ensure that the introduction

of this new parameter � does not spoil the invariance under gauge transformations. It

thus appears reasonable that one �rst attempts to construct gauge transformations in-

volving products of �eld operators taken at di�erent space-time points, which we shall

call generalized gauge transformations.

In a previous paper [5], we considered the Abelian case along these lines. To preserve

the Abelian character of the generalized transformation, we required that the commuta-

tor of two such in�nitesimal gauge transformations vanishes. This requirement imposed

strong restrictions on the form such a transformation can take. Nevertheless, it was found

that such in�nitesimal transformations could be constructed and that, for gauge trans-

formations on the fermion �elds, they take the form of an in�nite series in the coupling

constant e. This is to be contrasted with the standard U(1) case without point splitting,

where the �nite gauge transformations on the fermion �eld are of in�nite order in the

coupling constant, the in�nitesimal ones being only �rst order in e.

In the original paper of Dirac [2], point splitting is used to assign di�erent arguments

for the �eld operators. This convention is followed in our generalized gauge transformation

for the Abelian case. The Yang-Mills non-Abelian gauge theory is far more interesting;

in particular, such a reassignment of the arguments for the �eld operators is not enough.

Instead, it has been found that it is necessary to average over such arguments. This is

discussed in Sec. 2.

In this paper, we show how to incorporate the point splitting ideas in the gauge trans-

formations for the Yang-Mills case. We basically follow the ideas of the original Yang-Mills

paper [1]: we concentrate on the gauge transformations themselves, leaving the derivation

of the corresponding Lagrangian for later. At least to third order in the coupling constant

g, in�nitesimal gauge transformations can be constructed which satisfy the condition that

the commutator of two such in�nitesimal generalized gauge transformations be itself an

in�nitesimal generalized gauge transformation. To obtain the generalized gauge transfor-

mation, we proceed iteratively, i.e., order by order. We see no reason why the iteration

procedure could not be worked out to arbitrary order in g. Once the pure Yang-Mills case

is treated, it becomes relatively straightforward to work out the case of an SU(2) doublet

in interaction with the Yang-Mills �elds.
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This paper is organized as follows. In Sec. 2, we discuss the generalized Yang-Mills

gauge transformations and show how the higher order terms in the transformation are to

be found. We give the resulting gauge transformation up to order g3. In Sec. 3, we treat

the SU(2) doublet case, and construct the generalized gauge transformations also to order

g3. Finally, in Sec. 4, we present our conclusions.

2 Pure Yang-Mills

2.1 Introduction

Yang-Mills theories are invariant under the in�nitesimal gauge transformation

� ~A�(x) = � @�~�(x) + g ~�(x)� ~A�(x) ; (1)

where ~�(x) is the in�nitesimal gauge parameter and g the coupling constant.

As stated in the Introduction, the product of �eld operators at the same space-time

point does not have a well-de�nedmeaning, and point splitting was introduced by Dirac [2]

to remedy this situation. Instead of having ~A and ~� both at the same point x, the

arguments of these �eld operators in a product are taken, for example, to be x + � and

x� �, where � is a �xed four-vector. Eventually, the limit of �! 0 is taken.

Because the �eld operators are at the same point, the in�nitesimal gauge transforma-

tion (1) also does not have a well-de�ned meaning. It is therefore essential to be able to

�nd a generalization of (1) where point splitting is incorporated. In this section, we show

how how such a generalized gauge transformation can be obtained in the non-Abelian

case.

For that sake, it is convenient to introduce the notation we shall be using. Anticipating

the result, we expand the gauge transformation on ~A�(x) in powers of g, i.e.,

� ~A�(x) =
1X
n=0

gn �(n) ~A�(x) : (2)

Sometimes, we shall use a lower index � on �� and �
(n)

� to refer to gauge transforma-

tions with a gauge parameters ~�. This is necessary for distinguishing di�erent gauge

transformations.

The group property which has to be satis�ed then reads

[ ��2
; ��1

] ~A�(x) = �L ~A�(x) ; (3)

where ~L is the combined gauge parameter. Also, for this quantity we shall consider a

series expansion in the coupling constant:

~L(x) =
1X
n=1

gn ~L(n)(x) : (4)

Our goal is to �nd �(n) ~A�(x) and ~L(n)(x) which satisfy the group property (3) order

by order.
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2.2 Order g

To construct the generalized gauge transformations, we start with the following quite

general Ansatz:

�(0) ~A�(x) = � @�~�(x) ;

�(1) ~A�(x) =

Z +1

�1
d� �(�) ~�(x+ ��) � ~A�(x� ��) : (5)

In Eq. (5), we introduced the weight function �(�), whose properties will be established

by the requirement of the group property (3). To preserve the Hermitian character of the

�elds ~A�, we must take �(�) to be a real function. Also note that, in the limit �! 0, our

Ansatz reduces to the standard Yang-Mills transformations, provided that

Z +1

�1
d� �(�) = �nite and nonzero : (6)

Through a rede�nition of g, we can take �(�) to be normalized:

Z +1

�1
d� �(�) = 1 ; (7)

without loss of generality. We shall always use such a normalized �(�).

