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1 Introduction

After the quark model was introduced by Gell-Mann and Zweig to explain the observed hadron

multiplets in terms of fundamental constituents, deep-inelastic scattering experiments revealed

a partonic structure of the nucleon. Further analysis established the QPM [1], showing that the

partons carry the quantum numbers of the quarks, i.e. spin 1/2 and fractional electric charge.

As more information was collected, however, problems ocured: The 4-momentum carried by

the quarks inside the nucleon did not add up to the total 4-momentum of the nucleon, giving

evidence for additional constituents which do not carry electric of weak charge. Unexpectedly

large scaling violations in the structure functions of the nucleon were observed, showing that

the partons inside are subject to a much stronger interaction than pure QED. Finally, assuming

the quarks carry only the quantum numbers expected within the simple QPM implied the Pauli

principle to be violated in bound states of three identical quarks like the 
�, the �++ or the

��. To restore the Pauli principle, three internal degrees of freedom, labelled \colour", were

required [2]. The same number was needed to understand the �0 decay rate in the context of

the QPM [3]. If colour was assumed to have an underlying SU(3) symmetry both baryons and

mesons could be understood as colour neutral singlet states, which explains why colour was not

seen before.

flavours

Figure 1: Pictorial representation of the QCD Lagrangian with the factors that determine the coupling
strengths.

The ansatz that the colour degree of freedom constitutes the charge of a non{abelian gauge

theory based on the gauge group SU(3) �nally lead to the formulation of QCD [4] and a
natural solution of the problems of the QPM. The gauge bosons of QCD, called gluons, are
the invisible constituents of the nucleon and responsible for the strong interactions between the

quarks observed through scaling violations. Also, the fact that free colour charges were never

observed (see e.g. [5]) can be explained dynamically due to the fact that the potential between
colour charges diverges with increasing distance [6]. An overview over the properties of QCD

can be found e.g. in [3].

Up to gauge �xing terms, the Lagrangian of QCD, LQCD, is the Yang-Mills Lagrangian

for an unbroken SU(3) gauge symmetry, i.e. a theory with spin 1/2 fermions, massless spin 1
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gauge bosons and one universal coupling constant �s = g2=4�. Figure 1 gives a pictorial

representation of LQCD, showing the free �elds and interaction terms together with the factors

which determine the relative coupling strengths. Quarks have three and gluons have eight colour

degrees of freedom. The amplitude for a quark changing its colour from i to j by emitting a

gluon of type c is given by gT c
ji, with the generators T c

ji = �cji=2 proportional to the Gell-Mann

matrices �cji. The amplitude for a gluon of type a changing to b by emitting a gluon of type c

is given by gfabc, with fabc the structure constants of SU(3). The existence of the latter kind

of coupling fabc 6= 0 is characteristic for a non{abelian theory. Although the gauge symmetry

is unbroken, the conceptually simple situation is complicated by the large value of the strong

coupling constant which renders perturbative calculations reliable only in the limit of large

momentum transfers.

2 Measurements of �
s

The QCD prediction for a cross section at an energy scale Q2, evaluated in the MS

renormalization scheme, can be written in the form

�(Q2) = f(�s(�); Q
2) = �s(�)A+ �2s(�)(B + b0A ln(�2=s) +O(�3s): (1)

Here � is the arbitrary renormalization point used in the calculation. For choices � = Q the
above expansion is a power series in �s(�), for j ln(�2=Q2)j � 1 it becomes an expansion in
�s(�) ln(�

2=Q2). In the latter case the expansion parameter can become large, thereby spoiling
the convergence of the perturbative prediction. It follows, that a process with an intrinsic

energy scale Q allows a measurement of the strong coupling at essentially the same scale.

The renormalization scale dependence of �s is described by the beta function

�2
d�s(�)

d�2
= �b0�s2(�) +O(�3s) with b0 =

11CA � 4TFnf

12�
: (2)

For QCD one has CA = 3 and TF = 1=2. The quantity nf is the number of active quark avours.

Using Eq.(2) measurements of �s obtained at di�erent energy scales can be compared, either
by evolving backwards to the point � where �s diverges, or by evolving to a common reference
energy, which in recent years has become the Z mass.

2.1 Sum Rules

Measurements of the strong coupling constant based on sum rules represent fully inclusive

measurements at a very low Q2{scale. The theoretical prediction for the perturbative correction

to the simple QPM is known to O(�3s), together with some estimates of the non{perturbative
(\higher twist") terms. Analyses exist based on the Bjorken sum rule (BJSR) [7] and the

Gross-Llewellyn-Smith sum rules (GLSR) [8]. The results are given in Tab. 1 at the scale of
the measurements and evolved up to the Z mass.

2.2 The Ratios RZ, R  and R�

Another set of inclusive measurements of �s, where the theoretical prediction is known to O(�3s)
is based on the ratios of the hadronic to leptonic branching ratios of the Z (RZ), a virtual photon
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Measurement �/GeV �s(�) �s(MZ)

