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Figure 1: Examples of a) direct K0 decay and b) K0 mixing via a \box" diagram.

being mounted or proposed to search for them. Observation of CP asymmetries in beauty decay requires construc-
tion of new accelerators [11, 12], ambitious new experiments [13], or substantial upgrades to existing accelerators or
experiments [14, 15]; all of these e�orts are also in progress.

Charm studies can play a special role because the top-quark loops which in the SM dominateCP violation in the
strange and beauty sectors are absent, creating a low-background window for new physics, and because new physics
may couple di�erently to up- and down-type quarks or couple to quark mass. If kaon and beauty experiments con�rm
the CKM model, we will be hardly any closer to an ultimate theory of CP violation, since the question why the CKM
phase has the value it does will remain open. On the other hand, by pursuing this physics in all available quark sectors,
we may �nd deviations from CKM predictions which could point the way to a deeper understanding. Many of these
issues are treated in more detail in the excellent recent reviews of Winstein and Wolfenstein [16] and Rosner [9]; a
more detailed discussion of hyperon CP violation can be found in the Fermilab Experiment 871 Proposal [17].

As suggested by Table 1, Fermilab �xed-target experiments have made substantial contributions to this subject
in recent years and will continue to do so in the years ahead. At Fermilab the search for CP violation in beauty
decay is part of the Tevatron Collider program and will not be pursued in �xed target. The remainder of this article
therefore reviews the kaon, hyperon, and charm programs at Fermilab.

Table 1: Recent and future Fermilab �xed-target CP -violation experiments (question marks designate experiments
not yet approved).

Run: 1987/8 1990/1 1996/7 �
>2000

Kaon experiments:
E731 E773/E799-I KTeV KTeV/KAMI?

Hyperon experiments:
E756 HyperCP

Charm experiments:
E687 FOCUS Charm2000?
E791

2 The Search for Direct CP Violation in K0 Decay
A question that has received much attention is whether all CP violation arises indirectly (as predicted in the \super-
weak" theory of Wolfenstein [18]), i.e. through the mixing of neutral mesons with their antiparticles, or whether there
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is in addition direct CP violation, arising in the decay process itself. While only indirect CP violation has so far been
observed, the Standard Model also predicts observable levels of direct CP violation, arising from the interference of
\penguin" diagrams [19] (containing W loops, see Fig. 2) with tree-level diagrams. To date the search for direct CP

violation has mainly concentrated on the measurement of the ratio �0=�, where � parametrizes the degree to which KS

and KL are not CP eigenstates,

jKSi = [(1 + �)jK0i+ (1� �)jK0i]=
p
2(1 + j�j2) (1)

jKLi = [(1 + �)jK0i � (1� �)jK0i]=
p
2(1 + j�j2) ; (2)

and �0 measures the di�erence in CP -violating decay rates of KL to �+�� and �0�0:

�0

�
=

1

6

�
1�

���� �00�+�

����
2�

(3)

� 1

6

�
1� �(KL ! �0�0)=�(KS ! �0�0)

�(KL ! �+��)=�(KS ! �+��)

�
: (4)

A nonzero value of �0=� indicates CP violation in �S = 1 K0 decays, and not solely through �S = 2 mixing.
The measurement of �0=� entails determination of four decay rates, which can be carried out such that systematic

uncertainties cancel in the double ratio �(KL!�0�0)=�(KS!�0�0)
�(KL!�+��)=�(KS!�+��) . In this way sensitivity at the �

< 10�4 level can be

achieved [16].

u,c,t u,c,t

s

d d

d

W

u

u

π+

π-

K0 g,γ,Z

Figure 2: Example of K0 decay via a \penguin" diagram.

The SM expectation for �0=� is sensitive to the value of the top-quark mass, because of competition between the
strong and electroweak penguin diagrams, which contribute with opposite signs [20]. The degree of this sensitivity
is unsettled in the literature. Some authors �nd complete cancellation, �0=� becoming zero at mt � 220GeV and
negative for larger top mass [5, 21]. But Heinrich et al. [4], using chiral perturbation theory, �nd the cancellation
to be only partial, �0=� remaining positive for all mt values. Thus at the present state of understanding, and given
mt = 180� 12GeV [22], it appears that the SM predicts �0=� in the range (0 to 3)�10�3 [4, 23]; some maintain that
it cannot exceed 1� 10�3 [5, 9]. This range will presumably decrease with further theoretical e�ort and improvement
in the determination of mt.