To �rst order in g, the group property requires

[ �
(0)

�2
�
(1)

�1
� �

(0)

�1
�
(1)

�2
] ~A�(x) = � @�~L

(1)(x) : (8)

The l.h.s. of this equation reads

�

Z +1

�1
d� �(�) [ ~�1(x+ ��)� @�~�2(x� ��) � ~�2(x+ ��)� @�~�1(x� ��) ]

= � @�

Z +1

�1
d� �(�) ~�1(x+ ��) � ~�2(x� ��) ; (9)

provided we take �(�) to be an even function of �. In what follows, we shall repeatedly

make use of the evenness of �(�), which we consider to be an important feature of our

Ansatz (5). By comparison with Eq. (8), we are led to the identi�cation

~L(1)(x) =
Z +1

�1
d� �(�) ~�1(x+ ��) � ~�2(x� ��) : (10)

Already at this order in g, one discovers the usefulness of the the weight function �(�): it

enabled us to �nd the expression for ~L(1), although the arguments of ~� and ~A� in the gauge

transformation (5) are taken at di�erent points. The essential role of the weight function

will become even clearer in the next subsection where we study the gauge transformation

to order g2.
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2.3 Order g
2

In this order, the formulae become somewhat more complicated. We therefore introduce

some more notation in order to limit the size of the formulae and to increase their read-

ability. The group property (3) always refers to commutators of two successive gauge

transformations. To avoid writing down commutators, we propose to write only the �rst

term of the commutator, the second term with the ~�1 $
~�2 interchange being always

understood.

Moreover, we shall drop the explicit x-dependence in the arguments of ~� and ~A�.

Thus, ~�(��) really stands for ~�(x+ ��), etc.

With these conventions, the expression for ~L(1)(x), e.g., becomes

~L(1)(0) =
1

2

Z +1

�1
d� �(�) ~�1(��) � ~�2(���) : (11)

Rewritten without these conventions, Eq. (11) would read

~L(1)(x) =
1

2

Z +1

�1
d� �(�) [ ~�1(x+ ��) � ~�2(x� ��)� ~�2(x+ ��) � ~�1(x� ��) ] : (12)

To order g2, the group property (3) now reads

[ �
(1)

�2
�
(1)

�1
+ �

(0)

�2
�
(2)

�1
] ~A�(0) = � @�~L

(2)(0) +
Z +1

�1
d� �(�) ~L(1)(��) � ~A�(���) : (13)

We thus have to �nd ~L(2)(0) and �(2) ~A�(0) such that Eq. (13) is satis�ed. Let us rewrite

Eq. (13) in such a way that the terms which are known from the order g calculation

appear on the l.h.s.:

�
(1)

�2
�
(1)

�1

~A�(0)�
Z 1

�1
d� �(�) ~L(1)(��) � ~A�(���) = � @�~L

(2)(0) � �
(0)

�2
�
(2)

�1

~A�(0) : (14)

In Eq. (14), the l.h.s. is explicitly given by

R
d�
R
d� �(�) �(�)

n
~�1(��) � [ ~�2(���+ ��)� ~A�(���� ��) ]

�
1

2
[ ~�1(�� + ��)� ~�2(��� ��) ]� ~A�(���)

o

=
R
d�
R
d� �(�) �(�)

n
�~�1(��+ ��) [ ~�2(���) � ~A�(�� � ��) ]

� ~A�(��+ ��) [ ~�1(���) � ~�2(�� � ��) ]

+~�1(��+ ��) [ ~A�(���) � ~�2(��� ��) ]
o
; (15)

where the integration ranges extend from �1 to +1 as usual. Note that in rewriting

the expression (15), we again made use of the evenness of the weight function �.

We �rst want to �nd a suitable ~L(2). To this end, we take a zeroth order gauge

variation of expression (15) with respect to a third gauge parameter ~�3. Adding together
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the three terms obtained by cyclically permuting the indices 1, 2, and 3, we �nd that the

integrand of the expression becomes a total derivative

@�f~�1(��+ ��) [ ~�2(���) � ~�3(��� ��) ]g ; (16)

where antisymmetrization with respect to the three gauge parameters ~�i is understood.

This suggests that we should take ~L(2) to satisfy

�(0)~L(2)(0) = �
Z
d�

Z
d� �(�) �(�) ~�1(�� + ��) [ ~�2(���) � ~�3(��� ��) ] : (17)

This Eq. (17) has a number of solutions, e.g.,

~L(2)(0) =

Z
d�

Z
d� �(�) �(�) ~�1(�� + ��) [ ~�2(���) �

Z (���)�

���
d�� ~A�(� ) ] : (18)

Similar lack of uniqueness has already been seen in the much simpler Abelian case [5].

Here, we choose to take the solution (18) to proceed with the calculation. In the future,

when the theory of generalized gauge transformations is further developed, other choices

may turn out to be more appropriate.

In this equation (18), we introduced the line integral over ~A, which has the important

property that

�(0)
Z a

b
d�� ~A�(� ) = �~�(a) + ~�(b) : (19)

Throughout the entire paper, we shall take all line integrals along straight line paths going

through the point x in the direction of �.

In what follows, we shall use the simpli�ed notation and write

Z a

b
d ~A for

Z x+a

x+b
d�� ~A�(� ) : (20)

Also note that, following our conventions, we have suppressed the x-dependence in the

integration limits of the line integral in Eq. (18).

Now that we have obtained ~L(2)(0), we can proceed with �nding �(2) ~A�(0), which is

the only remaining unknown quantity in Eq. (14). Using the result (18), we have

@�~L
(2)(0) =

Z
d�

Z
d� �(�) �(�)

(
@�~�1(��+ ��) [~�2(���) �

Z (���)�

���
d ~A]

+~�1(��+ ��) [@�~�2(���) �
Z (���)�

���
d ~A] + ~�1(�� + ��) [~�2(���) � ~A�(��� ��)]

�~�1(��+ ��) [~�2(���) � ~A�(���)] + ~�1(�� + ��) [~�2(���) �
Z (���)�

���
d~F�]

)
;

(21)

where we introduced the shorthand notationZ a

b
d~F� for

Z x+a

x+b
d�� ~F��(� ) ; (22)
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with
~F�� = @� ~A� � @� ~A� : (23)

