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ABSTRACT

Studies of C'P violation, for 30 years focused primarily on the neutral K meson, are on the
threshold of a new era as experiments approach Standard-Model sensitivities in decays of
beauty, charm, and hyperons. The array of heavy-quark experiments approved and planned
at Fermilab may lead to a significant breakthrough in the next five to ten years.

1 Introduction o
The mmv\aawnﬁ@ of certain weak decays with respect to the simultaneous interchange of particles with antiparticles (C')
and reflection of spatial coordinates (P ) [1] raises fundamental questions about space, time, and the early history of
the Universe [2]. Despite thirty years of impressive experimental effort, we still have little insight into the origin of this
phenomenon. New experimental approaches now being attempted may lead to substantially improved understanding
in the next five to ten years.

CP violation can most simply be thought of as a difference in decay properties between particles and antiparticles.
For such a difference to arise, there must be competing decay amplitudes which interfere, leading to a phase difference
whose magnitude changes under C'P transformation. Since there is no evidence for P asymmetry in strong-interaction
or electromagnetic processes, 1t 1s generally assumed that this interference arises in gnu weak sector.

The prototypical example oﬁ _QT Sﬁwpmios is that arising from particle-antiparticle mixing in the neutral-kaon
system. The two processes that interfere in this case are the direct decay of the K° (Fig. 1a) and decay occurring after
conversion (throughimixing) into K° (Fig. 1b). As a result, the physidal Kg and K states are not CP eigenstates
(discussed in more detail in Section 2 below), thus K1 (and presumably also Kg) can decay into both CP-odd and
CP-even final states [1]. As first pointed out by Kobayashi and Maskawa [3], in a six-quark model the participation of
all three quark generations in the mixing process introduces a nontrivial weak phase in the mixing amplitude, which
changes sign under CP. Since the amplitudes for the direct and mixed decays can also possess a strong phase &m,miwvom
which is QWEE&E@S? the ooa.w_ugma phase o:w@wmsﬂm can ow.w_smm in magnitude under CP.

In the Standard Model (SM), CP violation at possibly-observable levels can occur in the decays of neutral [4, 5]

and charged [6] kaons, hyperons [7], and charm [8] and beauty [9] mesons. To date it has been observed intonly the first
of these cases. The pattern of occurrence in all of them could reveal whether CP violation originates (as in the SM)
solely from the one irreducible phase of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [10, 3], whether
in addition there are contributions from new physics outside the CKM framework, or whether the phenomenon arises
entirely from new physics. For new-physics contributions, C'P violation probes multi-TeV mass scales which cannot
be studied directly even at the LHC.

Given the sizes of CP asymmetries observed in K decays and the values of the CKM matrix elements, the SM
predicts a distinct hierarchy of CP-violating effects: CP asymmetries should be largest (21071) in certain relatively
rare beauty decays, smaller in decays of KV (few x10~3) and Cabibbo-suppressed charm decays (~ 1073), and smaller
still (~ 107% — 107%) in decays of hyperons. Nevertheless, the sizes of production cross sections and branching ratios
make detection of these effects hardest in principle in the beauty sector and easiest in the kaon sector, with hyper-
ons and charm lying in between. While until recently, SM charm and hyperon CP asymmetries appeared beyond
reach, advances in data-acquisition technology have now made their observation feasible, and experiments are now
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Figure 1: Examples of a) direct K” decay and b) K° mixing via a “box” diagram.

being mouﬂ_tg‘d:_qi" proposed to search for them. Observation of CP asymmetries in beauty decay requires construc-
tion of new accelerators [11, 12], ambitious new experiments [13], or substantial upgrades to existing accelerators or
experiments [14, 15]; all of these efforts are also in progress.

Charm studies can play a special role because the top-quark loops which in the SM dominate CP violation in the
strange and beauty sectors are absent, creating a low-background window for new physics, and because new physics
may couple differently to up- and down-type quarks or couple to quark mass. If kaon and beauty experiments confirm
the CKM model, we will be hardly any closer to an ultimate theory of CP violation, since the questlon why the CKM
phase has the Value it does will remain open. On the other hand, by pursuing this phys1cs n all.avallable quark sectors
we may find deviations from CKM predictions which could point the way to a deeper understanding. M:amy of these
issues are treated in mores @lletall in the excellent recent reviews of Winstein and Wolfenstein [16] and Rosner [9]; a
more detailed discussion of hyperon CP violation can be found in the Fermilab Experiment 871 Proposal [17].