�0=� has also been estimated in a variety of extensions of the SM [24, 16, 9]. It is an old idea that CP violation
may originate through spontaneous symmetry breaking in the Higgs sector [25]. In Weinberg's multiple-Higgs-doublet
model [26], assuming that Higgs exchange is a major contributor to �, �0=� can be as large as O(10�2) [24, 16, 27],
and an electric dipole moment for the neutron dn �

> 10�25 e cm is also predicted [27]. Given the current experimental
limit dn < 1:1 � 10�25 e cm [28], the Weinberg model may still be viable, however a substantial lowering of dn, or
establishment of a suÆciently small value for �0=�, could rule out this model as a signi�cant source of � [27, 16].
Alternative multi-Higgs models have also been formulated [29], in which the \natural 
avor conservation" [30] of
the Weinberg model is abandoned in favor of an approximate family symmetry [27, 31, 32]. In these models, if CP

violation is attributed to 
avor-changing neutral-Higgs exchange (FCNE), all direct CP violation (and allCP -violating
e�ects in beauty) can be unobservably small, but there are other observable manifestations, such as large mixing in
charm [31] (see Section 5 below). The general analysis of Wu and Wolfenstein [32] includes CP -violating charged-
Higgs exchange, leading to a richer variety of possibilities; for example, �0=� can then be as large as in the CKM
model. Minimal supersymmetry (despite having an extra Higgs doublet) predicts zero for �0=� due to the relatively
real vacuum expectation values of the two doublets [9]. Left-right-symmetric models, featuring extra right-handed
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gauge bosons with masses well above those of the left-handed ones, seek to provide a uni�ed explanation of P and
CP violation in which both symmetries are conserved at suÆciently high energy but spontaneously broken at low
energy [33]. \Isoconjugate" left-right models [34] predict zero for �0=� [24, 33], but other versions can accommodate
values as large as 5 � 10�3 [16, 33]. In models with appreciable left-right mixing, �0 and dn become related [33]:
�0=dn ' 1021 (e cm)�1.

The experimental situation is as follows. Two experiments, one (E731) at Fermilab and one (NA31) at CERN,
have published results with comparable sensitivity which are 1.8� apart. E731 obtains Re(�0=�) = (7:4 � 5:2 �
2:9) � 10�4 [35], where the �rst error is statistical and the second systematic, while the NA31 result is Re(�0=�) =
(23� 3:6� 5:4)� 10�4 [36]. Averaging these with previous results from the Fermilab collaboration [37], the Particle
Data Group �nds Re(�0=�) = (1:5�0:8)�10�3 [28], employing their standard procedure for increasing the uncertainty
to take account of the NA31{E731 disagreement. While the NA31 result is 3� from zero, the world average is less
than 2� from zero, thus we cannot conclude that direct CP violation has been observed.

The techniques employed by the two groups di�er in important ways. For example, in E731 two parallel KL

beams were incident, and a regenerator placed in one created a KS beam at the upstream end of the decay region. In
NA31 a KS production target was moved throughout the decay region to minimize acceptance di�erences for KL and
KS decays. E731 used magnetic spectrometry for the �nal-state charged pions and lead-glass calorimetry for neutrals,
while NA31 relied on liquid-argon calorimetry for energy measurement in all modes. While in E731 both KL and KS

decays were acquired simultaneously, in NA31 �+�� and �0�0 �nal states were acquired simultaneously, thus temporal
variations in operating conditions had di�ering e�ects in the two experiments. Both groups are preparing improved
experiments, designated KTeV (Fermilab) and NA48 (CERN). Since the E731 uncertainty is dominated by statistical
error, the Fermilab collaboration has elected to retain the E731 approach with an upgraded apparatus [38]. NA48,
however, represents a substantial departure from NA31, for example adopting the technique of magnetic momentum
analysis for the charged-pion �nal state [39]. In the new experiments, both groups intend to take all four modes
simultaneously. The goal for each e�ort is sensitivity of (1� 2)� 10�4 [16].

3 Other K0 Studies
The E731 collaboration has also performed a sensitive test of CPT symmetry in K0 decay. In E773 they modi�ed their
regenerator arrangement so as to make a precise measurement of the phases of �+� and �00. CPT symmetry predicts
these phases to be equal and also relates their size to �mK and ��K [40]. The E773 results, �00��+� = 0:62Æ�1:03Æ
and �+� = 43:53Æ � 0:97Æ [41], con�rm the predictions and are the most precise CPT tests to date, improving on
previous results from E731 [42].