BJSR [7] 1.58 0:375 � 0:062
0:081 0:122 � 0:005

0:009

GLSR [8] 1.732 0:240 � 0:047 0:107 � 0:007
0:009

RZ [9, 10, 11] 91.2 0:128 � 0:006 0:128 � 0:006

R  [12] 31.6 0:153 � 0:017 0:127 � 0:012

R  [13] 34.0 0:165 � 0:022 0:136 � 0:015

R� [14] 1.777 0:375 � 0:032 0:123 � 0:003

R� [15] 1.777 0:302 � 0:035 0:124 � 0:004

R� , Moments [16] 1.777 0:355 � 0:021 0:121 � 0:003

R� (PDG), Moments [17] 1.777 0:302 � 0:024
0:025 0:114 � 0:003

�c! [17] 2.98 0:187 � 0:029 0:101 � 0:010

�(�!gg)=�(�!ggg) [17] 9.46 0:164 � 0:013 0:111 � 0:006

�(J=	;�!ggg)=�(J=Psi;�!e+e�) [18] 10.0 0:167 � 0:015
0:011 0:113 � 0:007

0:005

Lattice Gauge Theory (� level splitting) [19] 5.0 0:203 � 0:010 0:115 � 0:002

Deep Inelastic Scattering 7.1 0:177 � 0:012 0:113 � 0:005

scaling violation in e+e�-annihilation [20] 56.5 0:118 � 0:005

scaling violation in e+e�-annihilation [21] 44.7 0:127 � 0:011

ep! Jets [22] 17.3 0:123 � 0:018

ep! Jets [23] 20.4 0:150 � 0:014
0:013 0:126 � 0:008

p�p! W+Jets [24] 80.2 0:123 � 0:025 0:121 � 0:024

p�p! W+Jets [25] 80.2 0:123 � 0:015
0:014 0:120 � 0:014

0:012

pp; p�p! +Jets [26] 4.0 0:206 � 0:042
0:033 0:112 � 0:012

0:010

p�p� > b�b+Jets [27] 20.0 0:138 � 0:028
0:019 0:109 � 0:016

0:012

e+e�! hadrons (event shapes) [28] 10.53 0:164 � 0:015 0:113 � 0:006

e+e�! hadrons (event shapes) [29] 29.0 0:160 � 0:012 0:129 � 0:008

e+e�! hadrons (event shapes) [30] 29.0 0:149 � 0:007 0:122 � 0:005

e+e�! hadrons (event shapes) [31] 34.0 0:140 � 0:020 0:119 � 0:014

e+e�! hadrons (event shapes) [32] 53.3 0:129 � 0:012 0:119 � 0:010

e+e�! hadrons (event shapes) [33] 57.9 0:134 � 0:006 0:124 � 0:005

e+e�! hadrons (event shapes) [34] 58.0 0:132 � 0:005 0:123 � 0:004

e+e�! hadrons (event shapes) [35] 58.0 0:139 � 0:008 0:129 � 0:007

e+e�! hadrons (event shapes) [36] 58.5 0:129 � 0:006 0:120 � 0:005

e+e�! hadrons (event shapes) [32] 59.5 0:122 � 0:013 0:114 � 0:012

e+e�! hadrons (event shapes) [30] 91.2 0:123 � 0:010 0:123 � 0:010

e+e�! hadrons (event shapes) [37] 91.2 0:120 � 0:008 0:120 � 0:008

e+e�! hadrons (event shapes) [38] 91.2 0:125 � 0:005 0:125 � 0:005

e+e�! hadrons (event shapes) [39] 91.2 0:123 � 0:006 0:123 � 0:006

e+e�! hadrons (event shapes) [40] 91.2 0:124 � 0:007 0:124 � 0:007

e+e�! hadrons (event shapes) [41] 91.2 0:120 � 0:006 0:120 � 0:006

Table 1: Compilation of measurements of the strong coupling constant. The errors are the total
uncertainties, which in most cases are dominated by the theoretical uncertainties.
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(R ) or the tau-lepton (R� ). In all cases the hadronic system is formed from the electroweak

(EW) coupling of a vector boson (Z, Photon or W) to a primary quark-antiquark pair. The

sensitivity to the strong coupling comes about from gluon radiation o� the primary quarks.

This radiation opens up new �nal states for the hadronic system which increase the hadronic

width with respect to the purely electroweak expectation. The theoretical prediction can be

organized in the following form:

RZ;;� = REW
Z;;� (1 + �QCD + �m + �np) (3)

Here �QCD is the perturbative QCD correction for massless quarks, which in all cases dominates

the correction, �m is an additional correction due to �nite quark masses, and �np the impact of

non{perturbative e�ects, which is small for all three observables.

A simple e�ective parametrization to translate a measurement of RZ into a corresponding

value �s(MZ) together with an estimate for the theoretical uncertainties is given in [10]. Using

the combined result from LEP [9], RZ = 20:800 � 0:035 and the latest direct measurement of

the top mass [11], one obtains �s(MZ) = 0:128� 0:005(stat)� 0:003(EW)� 0:002(QCD). Here

the purely statistical error still dominates the total uncertainty, followed by the uncertainties

related to the electroweak sector with equal contributions from the errors of top-quark and
Higgs mass and the treatment of the radiative corrections. The genuine QCD uncertainties are
smallest.

Results from R  are published in [12, 13] based on measurements from e+e�{annihilations
into hadrons with centre{of{mass energies up to 56 GeV. Both analyses were still using the
erroneous third order term +64(�s=�)

3 [42] instead of �12:8(�s=�)3 [43] and are slightly biased
due to the fact that the electroweak parameters were di�erent from the values as they are

known today. The published values corrected for the wrong third order coe�cient are given in
Tab. 1. The corrected results are consistent with a recent reanalysis [44] �s(MZ) = 0:128�0:012

0:013.

For the determination of alphas from R� [45, 46] a good understanding of the non{
perturbative terms is essential, which are potentially large as a consequence of the low energy
scale and the correspondingly large value of �s. The purely perturbative expansion is converging
rapidly due to the fact that the integration over the hadronic mass spectrum from tau decays

yields the observable double inclusive: integrated over all �nal state at a �xed mass of the
hadronic system and integrated over all masses between m� and M� .

Non{perturbative contributions can be treated in the framework of the SVZ approach [47],
which allows to parametrize non{perturbative e�ects as power law corrections proportional
to universal vacuum expectation values (condensates) of the QCD �elds. Given that theses

condensates not only a�ect R� but also all moments of the hadronic mass spectrum, they can

be extracted from a simultaneous analysis of R� and sets of moments of the mass spectrum [46].