The presence of the @�~� terms in Eq. (21) suggests the following terms for �(2) ~A�(0):

Z
d�

Z
d� �(�) �(�)

(
~�(�� + ��) [ ~A�(���) �

Z (���)�

���
d ~A ]

� ~A�(�� + ��) [ ~�(���) �
Z (���)�

���
d ~A ]

)
: (24)

Indeed, letting �(0) act on this expression yields, among other things, the same @�~� terms

which are cancelled in Eq. (14). Some simple algebra, using Eq. (19) shows that only one

term remains to be cancelled by a second order gauge variation on ~A�, namely

Z
d�

Z
d� �(�) �(�) ~�1(��+ ��) [~�2(���) �

Z (���)�

���
d~F�] : (25)

Consider the following additional contribution to �(2) ~A�(0):

Z
d�

Z
d� �(�) �(�)

(
~�(0) [

Z ���
0

d ~A �

Z (���)�

���
d~F�]

�[~�(���) �

Z (���)�

���
d~F�]

Z (�+�)�

0
d ~A

)
: (26)

Its zeroth order gauge variation cancels the remaining term of Eq. (25), but introduces a

new term Z
d�

Z
d� �(�) �(�) ~�1(0) [~�2(0) �

Z (���)�

���
d~F�] : (27)

This term, however can be made to vanish if we choose the weight function � to satisfy

the convolution property Z +1

�1
d� �(� � �) �(�) = �(�) : (28)

This can be seen as follows. Let f be an arbitrary function. Then,

Z
d�

Z
d� �(�) �(�) [f(� � �)� f(��)]

=
Z
d�

Z
d� �(� + �) �(�) f(�) �

Z
d� �(�) f(��) ; (29)

where for the �rst term, we shifted the integration variable � to �+�, while, in the second

term, we carried out the �-integral using the normalization condition (8). For the �rst

term, the �-integral can now be performed by changing � ! ��, using the evenness of

�(�) and the convolution property (28). Finally, the evenness of �(�) has to be invoked to

show that the two terms in Eq. (29) cancel. No special property of the arbitrary function

f was used in this argument.

Because the remaining term (27) is precisely of the form of the l.h.s. of Eq. (29), we

have thus shown that it vanishes.
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To conclude this analysis to order g2, we summarize our results. We have shown that

the second order gauge transformation, the sum of (24) and (26),

�(2) ~A�(0) =

Z
d�

Z
d� �(�) �(�)

(
~�(�� + ��) [ ~A�(���) �

Z (���)�

���
d ~A]

� ~A�(�� + ��) [~�(���) �
Z (���)�

���
d ~A] + ~�(0) [

Z ���

0
d ~A �

Z (���)�

���
d~F�]

�[~�(���) �
Z (���)�

���
d~F�]

Z (�+�)�

0
d ~A

)
; (30)

together with the expression (18) for ~L(2)(0) satis�es the group property of Eq. (13) to

order g2.

It should be noted that the choice of the zero arguments for the functions �1 and

�2 in Eq. (27) is arbitrary. The expression (27) also vanishes if we take arguments for

these functions which are independent of � and �. However, this does not seem to lead

to essentially new features in the gauge transformations and complicates the writing of

the formulae somewhat. We therefore did not pursue this generalization. Of course,

the formula (30) for the second order gauge transformation would have to be modi�ed

accordingly if nonzero arguments are chosen in Eq. (27).

To ensure that the gauge transformations only involve line integrals over �nite do-

mains, we had to choose a weight function � which is even, normalized in the sense of

Eq. (8), and which satis�es the convolution property of Eq. (28). That such a function

indeed exists can be seen by considering its Fourier transform:

R(k) =

Z +1

�1
d� eik� �(�) ; (31)

where R(k) is an even and real function of k because �(�) is also an even and real function

of �. In terms of the Fourier transform R(k), the convolution property (28) reads

R(k)2 = R(k) : (32)

which implies that R(k) is either 0 or 1. Many such functions exist, e.g.,

�(�) =
1

�

sin �

�
: (33)

7



2.4 Order g
3

To order g3, the expression to be cancelled by @�~L
(3) and �(0)�(3) ~A� readsZ

d� �(�) [~�1(��)� �
(2)

�2

~A�(���)� ~L(2)(��) � ~A�(���) ]

+

Z Z
d� d� �(�) �(�)

�

(
~�1(��+ ��) [ �

(1)

�2

~A�(���) �

Z (���)�

���
d ~A ] + ~�1(��+ ��) [ ~A�(���) �

Z (���)�

���
�
(1)

�2

~A ]

�[ ~�1(���) �
Z (���)�

���
�
(1)

�2

~A ] ~A�(��+ ��)� [ ~�1(���) �
Z (���)�

���
d ~A ] �

(1)

�2

~A�(�� + ��)

+~�1(0)[

Z ���

0
�
(1)

�2

~A� �

Z (���)�

���
d~F� ] + ~�1(0)[

Z ���

0
d ~A� �

Z (���)�

���
�
(1)

�2

~F� ]

�[ ~�1(���) �

Z (���)�

���
�
(1)

�2

~F� ]

Z (�+�)�

0
d ~A� � [ ~�1(���) �

Z (���)�

���
d~F� ]

Z (�+�)�

0
�
(1)

�2

~A

�~L(1)(��+ ��) [ ~A�(���) �
Z (���)�

���
d ~A ] + ~A�(�� + ��)[ ~L(1)(���) �

Z (���)�

���
d ~A ]

�~L(1)(0)[
Z ���
0

d ~A �

Z (���)�

���
d~F� ] + [~L(1)(���) �

Z (���)�

���
d~F� ]

Z (�+�)�

0
d ~A

)
; (34)

where Z a

b
�(1) ~A =

Z
d� �(�)

Z a

b
d�� ~�(� + ��)� ~A�(� � ��) ;

Z a

b
�(1) ~F� =

Z a

b
d�� [ @��

(1) ~A�(� )� @��
(1) ~A�(� ) ] ; (35)

The quantities ~L(1) and ~L(2) in Eq. (34) are given in terms of the gauge parameters ~�1

and ~�2 by Eqs. (11) and (18), respectively.