Direct CP violation can also be sought in rare decays of K0. The decay rates for KL ! �0e+e�, �0�+��, and
�0�� are expected to be dominated by direct CP -violating processes [24, 16, 9]. (In the �rst two cases there are also
CP -conserving contributions occurring via virtual-photon loops, which are monitored by KL ! �0

 [24].) In E799-I,
which ran in 1991, the Fermilab collaboration set limits on these decays as shown in Table 2. E799-II (part of KTeV)
is expected to achieve sensitivities approaching SM predictions in some of these modes, and these sensitivities will be
further improved by the subsequent KAMI (\Kaons at the Main Injector") program.

Table 2: Limits on CP -violating rare KL decays.

Mode E799-I limit KTeV sens. SM pred.

KL ! �0e+e� 1:8� 10�9 7� 10�11 � 10�11

KL ! �0�+�� 5:1� 10�9 few 10�11 � 10�11

KL ! �0�� 5:8� 10�5 � 10�8 � few 10�11

4 The Search for Direct CP Violation in Hyperon Decay
It has long been realized that hyperon decays could violate CP symmetry [43]. Indirect CP violation is not expected,
since hyperon mixing would violate conservation of baryon number. Observables for direct CP violation include
decay-width di�erences of particle and antiparticle to CP -conjugate �nal states and three asymmetries (described
next) involving polarization.

In the decay of a polarized hyperon, the angular distribution of the daughter baryon in the rest frame of the
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parent is nonisotropic and is given by

dN

d

=

1

4�
(1 + �~Pp � p̂d) = 1

4�
(1 + �Pp cos �) ; (5)

where ~Pp is the polarization of the parent hyperon, p̂d is the direction of the daughter baryon in the rest frame of the
parent, and the parameter � is de�ned in Eq. 7 below. Moreover, the daughter baryon is polarized, with polarization
vector

~Pd =
(� + ~Pp � p̂d)p̂d + �(~Pp � p̂d) + 
[p̂d � (~Pp � p̂d)]

1 + �~Pp � p̂d
; (6)

where the Lee-Yang variables [44] �, �, and 
 are related to the S- and P -wave decay amplitudes:

� =
2Re(S�P )

jSj2 + jP j2 ; � =
2 Im(S�P )

jSj2 + jP j2 ; 
 =
jSj2 � jP j2
jSj2 + jP j2 : (7)

(�, �, and 
 are of course not all independent, being related by �2+�2+
2 = 1.) Since under a CP transformation �
and � change sign, in comparing the decays of a hyperon and its antiparticle we have the four possibly-CP -violating
observables

� � �� �

� + �
; A � �+ �

�� �
; B � � + �

� � �
; B0 � � + �

�� �
; (8)

where � / jSj2+jP j2 is the partial decay width to a given �nal state and the overlined quantities pertain to antiparticles.
As seen from Eq. 7, nonzero values of A, B, and B0 re
ect interference between the S- and P -wave amplitudes.

As in the case of the K0, direct CP -violating e�ects in hyperon decay arise in the SM via the interference
of penguin and tree-level diagrams. Their size has been estimated using a variety of approaches [7]. A is typically
predicted to be of order 10�5 to 10�4 and is experimentally the most accessible; it can be measured by determining
the daughter polarization in the decay of unpolarized parent hyperons. B and B0 are expected to be substantially
larger than A (and in the case of B0, independent of �nal-state phases) but require measurement of both the parent
and daughter polarizations. � is unobservably small.

Although hyperon CP asymmetries and �0 arise from similar quark diagrams, their SM phenomenologies are quite
distinct. �0 arises from interference between �I = 1=2 and �I = 3=2 currents and is subject to the mt-dependent
cancellation mentioned above. On the other hand, A is relatively insensitive to mt, with the central predicted value
varying by only about �15% for 140 < mt < 220GeV in a typical calculation [45].