As suggested by Table 1, Fermilab fixed-target experiments have made substantial contributions to this subject
in recent years and will continue to do so in the years ahead. At Fermilab the search for CP violation in beauty
decay is part of the Tevatron Collider program and will not be pursued in fixed target. The remainder of this article

therefore reviews the kaon, hyperon, and charm programs at Fermilab.

Table 1: Recent and future Fermilab fixed-target CP-violation experiments (question marks designate experiments
not yet approved).

| Run: 1987/8 1990/1 1996/7 22000 |
Kaon experiments:

E731  E773/E799-1 KTeV KTeV/KAMI?
Hyperon experiments:

E756 HyperCP

Charm experiments:

E687 FOCUS Charm?20007
E791

2 The Search for Direct CP Violation in K° Decay

A question that has received much attention is whether all CP violation arises indirectly (as predicted in the “super-
weak” theory of Wolfenstein [18]), i.e. through the mixing of neutral mesons with their antiparticles, or whether there



is in addition direct:_Ql'P violation, arising in the decay'_:process itself. While only indirect CP violation has so far been
observed, the Standard Model also predicts observable levels of direct CP violation, arising from the interference of
“penguin” diagrams [19] (containing W loops, see Fig. 2) with tree-level diagrams. To date the search for direct CP
violation has mainly concentrated on the measurement of the ratio €¢'/¢, where € parametrizes the degree to which Kg
and K are not CP eigenstates,

[Ks) = [(1+K") + (1= [KO)]/V2(1+ [e?) (1)
L) = [+ K = (1= [KO)/V201+ ), (2)

and ¢ measures the difference in CP-violating decay rates of K to 7#* 7~ and 7%#°:
Moo
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A nonzero value of ¢ /¢ indicates CP violation in AS = 1 K° decays, and not solely through AS = 2 mixing.

The meﬁS‘urement of ¢’/¢ entails determination of four decay rates, which can be carried out such that systematic

uncertamtles cancel in the double ratio F%(I?_}_;Tr: ;;EE?:::J; ))

achieved [16].

In this way sensitivity at the $10~* level can be
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Figure 2: Example of K° decay via a “penguin” diagram.

The SM expectation for e’/e is sensitive to the Value of the top-quark mass, because of competition between the
strong and electroweak pengum dlagrams which contrlbute with opposite signs [20]. The degree of this sensitivity
is unsettled in the literature. Some authors find complete cancellation, € '/€ becoming zero at my & 220 GeV and
negative for larger.t@p mass [5, 21]. But Heinrich et al. [4], using chlral perturbation theory, find the cancellation
to be only partial, ¢//¢ Pemmmng positive for all m; values. Thus at the present state of understanding, and given
my = 180 £ 12 GeV [22], it appears that the SM predicts ¢'/¢ in the range (0 to 3)x10~ 3[4, 23]; some maintain that
it cannot exceed 1 x 1073 [5, 9]. This range will presumably decrease .W]th ﬁuri:her theoretical effort and improvement
in the determmatlon of m;. Lt

-e’_/e has also been estimated in a variety of extensions of the SM [24, 16 9] It is an old idea that ._C'P.Violation
may originate through sponfaneous symmetry breaking in the Higgs sector [25] In Weinberg’s multlple Higgs-doublet
model [26], assuming that nggs exchange is a major contributor to €, ¢//e can be as large as O(1072) [24 16, 27],
and an electric dipole moment for the neutron d, 2 107%%¢ amn is also predlcted [27]. Given the current exper’lmental
limit d,, < 1.1 x 1075 ecm [28], the Weinberg model may. stlll be viable, however a substantial lowering of Eln, or
establishment of a sufficiently small value for € /¢, could rule out this model- a's 2 'shgmﬁcant source of € [27, 16].
Alternative multi-Higgs models have also been formulated [29], in which the “natural flavor conservation” [30] of
the Welnberg model i is abandoned in favor of an approximate family symmetry i27 31, 32]. In these models, if CP
Vlolation is attributed t@) flavor-changing neutral-Higgs exchange (FCNE), all dlrect' CP Vlolatlon (and all CP- Vlolatmg
effects in beauty) can be unobservably small, but there are other observable manifestations, such as large mixing in
charm [31] (see Section b below). The general analysis of Wu and Wolfenstein [32] includes CP-violating charged-
Higgs exchange, leading to a richer variety of possibilities; for example, ¢//¢ can then be as large as in the CKM
model. Minimal supersymmetry (despite having an extra Higgs doublet) predicts zero for € /e due to the relatively
real vacuum expectation values of the two doublets [9]. Left-right-symmetric models, featuring extra right-handed