In analogy with the lower order calculations, we �rst determine ~L(3). To this end, we

�nd it convenient to rewriteZ a

b
�(1) ~F� = ��

(1) ~A�(a) + �(1) ~A�(b) + @�

Z a

b
�(1) ~A : (36)

Then, letting �(0) act on the expression (34), and using the lower order relations

�
(0)

�2
�
(1)

�1

~A� = � @�~L
(1) ;

(37)

�
(0)

�2
�
(2)

�1

~A� = � @�~L
(2)
�

Z
d� �(�) [ ~�1(��)� �

(1)

�2

~A�(���) � ~L(1)(��)� ~A�(���) ] ;

we obtain once more a total derivative:

� @�

�Z
d� �(�) ~�3(��) � ~L(2)(���)

�
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� @�

Z Z
d� d� �(�) �(�)

(
~�3(��+ ��) [ ~L(1)(���) �

Z (���)�

���
d ~A ] (38)

�~�1(��+ ��) [ ~�2(���) �

Z (���)�

���
�
(1)

�3

~A ]� ~L(1)(��+ ��) [ ~�3(���) �

Z (���)�

���
d ~A ]

)
:

This result allows us to �nd ~L(3) in the same way as we did for order g and g2:

~L(3) =

Z Z Z
d� d� d� �(�) �(�) �(�)

�

(
� [ ~�1(���) � ~�2(��+ ��+ ��) ] [

Z (���)�

0
d ~A �

Z (�+���)�

0
d ~A ]

+
1

2
[ ~�1(���) � ~�2(��+ ��+ ��) ] [

Z (���)�

0
d ~A �

Z (���)�

0
d ~A ]

+

Z (�+�)�

0
d ~A [ ~�1(���) �

Z (���)�

���
�
(1)

�2

~A ]

�
1

2
~L(1)(�� + ��) [

Z ���
0

d ~A �

Z ���

0
d ~A ]

�

Z (�+�)�

0
d ~A [ ~L(1)(���) �

Z (���)�

���
d ~A ]

+
1

2
~L(1)(���) [

Z (���)�

0
d ~A �

Z (�+�)�

0
d ~A ]

+
1

2
[ ~�1(�� � ��)� ~�2(���+ ��) ] [

Z �(�+�)�
0

d ~A �

Z (�+�)�

0
d ~A ]

�~�1(0) [
Z ���
0

d ~A �

Z (���)�

���
�
(1)

�2

~A ]

�[

Z ���
0

d ~A� ~�1(�� + ��+ ��) ] [ ~�2(0) �

Z (�+���)�

0
d ~A ]

+[

Z (���)�

0
d ~A� ~�1(���+ ��) ] [ ~�2(0) �

Z �(�+�)�

0
d ~A ]

)
: (39)

The third order gauge transformation �(3) ~A� can now be obtained. Some lengthy algebra

shows that we can take

9



�(3) ~A�(0) =
Z Z Z

d� d� d� �(�) �(�) �(�)

�

(
�

Z (�+�)�

0
d ~A [ ~A�(���) �

Z (���)�

���
�(1) ~A ]

�[~�(���) � ~A�(�� + ��+ ��) + ~�(�� + ��+ ��) � ~A�(���)] [

Z (���)�

0
d ~A �

Z (�+���)�

0
d ~A]

+
1

2
[~�(���)� ~A�(�� + ��+ ��) + ~�(�� + ��+ ��)� ~A�(���)] [

Z (���)�

0
d ~A �

Z (���)�

0
d ~A]

+[ ~�(���+ ��)�

Z (���)�

���
d ~A ] [ ~A�(���� ��) �

Z (�+�)�

0
d ~A ]

�[ ~A�(���+ ��)�

Z (���)�

���
d ~A ] [ ~�(��� � ��) �

Z (�+�)�

0
d ~A ]

+[ ~�(���+ ��)� ~A�(��� ��) ] [
Z (�+�)�

0
d ~A �

Z �(�+�)�

0
d ~A ]

�
1

2
�(1) ~A�(�� + ��) [

Z ���
0

d ~A �

Z ���

0
d ~A ]

+�(1) ~A�(���) [
Z ���
0

d ~A �

Z (���)�

0
d ~A ]

�
1

2
�(1) ~A�(���) [

Z (�+�)�

0
d ~A �

Z (���)�

0
d ~A ]

+ ~A�(0) [

Z ���

0
d ~A �

Z (���)�

���
�(1) ~A ]

+[ ~�(��+ ��+ ��)�
Z ���

0
d ~A ] [ ~A�(0) �

Z (�+���)�

0
d ~A ]

�[ ~A�(��+ ��+ ��)�

Z ���
0

d ~A ] [ ~�(0) �

Z (�+���)�

0
d ~A ]

�[ ~�(���+ ��)�
Z (���)�

0
d ~A ] [ ~A�(0) �

Z �(�+�)�
0

d ~A ]

+[ ~A�(���+ ��)�

Z (���)�

0
d ~A ] [ ~�(0) �

Z �(�+�)�
0

d ~A ]

+

Z (�+�)�

0
�(1) ~A [

Z ���
0

d ~A �

Z (���)�

���
d~F� ]