It turns out that the non{perturbative correction are surprisingly small, which implies that an

�s measurement based on R� is very accurate. There are however arguments [48], that the
smallness of the non{perturbative e�ects is due to an accidental cancellation or that the SVZ{

ansatz is invalidated by renormalon e�ects. In this case, the uncertainties would be signi�cantly
underestimated.

A measurement of �s based on R� is available from the OPAL Collaboration [14]. Similarly,

but combining information from di�erent experiments, other measurements of R� and �s are

obtained from the leptonic branching ratios of the tau and the relation between tau mass and
lifetime. Assuming the validity of the completeness relation for the tau branching ratios into

hadrons, electrons and muons, Bhadr+Be +B� = 1, the ratio R� can be expressed as function
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of Be

R� =
1�Be �B�

Be

=
1

Be

� 1� f�: (4)

The factor f� = B�=Be = 0:9726 takes into account that the muon decay is slightly suppressed

due to the larger mass of the muon. Using the calculated value for f� as input, two independent

determinations of R� are obtained from measurements of Be and B� = Bef�. A third result

for R� via Be can be obtained from a comparison of the masses and lifetime of the tau lepton

and the muon. The standard model predicts

�e(�)

�e(� )
=

�tot(�)

Be�tot(� )
=

m5

�

m5
�

) Be =
��

��

 
m�

m�

!
5

: (5)

With the numbers available before this conference [15] m� = 1777:0 � 0:3 MeV=c2, �� =

291:44�1:73 fs, Be = 0:17787�0:00087 and B� = 0:17332�0:00087 one obtains the combined

result R� = 3:641�0:017. An �s-measurement based on this value for R� with the condensates

taken from [45] and the evolution to the scale of the Z mass done according to [49] is also given

in Tab. 1. The error is almost entirely due to theoretical uncertainties.

Results based on R� and the leading moments of the hadronic mass spectrum are published
by ALEPH [16] and CLEO [17] (see Tab. 1). The slight discrepancy between the two analyses
can be traced to the determination of R� , which in the case of ALEPH is based on the

measurements of the leptonic branching ratios done by the same collaboration, whereas the
CLEO Collaboration uses the current PDG{values. The moments extracted from the hadronic
mass spectrum are in good agreement.

2.3 Heavy Quarkonia

Various determinations of the strong coupling constant exist from studies of heavy quarkonia.
Two new (preliminary) measurements were presented by the CLEO collaboration [17],

based on branching ratios of the �c and the �. The �rst measurement is based on the
partial width �(�c!) measured in two{photon processes, the second one on the ratio
�(�!gg)=�(�!ggg), which is proportional to �em=�s. The results from both analyses are
given in Tab. 1.

Another measurement is derived from the ratio of the hadronic to the leptonic width of a
heavy quark{antiquark pair. To leading order this ratio, understood as the annihilation into

three gluons compared to the annihilation into a lepton pair, is proportional to �3s=�
2

em. A

combined analysis of this ratio from � and J/	 decays allows a simultaneous determination
of �s and the size of the non{perturbative e�ects due to relativistic corrections in the bound

state system [18]. Assuming that those e�ects are proportional to the average < v2=c2 > of the

quarks, the theoretical prediction, which is known to next{to{leading order can be parametrized
as

�(q�q!hadrons)

�(q�q!e+e�)
=

�3s
�2em

(A+B�s + C�s
2)

 
1 +D

*
v2

c2

+!
: (6)

The coe�cients A and B are known from perturbative QCD, C is a higher order term that
is varied to probe the theoretical uncertainties of the perturbative prediction, and D is a free

parameter to take into account relativistic corrections for the bound state system. The free

parameters in a combined analysis of the � and the J/	 are �s and D. The results, at the scale
of the measurement and evolved up to the Z mass is given in Tab. 1. The error is dominated

by the theoretical uncertainties.
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2.4 Lattice Gauge Theories

Rather precise determinations of �s derived from lattice gauge theories are becoming available

from the analysis of level splittings between the S{ and the P{states in the �{system [19].

Calculations exist with nf = 0 and nf = 2 dynamic fermion generations, i.e. fermions in loop

corrections, which give only marginally di�erent results and thus allow a safe extrapolation to

the physical case of nf = 3 light avours. The result is given in Tab. 1. A crucial point of the

analysis is the conversion form the lattice coupling to the MS coupling constant used elsewhere.

Initially large discrepancies between the lattice results and other measurements could be traced

to imprecisions in this conversion.

2.5 Scaling Violations

Measurements of the strong coupling constant exist from the analysis of scaling violations in

structure functions of the nucleon, i.e. space{like momentum transfers Q2 = �t, and in the

time{like domain Q2 = s from the study of fragmentation functions in e+e�-annihilations.

In both cases the scale breaking is described by Dokshitzer{Gribov{Lipatov{Altarelli{Parisi
(DGLAP) [58] evolution equations, which predict a softening d ln F (x;Q2)=d lnQ2 proportional
to �s with increasing Q2. For structure functions the softening comes about because higher
momentum transfers resolve more partons from vacuum uctuations in the nucleon, for
fragmentation functions the enlarged phase space permits additional gluon radiation and
particle production with a probability proportional �s. The theory is known to next{to{leading

order [59, 60]. A measurement of the strong coupling constant based on scaling violations allows
a simultaneous determination of the non{perturbative e�ects, which manifest themselves as
power law correction to the logarithmic QCD e�ects. The di�erent Q2{dependence allows
to disentangle the two contributions. In this respect measurements from Deep Inelastic
Scattering (DIS) processes are favoured because here the power law corrections are known

to decrease rapidly with 1=Q2. For the case of e+e�-annihilation processes there are arguments
that they decay only proportional to 1=Q [60]. As a consequence, here the dynamic range
available to disentangle the e�ects of perturbative and non{perturbative QCD when comparing
measurements between

p
s = 22 GeV and

p
s = 91:2 GeV is much smaller than the one

available for the DIS-measurements, which typically cover a range between Q2 = 0:5 GeV2 and

Q2 = 260 GeV2 [53].