gauge,] bosons with masses Well above those of' the left-handed ones, seek t@ provide a unified explanation of P_and
CP violation in which both sy'mmetrles are conserved at sufﬁc1ently high energy but spontaneously broken at 'low
energy [33]. “Isoconjugate” left-right models [34] predict zero for €' /e [24, 33], but other versions can accommodate
values as large as 5 x 1073 [16, 33]. In models with appreciable left-right mixing, ¢ and d, become related [33]:
e/dy ~ 1021 (e cm) ™t

The ex_perlmental 51tuat10n is as follows. Two experiments, one (E731) at Fermilab and one (NA31) at CERN,
have published resulty w1th comparable sen51t1V1ty which are 1.8¢ apart. E731 obtains Re(e/q)_ = (74+52+
2.9) x 107% [35], where the first error is statistical and the second systematic, while the NA31 result is Re(e'/e) =
(234 3.6 £ 5.4) x 107 [36]. Averaging these with previous results from the Fermilab collaboration [37], the Particle
Data Group finds Re(¢’/¢) = (1.540.8) x 1073 [28], employing their standard procedure for increasing the uncertainty
to take account of the NA31-E731 disagreement. While the NA31 result is 3¢ from zero, the world average is less
than 20 from zero, thus we cannot conclude that direct CP violation has been observed.

The techniques employed by the two groups differ in important ways. For example, in E731 two parallel K
beams were incident, and a regenerator placed in one created a Kg beam at the upstream end of the decay region. In
NA31 a Ks production target was moved throughout the decay region to minimize acceptance differences for K and
Kg decays. E731 used magnetic spectrometry for the final-state charged pions and lead-glass calorimetry for neutrals,
while NA31 relied on liquid-argon calorimetry for energy measurement in all modes. While in E731 both Ky and Kg
decays were acquired simultaneously, in NA31 7+ 7~ and n%#0 final states were acquired simultaneously, thus temporal
variations in operating conditions had differing effects in the two experiments. Both groups are prepar.mg improved
experiments, designated KTeV (Fermllab_) and NA48 (CERN). Since the E731 uncertainty is dominated by statistical
error, the Fermilab collaboration has elecﬁed to retain the E731 approach with an upgraded apparatus [38]. NA48,
however represents a substantial departure from NA31, for example adoptmg the technique of magnetic momentum
analysis for the charged-pion final state [39]. In the new experiments, both groups intend to take all four modes
simultaneously. The goal for each effort is sensitivity of (1 —2) x 107% [16].

3 Other K° Studies
The E731 collaboration has also performed a sensitive test of CPT symmetry in K9 decay. In E773 they modified their
regenerator arrangement so as to make a precise measurement of the phases of n4_ and ngg. CPT symmetry predicts
these phases to be equal and'also relates their size to Amg and ATk [40]. The E773 results, ¢oo—¢4— = 0.62°+£1.03°
and ¢y = 43.53° £ 0.97° [41], confirm the predictions and are the most prec1se CPT tests to date, improving on
previous results from E731 [42]. Rt

Direct CP violation can also be sought in rare decays of K°. The decay rates for AL - e+.e ', aOutp~, and
70T are expected to be dominated by direct CP-violating processes [24, 16, 9]. (In the ﬁrst two cases there are also
CP-conserving contributions occurring via virtual-photon loops, which are monitored by Kz — 7%y [24].) In E799-I,
which ran in 1991, the Fermilab collaboration set limits on these decays as shown in Table 2. E799-II (part of KTeV)
is expected to achieve sensitivities approaching SM predictions in some of these modes; and these sensitivities will be
further improved by the subsequent KAMI (“Kaons at the Main Injector”) program.