�

Z (�+�)�

0
d~F� [

Z ���
0

d ~A �

Z (���)�

���
�(1) ~A ]

�[ ~�(���)�

Z (�+�+�)�

��
d ~A ] [

Z (���)�

0
d ~A �

Z (�+���)�

(���)�
d~F� ]
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�[ ~�(��+ ��+ ��)�
Z ���
0

d ~A ] [
Z (�+���)�

0
d ~A �

Z (���)�

0
d~F� ]

+[ ~�(���� ��)�

Z (�+�)�

0
d ~A ] [

Z (��+�)�

0
d ~A �

Z (���)�

0
d~F� ]

�
1

4
~�(0) [

Z ���
0

d~F� �

Z Z (�+�)�

0

~A� ~A ]

+
1

4
~�(0) [

Z (���)�

0
d~F� �

Z Z ���
0

~A� ~A ]

�
1

4

Z Z (�+�)�

0

~A� ~A [ ~�(0) �

Z (���)�

���
d~F� ]

+
1

4

Z (���)�

0
d~F� [ ~�(0) �

Z Z (�+�)�

0

~A� ~A ]

�
1

4

Z (���)�

0
d~F� [ ~�(0) �

Z Z ���

0

~A� ~A ]

�[

Z (�+�+�)�

��
d ~A�

Z ���

0
d ~A ] [ ~�(0) �

Z (�+���)�

(���)�
d~F� ]

+[
Z (�+�)�

0
d ~A�

Z �(�+�)�

0
d ~A ] [ ~�(0) �

Z (���)�

0
d~F� ]

+
1

2
[

Z (��+�)�

��
d ~A�

Z (���)�

0
d~F� ] [ ~�(0) �

Z �(�+�)�

0
d ~A ]

+
1

2
[
Z �(�+�)�
0

d ~A�

Z (���)�

0
d~F� ] [ ~�(0) �

Z ��

0
d ~A ]

�
1

2
[ ~�(0) �

Z (�+�+�)�

��
d ~A ] [

Z (�+���)�

0
d ~A �

Z (���)�

0
d~F� ]

�
1

2
[ ~�(0) �

Z (�+�+�)�

(��+�)�
d ~A ] [

Z ���
0

d ~A �

Z (���)�

0
d~F� ]

+
1

2
[ ~�(0)�

Z (��+�)�

��
d ~A ] [

Z �(�+�)�
0

d ~A �

Z (���)�

0
d~F� ]

�
1

2
[

Z (�+�+�)�

��
d ~A�

Z ���
0

d~F� ] [ ~�(0) �

Z (�+���)�

0
d ~A ]

�
1

2
[

Z (�+�+�)�

0
d ~A�

Z ���
0

d~F� ] [ ~�(0) �

Z ���
0

d ~A ]

)
: (40)

In Eq. (40), we introduced double line integrals which are de�ned byZ Z b�

a�

~A� ~A =
1

2

Z (b+�)�

(a+�)�
d��1

Z (b��)�

(a��)�
d�

�
2 [ ~A�(�1)� ~A�(�2) ] [1� sign(�1� �2� 2��)] ; (41)
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where

sign(�1 � �2 � 2��) =

8><
>:

+1 ; if �1 � �� > �2 + �� ;

�1 ; if �1 � �� < �2 + �� :

(42)

They are necessary to cancel the line integrals over �(1) ~A, which appear in Eq. (34). For

a discussion of the properties of these double line integrals, we refer to the Appendix.

Eq. (39) for ~L(3) and Eq. (42) for �(3) ~A� are the third order expressions which are

needed to satisfy the group property to order g3. In their derivation, no new properties of

the weight function � have to be introduced. We strongly suspect that this analysis can

be carried through to arbitrary orders in g, but the algebra becomes quite formidable.

3 SU(2) Doublets

3.1 Introduction

Standard Yang-Mills theories, in which an SU(2) doublet  (x) is coupled to Yang-Mills

�elds, are invariant under the transformations

� ~A�(x) = � @�~�(x) + g ~�(x)� ~A�(x) ;

� (x) = �ig
1

2
~� � ~�(x) (x) ;

� (x) =  (x) ig
1

2
~� � ~�(x) ; (43)

where ~� are the three Pauli matrices. The group property for the doublet �eld reads

[��2
; ��1

] (x) = �L (x) ; (44)

where the combined gauge parameter L is the same as for the the Yang-Mills �elds. Of

course,  (x) satis�es the same relation (44).

Our aim is to generalize the gauge transformations � and � (x) in such a way that

the gauge parameters ~� and the �elds  (and  ) are not at the same point x. To achieve

this goal, we again expand the gauge transformation on  in powers of g, i.e.,

� (x) =
1X
n=1

gn �(n) (x)

� (x) = (� (x))y 0 : (45)

Our task is then to obtain, order by order, the expressions �(n) (x) such that the group

property (44) is satis�ed. We shall limit ourselves to order g3.

3.2 Order g

The Ansatz of order g, which we propose in analogy with our Abelian paper [5], reads

�(1) (x) = �
i

2

Z +1

�1
d� �(�)~� � ~�(x+ ��) (x+ 2��) ; (46)

12



where the weight function �(�) is taken to be the same as in the pure Yang-Mills case.

Note that when �! 0, we recover the standard case of Eq. (43), because �(�) is normalized

in the sense of Eq. (8).

This Ansatz (46) has moreover the desirable property of leaving the mass term in the

action for the doublet  invariant to �rst order in g. Indeed,

�(1)
Z
dx (x) (x)

=
i

2

Z
dx

Z
d� �(�) [ (x+ 2��)~� � ~�(x+ ��) (x)�  (x)~� � ~�(x+ ��) (x+ 2��) ]

= 0 ; (47)

because we can shift the integration variable x! x� �� in both terms, and use the fact

that �(�) is an even function of �.