Initial ideas for the measurement of A centered on exclusive production of �� pairs in pp annihilation at low
energy [24]. This technique has yielded the best result to date, A = 0:022 � 0:019 [46]. While experiments with
substantially improved sensitivity have been proposed both for the LEAR storage ring at CERN [47] and the p source
at Fermilab [48], none has yet been approved.4

4.1 The HyperCP experiment
The HyperCP (E871) experiment [17] (Fig. 3), now under construction by a Berkeley-Fermilab-Guanajuato-IIT-
Michigan-S. Alabama-Taiwan-Virginia collaboration,5 will measure the combined asymmetry in � in the decay sequence

�� ! ���, �! p��. An intense unpolarized beam of �� (�
+
) hyperons will be produced at 0Æ by 800GeV protons

striking a metal target, with the secondaries momentum-selected by means of a curved magnetic channel set to 150GeV
with 25% FWHM momentumbite. Following a 13m evacuated decay pipe the hyperon decay products will be detected
in a high-rate magnetic spectrometer using MWPCs. (The needed rate capability is determined by the �40MHz of
charged particles, dominantly pions and protons, emerging from the channel.) The polarization of the �s is measured
by the slope of the cos � distribution of the protons in the � rest frame (Eq. 5). From Eq. 8 it is straightforward to
show that the combined CP asymmetry is well approximated by

A�� �
���� � ����
���� + ����

�= A� + A� : (9)

E871 aims to reconstruct �> 3�109 each of � and � decays (>103 per second of beam), measuring A�� to an uncertainty

�
<0.8�10�4. As discussed further below, this sensitivity is in the range of asymmetry predicted by the SM, as well

4Sadly, with LEAR now to be decommissioned, only one locus remains for such studies.
5C. Ballagh, W. S. Choong, G. Gidal, P. Gu, K. B. Luk (Berkeley), T. Carter, C. James, J. Volk (Fermilab), J. Felix, G. Moreno, M.

Sosa (Guanajuato), R. A. Burnstein, A. Chakravorty, D. M. Kaplan, L. M. Lederman, A. Ozturk, H. A. Rubin, D. Sowinski, C. White, S.
White (IIT), H. R. Gustafson, M. Longo (Michigan), K. Clark, M. Jenkins (S. Alabama), A. Chan, Y. C. Chen, K. C. Cheng, C. Ho, M.
Huang, P. K. Teng, C. Yu, Z. Yu (Taiwan), S. Conetti, C. Dukes, K. Nelson, D. Pocanic, D. Rajaram (Virginia).
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Figure 3: Elevation and plan views of HyperCP spectrometer.

The acquisition of so large a hyperon sample requires a highly capable data acquisition system, designed for
100kHz trigger rate and 20MB/s average data rate to tape. This high rate capability is driven by the need to use
loose trigger requirements so as to minimize any possible CP bias [50]. (KTeV is designing for similar bandwidths,
and as we will see, Charm2000 plans to go even further in data acquisition rate.)

Direct CP -violating asymmetries are typically proportional to products of the weak-interaction and strong-
interaction phase factors of the interfering decay amplitudes. The weak phases arise from short-distance physics, while
the strong phases are due to �nal-state interactions. In the case of A��, the strong phases in � decay are directly
measured in �p scattering [51], but those in � decay must be calculated theoretically. Older work relied on the
calculations of Refs. [52] and [53], giving a phase di�erence of 16Æ, but a recent calculation using chiral perturbation
theory gives 1:5Æ [54], implying a � CP asymmetry one order of magnitude smaller than previously thought. Thus in
the SM A� was formerly thought to exceed A�, with predicted values in the range � (0:1 to 1)� 10�4 compared to a
predicted range � (0:1 to 0:5)� 10�4 for A� (Table 3; cf. Ref. [7]). However, if the newer calculation is correct, A� is
the larger contribution. At present it is not clear which (if either) calculation is correct [55]. A measurement of �=�
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using polarized �s could help clarify the question.
Hyperon CP asymmetries have also been estimated in a variety of non-Standard models, and results are sum-

marized in Table 3. In the Weinberg model and left-right-symmetric models with left-right mixing, A�� can be
substantially larger than in the SM, while in models in which CP is violated due to FCNE it is essentially zero.

Table 3: Hyperon CP -asymmetry estimates.

A� A�Model
[10�4] [10�4]

Ref.