Measurements of the strong coupling constant in DIS exist from lepton{nucleon scattering
experiments with neutrino, electron and muon beams. Using charged leptons, values for �

(4)

MS

are published by the BCDMS [50] and EMC [51]/NMC [52] collaboration and in a combined

analysis of SLAC and BCDMS data [53]. Results from neutrino beams are given by the

CHARM [54], CDHSW [55] and the CCFR [56] collaboration. All numbers in good agreement.

The average quoted below uses the re{analyzed CDHSW result as presented and discussed
in detail in reference [57]. The weighted average considering only the experimental errors is

�
(4)

MS
= 245�26 MeV, with a �2=df = 2:6=6. The individual measurements are shown in Fig. 2.

Assuming that the theoretical uncertainties determined in [53] apply throughout, one obtains
the result listed in Tab. 1. The error is dominated by the theoretical uncertainties.

A �rst results from the analysis of scaling violations in fragmentation functions was

published by the DELPHI collaboration [20]. The theoretical prediction was determined by the

LUND matrix element model with the cuto� of the perturbative phase held at a �xed mass.
Using a complete Monte Carlo model which combines �xed second order perturbative QCD with

non{perturbative e�ects leaves only a small number of free parameters in addition to �s(MZ).
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Reference �
(4)

MS
/MeV

BCDMS [50] 230 � 63

EMC [51] 211 � 117

108

NMC [52] 838 � 552

CHARM [54] 310 � 157

CDHSW [57] 300 � 100

CCFR [56] 210 � 50

SLAC/BCDMS [53] 263 � 42

Average 245 � 26

Figure 2: Measurements of �
(4)

MS
from DIS. The errors are the purely experimental errors.

From this a precise measurement of the strong coupling constant �s(MZ) = 0:118 � 0:005
was obtained, in good agreement with other determinations. A measurement based on the
exact NLO theoretical framework without using information from a Monte Carlo model was
later presented by the ALEPH Collaboration [21]. Here not only the strong coupling constant,
but also parametrizations for the fragmentation functions of all quark avours and the gluon

together with the energy dependence of the non{perturbative e�ects were extracted from the
data. The result of this model independent analysis was �s(MZ) = 0:127 � 0:011. The �nal
result published recently is �s(MZ) = 0:126�0:009 [61]. The larger error is due to the fact, that
the analysis is based only on experimental data without relying on Monte Carlo predictions. A
comparison between the data and the QCD �t is shown in Fig. 3, together with the amount of

scaling violations observed in fragmentation functions when varying the centre-of-mass energy
from

p
s = 22 GeV to

p
s = 91:2 GeV.

2.6 Processes with Jets

Various measurements of the strong coupling constant exploit the fact, that partons emitted
in hard scattering processes which can be described by perturbative QCD, manifest themselves
as jets of hadrons in the detector. The following subsections give an overview over results from

those kinds of measurements.

Jet Production in ep-scattering

In ep-collisions the basic mechanism of jet production is the photon{gluon fusion process,

where a large Q2 virtual photon from the electron merges with a gluon from the struck proton

to produce a quark{antiquark system. Alternatively the photon can merges with a quark from
the proton to produce a �nal state quark-gluon system. Those two partons emerge as two

jets in the detector in addition to the jet from the proton remnant. The production rate R2+1
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Figure 3: The left hand �gure shows the inclusive cross sections for charged particles as function of the
scaled momentum x = 2p=

p
s for centre-of-mass energies between

p
s = 22 GeV and

p
s = 91:2 GeV. The

lines are the result of a global QCD �t to these distributions together with avour tagged samples from
hadronic Z decays (not shown). The full dots were used in the �t. On the right hand the ratio between
the cross sections at 22 GeV and 91.2 GeV is displayed. The full line is the result of the global QCD �t.
For comparison also the prediction for constant avour composition is shown.

of those �nal states is known to next-to-leading order O(�2s). The appealing feature of this
measurement is the fact, that by tagging the scattered electron it is possible to study the Q2-

dependence of the process, allowing to establish the running of the strong coupling constant
within one experiment. First results from the Zeus [23] and the H1 [22] collaborations are listed

in Tab. 1 and shown in Fig. 4.

Proton-Antiproton Annihilation into W+Jets

The strong coupling constant can also be determined from QCD-radiative corrections to the

quark{antiquark fusion into a W. Also here the perturbative QCD-corrections are known

to next{to{leading order O(�2s). Measurements published by the UA2 [24] and D0 [25]
collaborations can be found in Tab. 1.

Prompt Photon Production

The leading order diagrams for this kind of process are obtained from the diagrams for QCD{
compton scattering or quark{antiquark annihilation into two gluons by replacing one of the

8



Figure 4: Measurements of strong coupling constant by the H1 and ZEUS collaborations.

gluons by a photon. The theoretical prediction thus is of O(�s�em). A precise measurement
of the strong coupling constant is possible by studying the di�erence �(pp!X)� �(pp!X)
where the sea quark and gluon structure functions of the nucleon cancel. The di�erence depends
only on the rather well measured valence quark distribution and �s. The result corresponding
to a measurement [26] of the QCD scale �

(4)

MS
= 235 � 106�146

9
MeV done at the typical scale

Q = PT = 4 GeV is given in Tab. 1.

Heavy Quark Production in Proton-Antiproton Collisions

Heavy quarks which are not present in the initial state are produced by quark{antiquark
annihilation or gluon{gluon fusion processes. Experimentally those reactions can be tagged
by the decay characteristics of the heavy hadrons, which allows a measurement of the strong
coupling. The result from an analysis of bb+jets production in p�p collisions [27] is given in

Tab. 1.