3.3 Order g
2

From now on, we again suppress the x-dependence in the arguments of ~� and  , as we

did in the pure Yang-Mills case. Also, we resort to our convention that commutators of

gauge transformations are always understood in our formulae.

To satisfy the group property (44) to order g2, we need an expression for �(2) such

that

[�
(1)

�2
�
(1)

�1
� �

(1)

L(1)] (0) = ��
(0)

�2
�
(2)

�1
 (0) ; (48)

where ~L(1) is given by Eq. (11) of the pure Yang-Mills case. The l.h.s. of this equation

reads

�
1

4

Z
d�

Z
d� �(�) �(�)~� � ~�1(��)~� � ~�2(2�� + ��) (2��+ 2��)

+
i

4

Z
d�

Z
d� �(�) �(�)~� � [ ~�1(��+ ��)� ~�2(�� � ��) ] (2��) : (49)

Using the well-known relation

� a � b = �ab + i �abc � c ; (50)

the expression (49) can be rewritten as follows:

Z
d�

Z
d� �(�) �(�)

�
�
1

4
[ ~�1(��) � ~�2(2��+ ��) ] (2��+ 2��)

�
i

4
~� � [ ~�1(��) � ~�2(2�� + ��) ] (2��+ 2��)

+
i

4
~� � [ ~�1(��+ ��)� ~�2(��� ��) ] (2��)

�
: (51)
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This expression is cancelled by �
(0)

�2
�
(2)

�1
 (0), if we take

�(2) (0) =

Z
d�

Z
d� �(�) �(�)

(
�
1

8
f[ ~�(��) + ~�(2�� + ��) ] �

Z (2�+�)�

��
d ~A g (2��+ 2��)

�
i

8
~� � f[ ~�(2�� + ��) + ~�(��+ ��) ]�

Z ��

(�+�)�
d ~A g (2�� + 2��)

�
i

8
~� � f[ ~�(��+ ��) + ~�(��) ]�

Z (2�+�)�

(�+�)�
d ~A g (2�� + 2��)

�
i

4
~� � f[ ~�(��� ��) + ~�(��) ] �

Z ��

(�+�)�
d ~A g (2��)

)
: (52)

Indeed, all terms in Eq. (51) get cancelled, except for introduction of two new terms

Z
d�

Z
d� �(�) �(�)

�
�
i

4
~� � [ ~�1(�� + ��)� ~�2(��+ ��) ] (2��+ 2��)

+
i

4
~� � [ ~�1(��)� ~�2(��) ] (2��)

�
: (53)

However, these terms cancel because of the convolution property of the weight functions

�, in complete analogy with the calculations of Eqs. (29).

We thus �nd that �(2) in Eq. (52) has terms without ~� as well as terms with ~� . Also

note that, in the limit � ! 0, the expression for �(2) vanishes. Finally, it should be

pointed out that �(2) leaves the mass term in the action invariant.

3.4 Order g
3

In order to satisfy the group property of order g3, we have to �nd a suitable third order

gauge transformation �(3) , such that �
(0)

�2
�
(3)

�1
 (0) cancels

[�
(2)

�2
�
(1)

�1
+ �

(1)

�2
�
(2)

�1
] (0) +

i

2

Z
d� �(�)~� � ~L(2)(��) (2��)

+
Z
d�

Z
d� �(�) �(�)

(
1

8
f[ ~L(1)(��) + ~L(1)(2�� + ��) ] �

Z (2�+�)�

��
d ~A g (2��+ 2��)

+
i

8
~� � f[ ~L(1)(2�� + ��) + ~L(1)(�� + ��) ]�

Z ��

(�+�)�
d ~A g (2�� + 2��)

+
i

8
~� � f[ ~L(1)(�� + ��) + ~L(1)(��) ]�

Z (2�+�)�

(�+�)�
d ~A g (2��+ 2��)

+
i

4
~� � f[ ~L(1)(�� � ��) + ~L(1)(��) ]�

Z ��

(�+�)�
d ~A g (2��)

)
; (54)

where ~L(1) and ~L(2) are the combined gauge parameters of the pure Yang-Mills case of

order g and g2, given by Eqs. (11) and (19).
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The cancellation is achieved if we take

�(3) (0) =
1

16

Z
d�

Z
d�

Z
d� �(�) �(�) �(�)

�[C1  (2��+ 2��+ 2��) + C2  (2��+ 2��)

+i~� � ~D1  (2�� + 2��+ 2��) + i~� � ~D2  (2��+ 2��) + i~� � ~D3  (2��) ] ;

(55)

with

C1 = ~�(2��+ 2��+ ��) � [

Z (2�+�)�

(�+�)�
d ~A�

Z ��

(�+�)�
d ~A ]

�~�(��) � [
Z (2�+�)�

(2�+�+�)�
d ~A�

Z (2�+2�+�)�

(2�+�+�)�
d ~A ]

+2 [~�(��)�

Z (2�+2�+�)�

(�+�+�)�
d ~A+ ~�(��+ ��+ ��)�

Z ��

(�+�+�)�
d ~A ] �

Z (2�+�+�)�

(�+�+�)�
d ~A

�2 [~�(2�� + 2��+ ��) �
Z ��

(�+�+�)�
d ~A+ ~�(�� + ��+ ��)�

Z (2�+2�+�)�

(�+�+�)�
d ~A ]

�

Z (�+�)�

(�+�+�)�
d ~A

�2 ~�(��+ ��+ ��) � [
Z ��

(�+�+�)�
d ~A�

Z (2�+2�+�)�

(�+�+�)�
d ~A ] ; (56)