CKM �(0:1� 1) �(0:1� 0:5) [57]
Weinberg ��3:2 ��0:25 [58]
Multi-Higgs (FCNE) �0 �0 [57]
LR (isoconjugate) �0.25 ��0:11 [58]
LR (with mixing) <1 � <7 [59]

�using �nal-state phases of Ref. [54]

4.2 Sensitivity to charged-kaon direct CP violation in HyperCP
The HyperCP experiment also has the potential to observe direct CP violation in charged-kaon decay to ������ [17].
The most accessible signal is the di�erence �g of the Dalitz-plot slope parameters for K+ and K� decay that measure
the energy dependence of the odd-sign pion. SM predictions for �g vary over a wide range, �10�6 to 1:4� 10�3 [6].
The best previous measurement (from the Brookhaven AGS) gives �g = �0:0070 � 0:0053 [56]. HyperCP should
amass a sample of �109 events in each mode, giving sensitivity of about 1� 10�4. Other proposals are also extant at
comparable sensitivity [60].

5 The Search for CP Violation in Charm Decay
Following the more-or-less simultaneous discovery of the charm quark in �xed-target [61] and e+e� collisions [62], for
many years experiments at e+e� colliders dominated the study of charmed particles. Starting in �1985, silicon vertex
detectors made �xed-target experiments competitive once again. Although CP asymmetries in charm are expected to
be quite small, exponential growth in the sensitivity of �xed-target charm experiments (Fig. 4), as well as at CLEO [63],
has led to CP -violation sensitivities that are beginning to approach levels predicted in some extensions of the Standard
Model. As discussed below, the Charm2000 project at Fermilab may succeed in observing SM CP violation.

5.1 The Charm2000 project
Charm2000 [64] is a Letter-of-Intent-in-progress for a new Fermilab experiment to reconstruct �4�108 charm decays in
the Year-�2000 �xed-target run. This sensitivity goal is �2000 times the largest extant charm sample, that of Fermilab
E791. The spectrometer (Figs. 5, 6) is planned to be compact and of moderate cost (e.g. substantially cheaper than
HERA-B [13]), but with large acceptance, good resolution, and high-rate tracking and particle identi�cation. Tracking
is done exclusively with silicon or diamond [65] and scintillating-�ber [66] detectors, allowing operation at a 5MHz
interaction rate. A fast ring-imaging Cherenkov counter [67] provides hadron identi�cation, and calorimeters (possibly
augmented by a TRD) identify electrons and allow �rst-level triggering on transverse energy. Triggering eÆciently on
charm while maintaining high livetime and a manageable data rate to tape (�<100MB/s) is a signi�cant challenge,6

requiring hardware decay-vertex triggers [68]; �rst-level \optical" triggers may play a signi�cant role [69, 70]. (More
detailed discussions of the Charm2000 spectrometer and physics goals may be found in [64].)

5.2 Direct charm CP violation
The Standard Model predicts direct CP violation in singly Cabibbo-suppressed decays (SCSD) of charm at the �10�3
level [8, 71]. CP violation in Cabibbo-favored (CFD) or doubly Cabibbo-suppressed (DCSD) modes would be a clear
signature for new physics [71, 72]. Asymmetries in all three categories could reach �10�2 in such scenarios as non-
minimal supersymmetry [72] and in left-right-symmetric models [73, 74]. There are also expected SM asymmetries of
�3:3� 10�3 (=2Re(�K)) due to K0 mixing in such modes as D+ ! KS�

+ and KS`� [75], which should be observed
in Charm2000 or even in predecessor experiments [76]. While K0-induced CP asymmetries might teach us little we do

6While HERA-B is potentially competitive with Charm2000 as a charm experiment, it lacks the capabilities to trigger eÆciently on
charm and to acquire the needed large data sample, and it may have signi�cantly poorer vertex resolution as well.
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Figure 4: Yield of reconstructed charm vs. year of run for those completed and approved Fermilab �xed-target charm
experiments with the highest statistics of their generation; symbols indicate type of beam employed.

Figure 5: Charm2000 spectrometer concept (bend view).

not already know, they will at least constitute a calibration for experimental systematics at the 10�3 level. However,
Bigi has pointed out that a small new-physics contribution to the DCSD rate could amplify these asymmetries to
O(10�2) [72].

Experimental limits at the 10% level have been set in SCSD modes; at present the most sensitive come from
the photoproduction experiment Fermilab E687 [77] and from CLEO [78]. E687 has studied D0 ! K+K� and
D+ ! K�K+�+, K�0K+, and ��+ as indicated in Table 4.7 CLEO has studied D0 decays to K��+ and to the CP

eigenstates K+K�, KS�, and KS�
0.