Table 2: Limits on CP-violating rare K decays.

| Mode | E799-T limit | KTeV sens. | SM pred. |
K = rmlete 1.8 x 107° 7x 1071 ~ 10711
K —nutp= | 5.1 x107° few 1011 ~ 1071
K; — mvp 5.8 x 107> ~ 1078 ~few 10~11

4 The Search for Direct CP Violation in Hyperon Decay
It has long been realized that hyperon decays could violate CP symmetry [43]. Indirect CP violation is not expected,
since hyperon mixing would violate conservation of baryon number. Observables for direct CP violation include
decay-width differences of particle and antiparticle to C'P-conjugate final states and three asymmetries (described
next) involving polarization.

In the decay of a polarized hyperon, the angular distribution of the daughter baryon in the rest frame of the



parent is nonisotropic and is given by

N 1
dQ ~ 4m

i(1 + aP,cosb), (5)

1+O‘ﬁp'ﬁd):4ﬂ'

where ﬁp is the polarization of the parent hyperon, py 1s the direction of the daughter baryon in the rest frame of the
parent, and the parameter « is defined in Eq. 7 below. Moreover, the daughter baryon is polarized, with polarization
vector

15, = L0 By b+ B(Fy x pa) +5lpa x (B x pa)]
o 1+ ab, - pg
where the Lee-Yang variables [44] «, 8, and « are related to the S- and P-wave decay amplitudes:

, (6)

2 Re(S*P 2Im(S*P S|1? —|P|?
o= 2( )2’ﬁ: 2( )2’7:||2 ||2 (7)
|12 + | P |ST2 + | P |ST2 + | P

(a, B, and = are of course not all independent, being related by a?+ 3% +~% = 1.) Since under a CP transformation o
and 3 change sign, in comparing the decays of a hyperon and its antiparticle we have the four possibly- CP-violating
observables

EQ,AEQ—I—?,BEﬁ—F?,B/Eﬂ—F?, (8)
1 I'+7T a—a ﬁ_ﬁ o —«

where ' |S|2—|—|P|2 is the partial decay width to a given final state and the overlined quantities pertam to antiparticles.
As seen from Eq. 7, nonzero values of A, B, and B’ reflect interference between the S- and P- Wave amplitudes.

As in the case of the KU, direct CP violating effects in hyperon decay arise in the SM via the interference
of penguin and tree-level diagrams. Their size has been estimated using a variety of approaches [7]. A is typically
predicted to be of order 107° to 10™* and is experimentally the most accessible; it can be measured by determining
the daughter polarization in the decay of unpolarized parent hyperons. B and B’ are expected to be substantially
larger than A (and in the case of B’ independent of final-state phases) but require measurement of both the parent
and daughter polarizations. A is unobservably small.

Although hyperon C'P asymmetries and €' arise from similar quark dlagrams their SM phenomenologies are quite
distinct. € arises from interference between AT = 1/2 and AT = 3/2 current!s and is subject to the m;-dependent
cancellatlon mentioned above. On the other hand, A is relatively insensitive to m;, with the central predicted value
varying by only about £15% for 140 < m; < 220 GeV in a typical calculation [45]. . _:

Initial 1deas for the measurement of A centered on exclusive production of AA pairs in ppl annihilation at low
energy [24].; _lThIS technique has yielded th.g best result to date, A = 0.022 + 0.019 [46]. While experiments with
substantially improved sensitivity have been proposed both for the LEAR storage ring at CERN [47] and the P source
at Fermilab [48], none has yet been approved.*

4.1 The HyperCP expet:ﬂlfnent ) "

The HyperCP (E8T71) experiment [17] (Fig. 3), now under construction by a Berkeley-Fermilab-Guanajuato-1TT-
Michigan-S. Alabama-Taiwan-Virginia collaboration,® will measure the combined asymmetry in « in the decay sequence