2.7 Global Event Shape Variables

Measurements of �s from global event shape variables are the domain of e+e�-annihilation

experiments into quark-antiquark pairs. Those primary quarks start emitting gluons, which

in turn can split into secondary gluons or new quark-antiquark pairs. This parton showering

process proceeds until the virtuality of the partons is around 1 GeV, where the non{perturbative

hadronization process takes over and the �nal state hadrons are formed. An important feature
of the parton shower is \angular ordering", i.e. decreasing emission angles of secondary partons

in the shower. Thus the momentum ow is collimated in the direction of the primary quarks,

explaining the two-jet structure of most hadronic events. If a hard gluon is emitted at large
angle in the initial phase of the parton shower, three distinct jets are formed. Angular ordering
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thus provides a perturbative explanation for the interpretation of jets as the hard partonic

skeleton of an event.

A measurement of the strong coupling constant from event shape variables is based on the

idea that to leading order the ratio of the 3-jet and the 2-jet cross section is proportional to

�s. To exploit this concept one needs to de�ne variables which are sensitive to the topology

of multijet events. Those variables have to be \infrared" and \collinear" safe in order to be

calculable in perturbation theory, i.e. they must not change in the limit that the energy of an

additional soft gluon goes to zero or if any of the �nal state momenta is split into two collinear

ones.

Many observables satisfying the above criteria have been de�ned. Central to various

subsequent de�nitions is thrust T [62], which measures the collimation of the momentum ow

in an event:

T = max
j~nj = 1

P
p j~p � ~njP
p j~pj

(7)

An ideal 2{jet event has T = 1, a perfectly isotropic one has T = 1=2. The thrust axis ~n is

the direction along which the momentum ow is maximal. It thus de�nes a natural event axis
and is a good estimator for the direction of ight of the initial quark{antiquark pair. Given
the thrust axis, the event can be divided into two hemispheres by the plane orthogonal to ~n.
The invariant masses of the two hemispheres, MH being the larger and ML the smaller one,
then allow two de�ne two new event shape variables [63]: heavy-jet mass � =M2

H=s and mass

di�erence m2

d = (M2

H �M2

L)=s.

Another common variable is y3, derived from the measurement of jet rates by means of
a clustering algorithm. Here the 4-momenta of the �nal state particles are recombined into
jets in an iterative procedure. The algorithm starts by considering each particle to be a jet.
Then those two jets with 4{momenta pi and pj which are closest in phase space e.g. according
to the Durham{metric [64], yik = 2min(E2

i ; E
2

j )(1 � cos �ij)=s, are combined by adding their

4-momenta (\E{scheme"). Iterating the procedure until only three pseudo-particles (\jets")
are left, y3 is de�ned by y3 = min(y12; y23; y31). For a further discussion see for example [65].

According to general theorems [66] the perturbative prediction for the cumulative cross
section of any event shape variable X, which vanishes in the limit of perfect 2-jet topologies,
can be expressed in the form

R(L) � �(� ln(X) > L)

�tot
=

 
1 +

1X
i=1

Ci�
i
s

!
exp

 
1X
n=1

2nX
m=1

Gnm�
n
sL

m

!
+

1X
k=1

�ksDk(L):

The Dk(L) are regular functions which vanish in the limit L ! 1. For the special case that

the perturbative prediction exponentiates one gets a simpli�ed expression with Gnm = 0 for
m > n+1. In this case the terms of perturbative prediction for lnR can be organized as follows:

LL NLL Subleading Terms

�sL
2 �sL �s �sS1(L)

�2sL
3 �2sL

2 �2sL �2s �2sS2(L)

�3sL
4 �3sL

3 �3sL
2 �3sL �3s �3sS3(L)

�4sL
5 �4sL

4 �4sL
3 � � �

...
...

...
. . .
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The �rst two columns are the leading{ and next{to{leading logarithms, which for some event

shape variables have been resummed into analytic functions LGLL(�sL) and GNLL(�sL).

Examples are � = 1 � T and �. The functions Sk(L) are combinations of the Dk(L) and

the coe�cients Ci. They also vanish for L!1. The �rst two rows constitute the theoretical

prediction in second order perturbation theory. Based on numerical integration [67] of the ERT-

matrix elements [68] the corresponding expressions are known for all event shape variables.

If the second order and the leading{ plus next{to{leading-log resummed predictions both

are available, an improved theoretical prediction is obtained by combining the two, which is

exact to O(�2s) over the whole phase space and contains the dominant terms to all orders

in the vicinity of the 2{jet region (X ! 0). There is a certain freedom in performing the

matching of the theoretical predictions [69] which can be employed to probe the sensitivity

of an �s measurement to the unknown higher order corrections. Typical examples are the so

called lnR-matching and the R-matching schemes, where the predictions for R or lnR are

combined. The results di�er in O(�3s). Another way to assess theoretical uncertainties is the

variation of the renormalization scale, i.e. doing a measurement of �s(�) instead of �s(Q). Also

here, when based on an the full O(�2s){prediction, the change in �s(MZ) is of O(�3s), the �rst
uncalculated higher order corrections. For a complete perturbative prediction there would be
no renormalization scale dependence. Other ways to estimate the theoretical uncertainties of
a perturbative prediction exist. Examples can be found in [16, 18, 70]. As a safeguard against

accidental cancellations usually several methods are combined in order to assess the error due
to unknown higher order perturbative e�ects.

Another class of theoretical uncertainties outside the domain of perturbative QCD is
related to the hadronization process. For �s{measurements based on event shape variables
the estimates of size and uncertainty of non{perturbative e�ects so far rely on Monte Carlo
models [71]. Results from �s{determinations based on global event shape variables done at

centre{of{mass energies between
p
s = 10:53 GeV and

p
s = 91:2 GeV are listed in Tab. 1.

Where available, the numbers are single experiment averages over various event shape variables.
For more detailed information see e.g. [72].

2.8 Combination of Individual Results

Measurements of the strong coupling constant are available from a multitude of reactions,
with error estimates based on a careful evaluation of the statistical errors, the experimental

systematics and the theoretical uncertainties. Being the dominant errors in �s{measurements,

the latter deserve some further discussion.