The signal for direct CP violation is an absolute rate di�erence between decays of particle and antiparticle to
charge-conjugate �nal states f and �f :

A =
�(D ! f) � �(D ! �f )

�(D ! f) + �(D ! �f )
: (10)

Since in photoproduction D and D are not produced equally, in the E687 analysis the signal is normalized relative to
a CFD mode:

A =
�(D ! f) � �(D ! �f )

�(D ! f) + �(D ! �f )
; (11)

7Charge-conjugate states are generally included even when not stated.

8



Figure 6: Detail of Charm2000 vertex region (showing optional optical impact-parameter trigger).

Table 4: Limits on direct CP violation in D decay.

Charm2000
Mode Limit�

Reach�

Cabibbo-favored
D0 ! K��+ -0.009< A <0.027 [78]
D0 ! K��+���+ few�10�4
Singly Cabibbo-suppressed
D0 ! K�K+ -0.11< A <0.16 [77] 10�3

-0.028< A <0.166 [78]
D+ ! K�K+�+ -0.14< A <0.081 [77] 10�3

D+ ! K�0K+ -0.33< A <0.094 [77] 10�3

D+ ! ��+ -0.075< A <0.21 [77] 10�3

D+ ! KS�
+ few�10�4

Doubly Cabibbo-suppressed
D0 ! K+�� 10�3 � 10�2

D+ ! K+�+�� few�10�3

�at 90% con�dence level

where

�(D0) =
N (D0 ! K+K�)

N (D0 ! K��+)
; (12)

for the D+ modes the normalization mode is D+ ! K��+�+, etc. (Thus a CP asymmetry from new physics in
the CFD normalization mode could in principal mask a signal in an SCSD mode.) A further complication is that to
distinguish e.g. D0 ! K+K� fromD0 ! K+K�, D� tagging (via the charge of the pion fromD�+ ! D0�+) must be
employed; of course, no tagging is needed for charged-D decays. Typical E687 event yields are �102 in signal modes
and �103 in normalization modes.

One can extrapolate from the sensitivity achieved in E687 to that expected in Charm2000. E687 observed
4287 � 78 (4666 � 81) events in the normalization mode D+ ! K��+�+ (D� ! K+����). As an intermediate
step in the extrapolation I use the event yield in E791, since that hadroproduction experiment is more similar to
Charm2000 than is E687. Using relatively tight vertex cuts, E791 observed 37006� 204 events in D� ! K�� [79],
and Charm2000 should increase this number by a factor �2000. Thus relative to E687, the statistical uncertainty
on A should be reduced by �p

8000, implying sensitivities in SCSD modes of 10�3 at 90% con�dence. While the
ratiometric nature of the measurement reduces biases, at the 10�3 level these will need to be studied carefully.

Since one CFD mode must be used for normalization, the search for direct CP violation in CFD modes is actually
a search for di�erences among various modes. Given the di�ering �nal-state interactions [80], if new physics causes CP

violation in CFD modes, such CP-asymmetry di�erences are not unlikely. The estimated event yields in Charm2000
imply CP sensitivity at the few�10�4 level for D0 ! K��+���+, normalized to the production asymmetry observed
in D0 ! K��+.

For DCSD modes, I extrapolate from E791's observation of D+ ! K+�+�� at 4:2� based on 40% of their data
sample [81]. The statistical signi�cance in Charm2000 should be �

p
2000=0:4 better, implying few�10�3 sensitivity for
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CP asymmetries. For D0 ! K+��, CLEO's observation [82] of B(D0 ! K+��)=B(D0 ! K��+) � 0:8% suggests
� 105 D�-tagged DCSD K� events in Charm2000, giving few�10�3 CP sensitivity. However, the need for greater
background suppression for DCSD compared to CFD events is likely to reduce sensitivity. For example, preliminary
E791 results show a �2� signal in D0 ! K+�� [83], implying �10�2 sensitivity in Charm2000.

Table 4 summarizes the above estimates of Charm2000 CP-violation sensitivity. These extrapolations are con-
servative insofar as they ignore expected improvements in vertex resolution and particle identi�cation. Simulations
are underway to assess these e�ects.