Z7 — A7~ , A — pr~. An intense unpolarized beam of =~ (§+) hyperons will be produced at 0° by 800 GeV protons
striking a metal target, with the secondaries momentum-selected by means of a curved magnetic channel set to 150 GeV
with 26% FWHM momentum bite. Following a 13 m evacuated decay pipe the hyperon decay products will be detected
in a high-rate magnetic spectrometer using MWPCs. (The needed rate cap-ablhty is determmed by the ~40 MHz of
charged particles, dominantly pions and protons, emerging from the channel.) The polarization of the As is measured
by the slope of the cos@ distribution of the protons in the A rest frame (Eq. 5). From Eq. 8 it is straightforward to
show that the combined CP asymmetry is well approximated by

A=A —

V=R & Aoy oA, 9)

a=ap + a= =0

Aza

E871 aims to reconstruct 2 3 x 10° each of = and = decays (>102 per second of beam), measuring A=z, to an uncertainty
<0.8x107* As discussed further below, this sensitivity is in the range of asymmetry predicted by the SM, as well

4Sadly, with LEAR now to be decommissioned, only one locus remains for such studies.

5C. Ballagh, W. S. Choong, G. Gidal, P. Gu, K. B. Luk (Berkeley), T. Carter, C. James, J. Volk (Fermilab), J. Felix, G. Moreno, M.
Sosa (Guanajuato), R. A. Burnstein, A. Chakravorty, D. M. Kaplan, L. M. Lederman, A. Ozturk, H. A. Rubin, D. Sowinski, C. White, S.
White (IIT), H. R. Gustafson, M. Longo (Michigan), K. Clark, M. Jenkins (S. Alabama), A. Chan, Y. C. Chen, K. C. Cheng, C. Ho, M.
Huang, P. K. Teng, C. Yu, Z. Yu (Taiwan), S. Conetti, C. Dukes, K. Nelson, D. Pocanic, D. Rajaram (Virginia).



Figure 3: Elevation and plan views of HyperCP spectrometer.

The acquisition of so large a hyperon sample requires a hig'_flj!y capable data acquisition system, designed for
100 kHz trigger rate and 20 MB/s average data rate to tape. This high rate capability is driven by the need to use
loose trigger requirements so as to minimize any possible CP bias [50]. (KTeV is designing for similar bandwidths,
and as we will see, Charm2000 plans to go even further in data acquisition rate.)

Direct CP- Vlolatmg asymmetrles are typically proportional to products of the weak-interaction and strong-
interaction phase factors ofy the interfering decay amplitudes. The weak phases arise from short-distance physics, while
the strong phases a.rel due tQ ﬁnal state interactions. In the case of A=y, the strong phases in A decay are directly
measured in Tp, scattermg [61], but those in = decay must be calculated theoretically. Older work relied on the
calculations of Refs. [52] and [53], giving a phase difference of 16°, but a recent calculation using chiral perturbation
theory gives 1.5° [54], implying a = CP asymmetr'y; one orden'n_'of magnitude smaller than previously thought. Thus in
the SM Az was formerly thought to exceed Ay, with predicted values in the range & (0:;1_:to 1) x 10=* compared to a
predicted range & (0.1 to 0.5) x 10=% for A (Table 3; cf. Ref. [7]). However, if the newer calculation is correct, Ay is
the larger contribution. At present it is not clear which (if either) calculation is correct [55]. A measurement of 3/«



using polarized E'_:s could help clarify the question.

Hyperon CP asymmetries have also been estimated in a variety of non-Standard models, and results are sum-
marized in Table 3. In the Weinberg model and left-right-symmetric models with left-right mixing, A=z4 can be
substantially larger than in the SM, while in models in which CP is violated due to FCNE it is essentially zero.

Table 3: Hyperon CP-asymmetry estimates.

A= Ap '
Model [10-4 [10-4] :-..Elief.
CKM —(0.1-1) [ =(0.1-0.5) | [67]
Weinberg ~—3.2 ~—0.25 |, [68]
Multi-Higgs (FCNE) ~0 ~0 L [67]
LR (isoconjugate) ~0.25 ~—0.11 [58]
LR (with mixing) <1* <7 [59]

*using final-state phases of Ref. [54]

4.2 Sensitivity to charged-kaon direct CP violation in HyperCP o
The HyperCP experiment also has the potential to observe direct C'P violation in charged-kaon decay to rEataF :l:17]
The most accessible signal is the difference Ag of the Dalitz-plot slope parameters for K+ and,. A:’_ decay that measure
the energy dependence of the odd-sign pion. SM predictions for Ag vary over a wide range, ~10~ 6to 1.4 x 1073 [6].
The best previous measurement (from the Brookhaven AGS) gives Ag = —0.0070 & 0.0053 [56]. HyperCP should
amass a sample of ~s10° events in each mode, giving sensitivity of about 1 x 10™*. Other proposals are also extant at

comparable sensitivity [60].