Problems arise, because there is no general consensus how to determine the theoretical

uncertainties. As a consequence subjective judgement has to be used to determine errors which

correspond to 68% con�dence level intervals. Based on some experience about how errors
behave those estimates will on average be reliable, even if individual numbers are somewhere

between too optimistic and too pessimistic. The non{statistical nature of theoretical errors
implies, that they must be viewed as a Bayesian estimates parametrizing the knowledge gained

in a measurement. Interpreting also the experimental errors this way then can be taken as a
justi�cation to combine experimental and theoretical errors in quadrature.

Another point of concern is the fact, that theoretical errors in di�erent measurements are

correlated. The best way to deal with those correlations would be to give the derivatives of the

result with respect to the various sources of uncertainty. Instead in many cases only the total
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Figure 5: Examples for measurements of �s based on global event shape variables. The distributions
compared to the QCD �ts are shown in (a). In (b) the size and uncertainties for the hadronization
corrections are displayed and in (c) the same information is given for the detector corrections.

error is given, leading to a situation where measurements are known to be correlated with very
little information about the actual size of those correlations.

A proposal how to average such measurements is given in [73]. An optimal average which
minimizes the variance of combined result is not feasible if the correlations cannot be reliably
reconstructed. The latter would require a breakdown of the single uncertainties along the lines
described above. Instead a standard weighted average is formed, with weights given by the
inverse of the single variances.

�x =
nX
i=1

wixi with wi �
1

�2i
and

nX
i=1

wi = 1: (8)

This is a robust estimate which is also optimal if the single measurements are uncorrelated.

The error of the average is given by

�2(�x) =
nX

i;j=1

wiwjCij (9)

where Cij is the covariance matrix of the measurements. In order to determine �
2(�x) one has to

know the full covariance matrix or at least an e�ective parametrization of it. The proposal [73]

uses the latter approach, making the ansatz

Cij =

(
�2i i = j

��i�j i 6= j
(10)

Information about the unknown e�ective correlation-coe�cient � can be obtained from the �2

of the average

�2 =
nX

i;j=1

(xi � �x)(xj � �x)C�1

ij : (11)
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With �x de�ned according to Eq.(8) the expectation value of this quantity is < �2 >= n� 1 �
Ndf = n�1 for � = 0. Negative correlations would lead to �2 > Ndf , positive ones to �

2 < Ndf .

In the former case an error estimate based on the assumption � = 0 would overestimate the true

uncertainty, in the latter it would underestimate it. The same behaviour would be observed

if the individual errors are underestimated (�2 > Ndf ) or overestimated (�2 < Ndf ). For the

case �2 > Ndf the PDG has adopted the practice to conservatively assume that the errors

are underestimated by a common factor S =
q
�2=Ndf and to scale the error of the average

correspondingly. In [73] the proposal is made to interpret a �2 < Ndf as evidence for the

existence of positive correlations, to determine a parameter � such that �2 = Ndf and to

use this value � in the error calculation for the average based on Eq.(9). Both procedures

conservatively interpret any deviation of �2 from its expectation value as evidence for having

underestimated the error of the average and invoke an appropriate scaling scheme.

The properties of the proposed procedure can be illustrated by considering two

measurements x1 and x2 which have the same error �. One obtains �x = (x1 + x2)=2,

�2 = (x1 � x2)
2=2�2 and �2(�x) = �2(1 � �2=2) for �2 < 1. In the limiting case x1 = x2

averaging does not decrease the error. In general one �nds that averaging highly correlated

data with this procedure leads to an average of the measurements and the errors, which is
perfectly appropriate when individual error estimates to some extent are based on subjective
judgement

Averages determined according to the procedure described above [73] will be referred to as
\correlated averages" in the following.

Figure 6: Overview over di�erent types of �s{measurements. The shaded boxes are the correlated averages
(see text) for the respective groups.

Figure 6 gives an overview over the di�erent types of �s{measurements together with their

correlated averages. On the right hand side of �s{determinations based on global event shape
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Measurement �/GeV �s(�) �s(MZ)

BJSR 1.58 0:375 � 0:062
0:081 0:122 � 0:005

0:009

GLSR 1.732 0:240 � 0:047 0:107 � 0:007
0:009

R� 1.777 0:330 � 0:019
0:018 0:1201 � 0:0023

pp; p�p! +Jets 4.0 0:206 � 0:042
0:033 0:112 � 0:012

0:010

Lattice Gauge Theory 5.0 0:203 � 0:010 0:115 � 0:002

Deep Inelastic Scattering 7.1 0:177 � 0:012 0:113 � 0:005

Heavy Quarkonia 2.98 0:187 � 0:029 0:101 � 0:010

ep! Jets 18. 0:155 � 0:017
0:016 0:117 � 0:009

p�p� > b�b+Jets 20.0 0:138 � 0:028
0:019 0:109 � 0:016

0:012

R  33. 0:157 � 0:019
0:018 0:1305 � 0:0125

scaling violation in e+e�-annihilation 50. 0:132 � 0:007
0:006 0:1195 � 0:0053

e+e�! hadrons (event shapes) 60. 0:131 � 0:006 0:1221 � 0:0050

p�p! W+Jets 80.2 0:123 � 0:017 0:1203 � 0:0165

RZ 91.2 0:128 � 0:006 0:128 � 0:006

Table 2: Compilation of measurements of the strong coupling constant. The errors are the total
uncertainties, which in most cases are dominated by the theoretical uncertainties.

variables are displayed. The correlated average is �s(MZ) = 0:122� 0:005. The unscaled error
is ��s = 0:0016 with a �2=Ndf = 5:6=15.