C2 = �
1

2
[ ~�(��) + ~�(2�� + ��) ] � [

Z Z (2�+�)�

��

~A� ~A ]

�2~�(��+ ��) � [
Z ��

(�+�)�
d ~A�

Z (2�+�)�

(�+�)�
d ~A ]

+~�(��) � [

Z (2�+�)�

(���)�
d ~A�

Z (2�+�+�)�

(�+�)�
d ~A ]

�~�(2�� + ��) � [
Z ��

(2�+���)�
d ~A�

Z (�+�)�

(2�+�+�)�
d ~A ]

+~�(��� ��) � [

Z (2�+�)�

��
d ~A�

Z ��

(�+�)�
d ~A ]

+~�(2��+ ��� ��) � [
Z (2�+�)�

��
d ~A�

Z (2�+�)�

(2�+�+�)�
d ~A ] ; (57)

and

~D1 = ~�(2�� + 2��+ ��)� [
Z ��

(�+�)�
d ~A�

Z (2�+�)�

(�+�)�
d ~A ]

15



+~�(��) � [
Z (2�+2�+�)�

(2�+�+�)�
d ~A�

Z (2�+�)�

(2�+�+�)�
d ~A ]

+2 ~�(��)� [

Z (2�+�+�)�

(�+�+�)�
d ~A�

Z (2�+2�+�)�

(�+�+�)�
d ~A ]

+2 ~�(2�� + 2��+ ��)� [

Z (�+�)�

(�+�+�)�
d ~A �

Z ��

(�+�+�)�
d ~A ]

+2~�(��+ ��+ ��) [
Z ��

(�+�+�)�
d ~A �

Z (2�+2�+�)�

(�+�+�)�
d ~A ]

�
1

2
~�(��) [

Z (2�+2�+�)�

(2�+�)�
d ~A �

Z (2�+2�+�)�

(2�+�)�
d ~A ]

�
1

2
~�(2�� + 2��+ ��) [

Z ��

(2�+�)�
d ~A �

Z ��

(2�+�)�
d ~A ]

�2 [ ~�(2�� + 2��+ ��) �
Z (2�+2�+�)�

(�+�+�)�
d ~A ]

Z ��

(�+�+�)�
d ~A

�2 [ ~�(��) �

Z ��

(�+�+�)�
d ~A ]

Z (2�+2�+�)�

(�+�+�)�
d ~A ; (58)

~D2 = �
1

2
[ ~�(2�� + ��) + ~�(��+ ��) ]� [

Z Z ��

(�+�)�

~A� ~A ]

�
1

2
[ ~�(�� + ��) + ~�(��) ] � [

Z Z (2�+�)�

(�+�)�

~A� ~A ]

+
Z (2�+�)�

(�+�)�
d ~A� f[ ~�(�� � ��) + ~�(��+ ��� ��) ]�

Z (�+�)�

(�+�+�)�
d ~A g

+
Z ��

(�+�)�
d ~A� f[ ~�(2�� + ��� ��) + ~�(��+ ��� ��) ]�

Z (2�+�+�)�

(�+�+�)�
d ~A g

�2

Z (2�+�)�

(�+�)�
d ~A� f[ ~�(��� ��) + ~�(��) ]�

Z (�+�)�

��
d ~A g

�2
Z ��

(�+�)�
d ~A� f[ ~�(2��+ ��� ��) + ~�(2�� + ��) ]�

Z (2�+�+�)�

(2�+�)�
d ~A g

�2 [ ~�(��) �

Z (�+�)�

(2�+�)�
d ~A ]

Z (2�+�)�

(�+�)�
d ~A� 2 [ ~�(2�� + ��) �

Z (�+�)�

��
d ~A ]

Z ��

(�+�)�
d ~A

�2 ~�(��+ ��) [
Z ��

(�+�)�
d ~A �

Z (2�+�)�

(�+�)�
d ~A ] + ~�(��+ ��) [

Z ��

(2�+�)�
d ~A �

Z ��

(2�+�)�
d ~A ]

�2 [ ~�(��+ ��) �

Z ��

(�+�+�)�
d ~A ]

Z (���)�

(�+���)�
d ~A
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�2 [ ~�(��+ ��) �

Z (2�+�)�

(�+�+�)�
d ~A ]

Z (2�+���)�

(�+���)�
d ~A

+2 [ ~�(��+ ��) �

Z (���)�

��
d ~A ]

Z ��

(�+�+�)�
d ~A

+2 [ ~�(��+ ��) �
Z (2�+���)�

(2�+�)�
d ~A ]

Z (2�+�)�

(�+�+�)�
d ~A

+4 [ ~�(��) �

Z (2�+�)�

(�+�)�
d ~A ]

Z ��

(�+�+�)�
d ~A+ 4 [ ~�(2�� + ��) �

Z ��

(�+�)�
d ~A ]

Z (2�+�)�

(�+�+�)�
d ~A

�2~�(�� + ��+ ��) f[
Z ��

(�+�)�
d ~A ]2 + [

Z (2�+�)�

(�+�)�
d ~A ]2 � [

Z (2�+�)�

��
d ~A ]2 g ; (59)

~D3 = �[ ~�(��� ��) + ~�(��) ] � [

Z Z ��

(�+�)�

~A� ~A ]

+2 [ ~�(��� ��+ ��)�
Z (�����)�

(���)�
d ~A ]�

Z ��

(�+�)�
d ~A

+2 [ ~�(��+ ��)�

Z (���)�

(�+���)�
d ~A ]�

Z ��

(�+�)�
d ~A

+4 ~�(��� ��) [

Z ��

(�+�+�)�
d ~A �

Z ��

(�+�)�
d ~A ]

+4 ~�(��+ ��� ��) [
Z (���)�

(�+�)�
d ~A �

Z (�+�+�)�

(���)�
d ~A ]

+4 [ ~�(��� ��) �

Z (�+���)�

��
d ~A ]

Z (�+�)�

(�+�+�)�
d ~A

+4 [ ~�(��+ ��� ��) �
Z (���)�

(���)�
d ~A ]

Z (�+�+�)�

(�+�)�
d ~A : (60)

Similar to the third order gauge transformation �(3) ~A� of Eq. (40), we note the appearance

of double line integrals in �(3) , more precisely in C2 [Eq. (57)], in ~D2 [Eq. (59)] and in
~D3 [Eq. (60)]. These double line integrals are de�ned in Eq. (41) and their properties are

discussed in the Appendix.