5 The Search for CP Violation in Charm Decay

Following the more-or-less simultaneous discovery of the charm quark in fixed-target [61] and e*Te™ collisions [ 621 for
many years experiments at eTe™ colliders dominated the study of charmed particles. Starhng in 21985, silicon Vertex
detectors made fixed-target experiments competitive once again. Although CP asymmetries in charm are expected to
be quite small, exponential growth in the sensitivity of fixed-target charm experiments (Fig. 4), as well as at CLEO [63],
has led to C'P-violation sensitivities that are beginning to approach levels predicted in some extensions of the Standard
Model. As discussed below, the Charm2000 project at Fermilab may succeed in observing SM CP violation.

5.1 The Charm2000 project

Charm2000 [64] is a Letter-of- Intle-nt in-progress for a new Fermilab experiment to reconstruct as4x 10® charm decays in
the YearrNQOOO fixed-target run. This sens1t1v1ty goal 1s ~#2000 times the largest extant charm sample, that of Fermilab
E791. The spectrometer (Figs. 5, 6) is planned to be cornpact and of-rnoderate cost (e.g. substantially cheaper than
HERA-B [13]), but with large acceptance, good resolutlon and high-rate tracking and particle identification. Tracking
is done exclusively with silicon or diamond [65] and sc1nt111at1ng fiber [66] detectors, allowing operation at a 5 MHz
interaction rate. A fast ring-imaging Cherenkov counter [67] provides hadron 1dent1ﬁcat10n and calorimeters (posslbly
augmented by a TRD) identify electrons_and allow first-level triggering on transverse energy. Trlggerﬂn_g .efﬁcrently on
charm while maintaining high livetime and a manageable data rate to tape (S100 MB_/_S) is a significant challenge,®
requiring hardware decay-vertex triggers [68]; first-level “optical” triggers may play a significant role [69, 70]. (More
detailed discussions of the Charm2000 spectrometer and physics goals may be found in [64].)

5.2, Direct charm CP violation

The Standard Model predlots dllrect CP violation in singly Cablbbo suppressed decays (SCSD) of charm at the ~1073
level [8, 71]. CP Vlolatlon in Cabibbo-favored (CFD) or doublyi Ca.'blbbo suppressed (DCSD) modes would be a clear
signature for new physics [T1, 72]. Asyrnrnetrles In all three categories could reach q«llO Z in such scenarios as non-
minimal supersymmetry [72] and in left-right- syrnrnetrlc models [73, 74]. There are also expected SM asymmetries of
~3.3x 1073 (=2 Re(ex)) due to K mixing in such modes as DT — Kgnt and Kgfv [75], which should be observed
in Charm2000 or even in predecessor experiments [76]. While K%-induced CP asymmetries might teach us little we do

8While HERA-B is potentially competitive with Charm2000 as a charm experiment, it lacks the capabilities to trigger efficiently on
charm and to acquire the needed large data sample, and it may have significantly poorer vertex resolution as well.
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Figure 5: Charm2000 spectrometer concept (bend view).

not alre'f_;c_iy know, they will at least constitute a calibration for experimental systematics at the 1073 level. However,
Bigi has pointed out that a small new-physics contribution to the DCSD rate could amplify these asymmetries to
O(107?) [72]. Ll L

Experimental limits at the 10% level have been séttmn SCSD modes; at present the most sensitive come from
the photoproduction experiment Fermilab E687 [77] and from CLEO [78]. E687 has studied D° — KTK~ and
Dt - K~ K*rt, K*0K* and ¢nt as indicated in Table 4.7 CLEO has studied DY decays to K~ 7t and to the CP
eigenstates KT K~, Ks¢, and Kgn'.