2.9 A Global Average

A summary of the various types of measurements as function of the typical scale and evolved
up to the scale of the Z mass is listed in Tab. 2 and shown in Fig. 7. Since the running of the

strong coupling to leading order is proportional to 1= lnQ2, the geometric mean is quoted as
the scale of the measurement when results from di�erent scales were averaged. The running of
the strong coupling constant consistent with the expectation from QCD is evident. The results
are in good agreement with the current PDG average [74] �s(MZ) = 0:117 � 0:005.

Doing a simple weighted average of the results given in Tab. 2 yields �s(MZ) = 0:1174 �
0:0012 with �2=Ndf = 12:6=13. Although maybe defendable, this error estimate appears to be

too optimistic, because a justi�cation based on the �2-value gets its legitimation from the fact
that some measurements are much less precise than others. Looking closer one sees that the

measurements fall into two groups which scatter much less around a common value, indicating
that there are common systematics. Combining low and high values separately one obtains the

correlated averages �s(MZ) = 0:1212 � 0:0034 and �s(MZ) = 0:1140 � 0:0032 The correlated
average of these two results is �s(MZ) = 0:1174 � 0:0036, suggesting a new \world average"

�s(MZ) = 0:117 � 0:004 with a slightly smaller error than the current PDG value [74].

3 Tests of the Structure of QCD

Testing the structure of QCD means verifying that the partons carry the quantum numbers

assigned to them according to the QCD Lagrangian. This program comprises the veri�cation
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Figure 7: Overview over di�erent types of �s-measurements compared to the 1994 PDG average.

of the spin assignment for the partons, measurement of the colour charges of quarks and gluons
and the test that colour charge of the quark is avour independent.

3.1 Parton Spins

The spin of the quarks can be probed by studying the angular distribution of the thrust axis
in e+e�{annihilation events into hadrons [75]. The thrust axis is a rather reliable measure of
the direction of the initial partons since, as a consequence of angular ordering in the parton

shower, the momentum ow remains collimated around the direction of the original partons.
From angular momentum considerations one expects a distribution 1 + cos2� for two spin 1/2
fermions originating from the decay of a spin 1 particle (Z). Here � denotes the angle to the
beam direction. Figure 8 shows the uncorrected angular distribution of the thrust axis seen in

the ALPEH detector compared to a Monte Carlo calculation which includes the full detector

simulation. The data are in perfect agreement with the spin 1/2 assignment for the quarks. The
sensitivity to the quark spin is illustrated by comparing the measurements to the expectation

for spin 0, which is clearly excluded.

The gluon spin can be inferred from the study of the kinematics in 3{jet event [76]. Published
results can be found in [77]. The conceptually simplest measurement is obtained from the scaled

energy distribution of the lowest energy jet in a 3{jet event, d�=dx3, with x3 = Ejet=EBeam.

In the limit x3!0 one expects a double (infrared and collinear) singularity d�=dx3 � x�23 for
a vector gluon. For a scalar gluon, due to its helicity non{conserving coupling to the fermion

current, only the collinear singularity exists, i.e. d�=dx3 � x�13 . The data shown in Fig. 8
clearly favour the more singular behaviour predicted for the vector gluon.
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Figure 8: Distributions sensitive to the spin of the partons. The left hand plot shows the angular
distribution of the thrust axis, which allows to probe the quark spin. The drop in the data above cos� � 0:8

is due to the event selection procedure. The right hand side displays the scaled{energy spectrum of the
lowest energy jet in 3{jet events as measured by the L3-collaboration [77]. The experimental data are
compared to predictions from a vector and a scalar gluon model.

3.2 Flavour Independence of the Strong Coupling Constant

A characteristic feature of any non{abelian gauge theory is the fact, that all interacting fermions
must have the same colour charge in order to garantie gauge invariance. This is seen most easily
by looking at the leading order diagrams for Compton scattering. In QED, or any other abelian
theory, only the s{ and u{channel exchanges with a fermion propagator contribute, which are
gauge invariant for arbitrary fermion charges. In non{abelian theories in addition a t{channel

exchange involving a triple gauge boson coupling contributes. Gauge invariance now requires
the fermion charge to be in a �xed relation, as de�ned by the gauge group, to the charge carried

by the gauge bosons. As a consequence, all fermions which couple to the same gauge bosons

must have the same colour charge, meaning that the strong couling constant must be avour
independent.

Experimentally the avour independence of �s can be probed by doing a measurement of the

strong coupling constant on data sets with di�erent compositions of the primary quark avours

that couple to the Z. Requiring for instance a lepton with large pT relative to the thrust axis,

a displaced secondary vertex or large impact parameters in an event yields a b-quark enriched
sample. Anti{tagging on lifetime or simply requiring a leading particle in the event with a

momentum of more than 70% of the beam momentum enriches light avours uds. Selecting
a D� or leading K0 produces a sample enriched in c- or s-quarks, respectively. The actual

avour composition due to a speci�c tag is usually estimated by Monte Carlo simulations. The

analysis has to take into account mass e�ects, which induce a slight avour dependence of the
cross sections due to phase space e�ects that must not be confused with a avour dependence

of the coupling strength. Tree level calculations for �nite quark masses exist up to O(�2s) [78].
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Measurement Result

�s(b)=�s(udsc) [79] 1:002 � 0:023
�s(b)=�s(udsc) [80] 1:00� 0:05

�s(b)=�s(udsc) [81] 1:00� 0:08

�s(b)=�s(udsc) [82] 0:992�0:015
0:017

�s(b)=�s(udsc) [83] 1:002 � 0:023

Average �s(b)=�s(udsc) 0:997 � 0:024

�s(uds)=�s(bc) [79] 0:971 � 0:023
�s(uds)=�s(bc) [84] 1:308 � 0:221

�s(uds)=�s(bc) [83] 0:967 � 0:101

Average �s(uds)=�s(bc) 0:972 � 0:029

�s(c)=�
incl
s [84] 0:912 � 0:091

�s(c)=�
incl
s [83] 1:012 � 0:174

Average �s(c)=�
incl
s 0:934 � 0:103

Table 3: Tests of the avour independence of the strong coupling constant.