4 Conclusions

In this paper, we have shown that, at least to third order in the coupling constant, it

is possible to construct generalized in�nitesimal gauge transformations for Yang-Mills

theories incorporating the ideas of point splitting. In contradistinction with the Abelian

case [5], we found it necessary to introduce in the gauge transformation a weight function

� which averages over the splitting. Our analysis shows that the weight function has to

satisfy the following conditions:
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1. The function �(�) has to be a real function of the real variable � to preserve the

Hermitian character of the gauge �elds.

2. The function �(�) has to be an even function of �. This is not only desirable for the

sake of simplicity, but also necessary in conjunction with the next property.

3. The function � has to satisfy the convolution property (28)Z +1

�1
d� �(� � �) �(�) = �(�) : (61)

to ensure that the generalized gauge transformations could be written in terms of

�nite line integrals. Also note that the convolution property implies that the weight

function cannot be positive de�nite.

We studied both the case of pure Yang-Mills �elds and the case of an SU(2) doublet in

interaction with the Yang-Mills �elds. In analogy with the Abelian case, we �nd that the

in�nitesimal generalized gauge transformations again take the form of a power series in

the coupling constant. We worked out in detail these gauge transformations to third order

in the coupling constant. The explicit forms of the generalized gauge transformations for

the pure Yang-Mills case are given by Eqs. (5) for zeroth and �rst orders, by Eq. (30)

for order g2, and by Eq. (40) for order g3. The corresponding combined gauge parameter

is given by Eq. (10) for order g, by Eq. (18) for order g2, and by Eq. (39) for order

g3. For the case of an SU(2) doublet coupled to Yang-Mills �elds, the generalized gauge

transformation, de�ned by Eq. (44), is given to order g by Eq. (46), by Eq. (52) to order

g2, and by Eqs. (55{60) to order g3.

In the Abelian case, we were able to show that the gauge transformations can be

constructed to arbitrary order. Yang-Mills theories being considerable more complicated,

we did not succeed in providing such a proof here, but we see no reason why our analysis

could not be extended to higher orders in the coupling constant.

Because the �eld operators in the generalized gauge transformations are at di�erent

space-time points, we can reasonably expect that the corresponding Lagrangian will have

regulating properties. We intend to examine this exciting possibility in a forthcoming

paper.

Appendix

In the third order gauge transformations (39) and (55), we encountered the double line

integrals of the formZ Z b�

a�

~A� ~A =
1

2

Z (b+�)�

(a+�)�
d��1

Z (b��)�

(a��)�
d�

�
2 [
~A�(�1)� ~A�(�2) ] [1� sign(�1� �2� 2��)] : (62)

In this Appendix, we want to show how they transform under zeroth order gauge trans-

formations. More precisely, we want to show that

�(0)
Z Z b�

a�

~A� ~A = ~�(b�� ��)�

Z (b+�)�

(a+�)�
d ~A+ ~�(a�+ ��)�

Z (b��)�

(a��)�
d ~A

�

Z b�

a�
d�� [ ~�(� + ��)� ~A�(� � ��) + ~�(� � ��)� ~A�(� + ��) ] : (63)
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To this end, we writeZ Z b�

a�

~A� ~A =
Z (b+�)�

(a+�)�
d��1

Z (b��)�

�1�2��
d�

�
2
~A�(�1)� ~A�(�2)

=

Z (b��)�

(a��)�
d�

�
2

Z �2+2��

(a+�)�
d��1

~A�(�1)� ~A�(�2) : (64)

It then follows that

�(0)
Z Z b�

a�

~A� ~A = �

Z (b+�)�

(a+�)�
d��1

Z (b��)�

�1�2��
d�

�
2
~A�(�1)� @�~�(�2)

�

Z (b��)�

(a��)�
d�

�
2

Z �2+2��

(a+�)�
d��1 @�

~�(�1)� ~A�(�2)

= �

Z (b+�)�

(a+�)�
d��1

~A�(�1)� [ �(b�� ��)� �(�1 � 2��) ]

�

Z (b��)�

(a��)�
d�

�
2 [ �(�2 + 2��)� �(a�+ ��) ]� ~A�(�2) ; (65)

which is the same as Eq. (63).

It should be noted that the double integrals of the type (62) always appear in the

gauge transformations integrated over � with the weight function �(�). The evenness of

�(�) then allows us to obtain the simpler result that

�(0)
Z
d� �(�)

Z Z b�

a�

~A� ~A =
Z
d� �(�)

(
[ ~�(b�� ��) + ~�(a�� ��) ]�

Z (b+�)�

(a+�)�
d ~A

�2

Z b�

a�
d�� ~�(� + ��)� ~A�(� � ��)

)
: (66)

The last integral in Eq. (66) is precisely

�2

Z b�

a�
�(1) ~A ; (67)

as can be seen by comparing with Eq. (35). It thus follows from this exercise that the

double line integrals of the type (62) are essential for the cancellation of the terms involving

integrals over �(1) ~A.
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