The signal for direct C'P violation is an absolute rate difference between decays of particle and antiparticle to
charge-conjugate final states f and f:

ID=f-TD =)
D= H+TD =)

(10)

Since in photoproduction D and D are not produced equally, in the E687 analysis the signal is normalized relative to

a CFD mode: _ _
g MDD =) =D = f)
(D= f)+nD—=f)

"Charge-conjugate states are generally included even when not stated.

(11)
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Table 4: Limits on direct C'P violation in D decay.

o Charm2000
Mode Limit - Reach*
Cabibbo-favored
DY - K—rnt -0.009< A <0.027 [78]
D 5 K—rtr—rt :_-_: fewx 10~%
Singly Cabibbo-suppressed L
DV - K- Kt -0.11< A <0.16,[77] 10-3

-0.028< A <0.166:[78]
Dt —» K-K+trt | -0.14< A <0.08] [r7] | 1073

Dt - K*OK+ -0.33< A <0.094 [77] | 1073

Dt — ¢nt -0.075< A <0.21 [77] 1073

Dt — Kgnt fewx 10~%
Doubly Cabibbo-suppressed

DY 5 Ktr- 1073 —1072
Dt - Ktrtr- few x 1073

*at 90% confidence level

where
N(D0 — KtK™)

D% =
D) = N0 S k=t

(12)

for the DT modes the normalization mode is DT — K~ 7ntxt etc. (Thus a CP asymmetry from new physics in
the CFD normalization mode could in principal mask a signal in an SCSD mode.) A further complication is that to
distinguish e.g. D° — K+ K~ from DY — K* K~ D* tagging (via the charge of the pion from D** — D7 %) must be
employed; of course, no tagging is needed for charged-D decays. Typical E687 event yields are ~10? in signal modes
and ~10% in normalization modes.

One can extrapolate from the sensitivity achieved in E687 to that expected in Charm2000. E687 observed
4287 4 78 (4666 + 81) events in the normalization mode Dt — K~ztxt (D~ — K¥tx~77). As an intermé_d_iate
step in the extrapolation I use the event yield in E791, since that hadroproduction experiment is more similar to
Charm2000 than is E687. Using relatively tight vertex cuts, E791 observed 37006 + 204 events in D¥ — Krr [79],
and Charm2000 should increase this number by a factor A~s2000. Thus relative to E687, the statistical uncertainty
on A should be reduced by as /8000, implying sensitivities in SCSD modes of 1073 at 90% confidence. While the
ratiometric nature of the measurement reduces biases, at the 1073 level these will neeci_ to be studied carefully.

Since one CFD mode must be used for normalization, the search for direct CP violation in CFD modes is actually
a search for differences among various modes. Given the differing final-state interactions [80], if new physics causes CP
violation in CFD modes,; such CP-asymmetry differences are not unlikely. The estimated event yields in Charm2000
imply CP sensitivity at the few x 10=* level for D° - K~ ntn~nt, normalized to the production asymmetry observed
in D% — K—rt.

For DCSD modes, I extrapolate from E791’s observation of Dt — Kt7xt 7~ at 4.20 based on 40% of their data
sample [81]. The statistical significance in Charm2000 should be a1/2000/0.4 better, implying few x 10~3 sensitivity for



CP asymmetries. For D" — K*7~, CLEO’s observation [82] of B(D” — K+x~)/B(D" — K~ %) ~ 0.8% suggests
~ 105 D*- tagged DCSD K7 events in CharmZO(DO giving fewx 1073 CP sensitivity. However, the need for greater
backgroun suppression for DCSD compared to CFD events 1s likely to reduce sensitivity. For example, preliminary
E791 results show a a~20 signal in D® — K+x~ [83], implying ~10~2 sensitivity in Charm2000.

Table 4 summarizes the above estimates of Charm2000 C'P-violation sensitivity. These extrapolations are con-
servative insofar as they ignore expected improvements in vertex resolution and particle identification. Simulations

[ T
are underway to assess these effects. L

As in the kaon and hyperon cases, SM predictions for direct charm CP Vlolatlon are rather uncertain, requiring
assumptions for final-state phase shifts and CKM matrix elements [T1, 72]. However_; glven the order of magmtude
expected in charm decay, the Charm2000 experiment could make the first observation of direct CP violation outside
the strange sector, or indeed the first observation anywhere if (as may well be the case [5, 54]) signals prove too small

for detection in KTeV, NA48, and HyperCP.