As in the kaon and hyperon cases, SM predictions for direct charm CP violation are rather uncertain, requiring
assumptions for �nal-state phase shifts and CKM matrix elements [71, 72]. However, given the order of magnitude
expected in charm decay, the Charm2000 experiment could make the �rst observation of direct CP violation outside
the strange sector, or indeed the �rst observation anywhere if (as may well be the case [5, 54]) signals prove too small
for detection in KTeV, NA48, and HyperCP.

5.3 Indirect charm CP violation
Indirect CP violation of course requires mixing, but experimentally the D0 mixing rate is known to be small (rmix <
0:37%) [28, 84]. For small mixing, the mixing rate is given to good approximation by [71]

rmix � 1

2

��
�MD

�D

�2

+

�
��D
2�D

�2�
: (13)

In the SM, the �M and �� contributions are expected to be of the same order of magnitude and are estimated [71, 85]
to give rmix < 10�8;8 any indirect CP -violating asymmetries are expected to be less than 10�4 [72]. However,
possible mixing signals at the �1% level have been reported [82, 86], and a variety of non-Standard models can
accommodate mixing up to the current experimental limit, including multi-Higgs models [31, 89-93] and those with
supersymmetry [91, 89, 94], technicolor [95], leptoquarks [96], left-right symmetry [97], or a fourth generation [74, 98].

D0 mixing phenomenology is complicated by the possibility of DCSD leading to the same �nal states. For
example in the K� mode the rate of wrong-sign D0 decay is given by [99-101]

�(D0(t)! K+��) = jBj2jq
p
j2 e

��t

4
f4j�j2+ (�M2 +

��2

4
)t2 + 2Re(�)��t+ 4Im(�)�Mtg ; (14)

where the �rst term is the DCSD contribution, the second mixing, and the third and fourth the interference between
DCSD and mixing. Given the E691 mixing limit [84], the observed signals presumably represent enhanced DCSD
e�ects. If a signi�cant portion of this rate is mixing, new physics must be responsible [71, 88], and indirect CP

violation at the �
<1% level is then possible [27, 103, 72, 88]. Several authors have suggested that the CP-violating

signal, which arises from the interference term of Eq. 14, may be easier to detect than the mixing itself [100-102, 88]. In
particular, Browder and Pakvasa [101] point out that in the di�erence �(D0 ! K+��)� �(D0 ! K��+), the DCSD
and mixing components cancel, leaving only the fourth term of Eq. 14. Thus if indirect CP violation is appreciable,
this is a particularly clear way to isolate the interference term.

Whether or not it violates CP, D0D0 mixing may be one of the more promising places to look for low-energy
manifestations of physics beyond the Standard Model. An interesting example is the multiple-Higgs-doublet model
lately expounded by Hall and Weinberg [31], in which j�MDj can be as large as 10�4 eV, approaching the current
experimental limit. In this model allCP violation arises from
avor-changing neutral-Higgs exchange and is intrinsically
of order 10�3, too small to be observed in the beauty sector and (except through mixing) in the kaon sector, but (as
mentioned above) possibly observable in charm { another example of the importance of exploring rare phenomena
in all quark sectors. Multiple-Higgs models are one of the simplest extensions of the SM [74, 16, 32], and advantage
should be taken of all opportunities to test them.

Clari�cation of the D0 mixing puzzle can be expected from coming experiments as well as (if approved)
Charm2000. If mixing is large and violates CP as just discussed, indirect CP violation should be detectable in
Charm2000.

6 Conclusions
CP violation has fascinated physicists since its discovery. It has the potential to give us unique information about the
physics underlying the Standard Model. In the down-quark sector the phenomenon may be dominated by Standard-
Model e�ects arising from the large mass of the top quark, but in the up-quark sector the b quark contributes little,

8Earlier estimates [87] that long-distance e�ects can give j�MD=�Dj � 10�2 are claimed to have been disproved [71, 31], though there
remain skeptics [72, 88].
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creating a low-background window for new physics. If new physics and the CKM phase are both signi�cant sources
of CP violation, then coming beauty studies will reveal deviations of the CKM-matrix \unitarity triangle" from
expectations [9]. But if either contribution is small, these studies might tell us little new: in the one case the unitarity
triangle will con�rm the CKM model, while in the other, beauty decays might not violate CP at an observable level.
New physics might still be revealed in hyperon or charm studies. A program investigating all possible quark sectors is
thus prudent. The Fermilab �xed-target program can make a strong contribution to such a program.
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