5.3 Indirect charm CP violation i

Indirect CP violation of course requires mixing, but experimentally the D° mixing rate is known to be small (rpix <
0.37%) [28, 84]. For small mixing, the mixing rate is given to good approximation by [71]

1[/AMp\®  (ATp\’

.. el () ) | S

In the SM, the AM and AT contributions are expected to be of'the .same order of magnitude and are estlmated [71, 85]

to give Tpix < 1038 any indirect CP violating asymmetrles are expected to_ be less than 10~=* [72]. However

possible mixing lshgna:lSIat the ~1% Lev-el have been replorted [82, 86], and a yaﬂrlety of non-Standard modle].s can

accommodate mixing up to the current experimental limit, including multi-Higgs models [31, 89-93] and those with

supersymmetry [91, 89, 94], technicolor [95], leptoquarks [96], left-right symmetry [97], or a fourth generation [74, 98].

DY mixing phenomenology is complicated by the possibility of DCSD leading to the same final states. For
example in the K7 mode the rate of wrong-sign D° decay is given by [99-101]

[(D°(t) = KTr™) = |B|? | 2< {4|/\|2 (AM? + ATW)R + 2Re(A) ATt + 4Im(A) AMt}, (14)

where the first term 1s the DCSD contrlbutlon _the second mixing, and the third and four.f_;h' tbe' interference between
DCSD and mixing. Given the E691 mlxmg' H_mlt L84 ,._the observed signals presumably represent enhanced DCSD
effects. If a significant pOI'thIl_O_f_thlS rate is mixing, new physics must be responsible [71, 88], and indirect CP
violation at the S1% level is thien 'possible [27, 103, 72, 88]. Several authors have suggested that the C'P- Vlolatmg
signal, which arises from the interference term of Eq. 14, may be easg_er to detect than the mixing itself [100-102, 88]. 1
particular, Browder and Pakvasa [101] point out that in the difference T'(DY — K+7=) —T(D? — K~ 77), the DCSD
and mixing components cancel, leaving only the fourth term of Eq. 14. Thus if indirect CP violation is appreciable,
this 1s a particularly clear way to isolate the interference term.

Whether or not it violates CP, DG.J_-l_jH mixing may be one of the more promising places to look for low-energy
manifestations of physics beyond the Standard Model. An interesting example is the multiple-Higgs-doublet model
lately expounded by Hall and Weinberg [31], in which |[AMp]| can be as large as 10~*eV, approaching the current
experimental limit. In this model all C'P violation arises from flavor-changing neutral-Higgs exchange and is intrinsically
of order 1073, too small to be observed in the beauty sector and (except through mixing) in_ theI klaon sector, but (as
mentioned above) possibly observable in charm — another example of the importance of exploring rare phenomena
in all quark sectors. Multiple-Higgs models are one of the simplest extensions of the SM [74, 16, 32], and advantage
should be taken of all opportunities to test them.

Clarification of the DY mixing puzzle can be expected from coming experiments as well as (if approved)
Charm2000. If mixing is large and violates CP as just discussed, indirect CP violation should be detectable in
Charm2000.

6 Conclusions

CP violation has fascinated physicists since its discovery. It has the potential to give us unique information about the
physics underlyig; the Standard Model. In the down-quark sector the phenomenon may be dominaféd by Standard-
Model effecty _'at_is_ﬁlllg from the large mass of the top quark, but in the up-quark sector the b quark contributes little,

8Earlier estimates [87] that long-distance effects can give |[AMp/T'p| ~ 1072 are claimed to have been disproved [71, 31], though there
remain skeptics [72, 88].
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creating a lgg:w—background window for new physics. If new physics and the CKM phase are both significant sources
of CP violation, then coming beauty studies will reveal deviations of the CKM-matrix “unitarity triangle” from
expectations [9]. But if either contribution is small, these studies might tell us little new: in the one case the unitarity
triangle will confirm the CKM model, while in the other, beauty decays might not violate C'P at an observable level.
New physics might still be revealed in hyperon or charm studies. A program investigating all possible quark sectors is
thus prudent. The Fermilab fixed-target program can make a strong contribution to such a program.
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