Results are usually expressed as ratios of the strong coupling constant for a tagged compared
to the complementary quark avours or to the inclusive measurement for the natural avour mix
on the Z resonance. In these ratios most of the otherwise dominant theoretical errors cancel.
Results are collected in Tab. 3 for �s(b)=�s(udsc), �s(uds)=�s(bc) and �s(c)=�

incl
s . Within

errors the �ndings are consistent with avour universality of �s. The most precise result is for
�s(b)=�s(udsc) with a relative error of 2.5%.

3.3 Colour Factors of QCD

Measurements of the colour factors of QCD allow to verify that the dynamics is described by
an unbroken SU(3) gauge symmetry. The static quark model describes hadrons as bound states

of quarks with three colour degrees of freedom. Assuming that these colours exhibit an SU(3)
symmetry the model is able to explain the observed hadrons as colour singlet systems. Note
that up to this point the concept of colour is purely static. Although it is a natural step to

assume that those colours also govern the dynamics of strong interactions, i.e. building QCD on
the gauge group SU(3), this is something that needs to be tested. It is for examples conceivable
that not all colour degrees of freedom of the quarks contribute to the dynamics of QCD. In

this case SU(2), SO(2) or U(1) become possible candidates for the gauge symmetry. Going one

step further one can also imagine strong interactions to be described by a spontaneously broken
SU(3) symmetry. The resulting massive gauge bosons would result in a dynamical structure

which deviates from the SU(3) expectation. Deviations can also be caused by the existence
of new physics, which couples to the strong interactions sector. A popular example for the

latter is the case of a light gluino, the supersymmetric partner of the gluon, which at O(�2s)
contributes three additional fermionic degrees of freedom in e+e�{annihilation processes [70].

Experimentally the full gauge structure of QCD becomes accessible in O(�2s). The types

of diagrams contributing to the process e+e� ! Hadrons at that order are shown on left in

Fig. 9. In addition to the abelian double{bremsstrahlung diagrams (a,b) and the splitting of an
intermediate gluon into a secondary quark-antiquark pair (d) there is also the process of a gluon

splitting into secondary gluons (c), the de�ning characteristic of a non{abelian gauge theory.
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The contribution of individual diagrams to the observable cross section is not gauge invariant.

It is therefore not possible to experimentally isolate e.g. the triple{gluon contribution to the

4{jet cross section. A gauge invariant way to probe the structure of the underlying theory is to

measure colour factors CF , CA and TF . For a given representation of a gauge group describing

the interaction, the colour factors are de�ned through the structure constants fabc and the

generators T a
ij:

NAX
a=1

�
T aT ya

�
ij
= �ijCF ;

NAX
a;b=1

fabcf�abd = �cdCA ;
NFX
i;j=1

T a
ijT

yb
ji = �abTF : (12)

The colour factor CF is the Casimir operator of the fermionic representation with dimension

NF , CA the one of the adjoint representation of the gluons with dimension NA. Summing over

all indices in the de�ning equations for CF and TF one �nds NFCF = NATF , i.e. a connection

between the dimensionalities of the fermionic and the gluonic representation.

In an intuitive way the colour factors can be identi�ed with the fundamental couplings of

the theory as illustrated in Fig. 9. The factor CF determines the coupling strength of a gluon

to a quark or antiquark, CA the strength of the gluon self-coupling and TF the probability

for the splitting of a gluon into a quark-antiquark pair. In other words, CF and CA can be
viewed as the square of the colour charge of a quark and a gluon, respectively. Absorbing a
factor CF into the de�nition of the coupling constant one sees, that the gauge structure of the
underlying theory can be parametrized by two ratios: CA/CF , the ratio of gluon{self coupling

to the quark{gluon coupling, and TF=CF = NF =NA, the number of colours caried by the quarks
divided by the number of gluons.

Figure 9: Generic leading order Feynman diagrams contributing to the 4{jet cross section in e
+
e
�-

annihilation into hadrons (left hand side) and pictorial representation of the de�nition of the colour factors
(right hand plot).

With the de�nitions Eq.(12) the generic form of the cross section can be written as

� = (�sCF )A+ (�sCF )
2B

�
CA

CF

;
TF

CF

nf

�
+O(�3s); (13)

The function A is independent of the gauge structure. The dependence on the gauge group

enters through B, which is a function of the colour factor ratios. The contributions from the
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gluon{splitting process proportional to TF/CF is always multiplied with the number of active

fermion avours nf . Measurements of colour factors exist based on 2{, 3{ and 4{jet events.

In the case of 4{jet events the coe�cient A is zero and the gauge structure determines the

theoretical prediction at leading order. For 2{ and 3{jet events it appears in the next-to-leading

order corrections, which, despite higher statistics, renders a measurement more di�cult.

Two approaches are used in the analysis. The �rst one is an unbinned maximum likelihood �t

of the colour factor ratios to the observed di�erential cross section [85, 86, 87]. This guaranties

that all available information is used in the measurement at the expense that the quality of

the �t is di�cult to asses. A more intuitive approach is based on using test variables with

particular sensitivity to the gauge structure of the theory. Candidate variables are discussed

in [88]. Early comparisons with experimental data can be found in [89], showing that the

results compatible with the QCD prediction, while an abelian toy-model, based on an U(1)3
gauge symmetry could be excluded. Actual measurements of the colour factors based on test

variables were done in [90, 91, 92].

Measurement CA/CF TF/CF Correlation

4-Jet [85] 2:24 � 0:40 0:58 � 0:29 +0:043

4-Jet [91] 2:32 � 0:25 0:266 � 0:148 �0:242
4-Jet [86] 1:89 � 0:38 0:274 � 0:171 +0:06

4-Jet [92] 2:11 � 0:32 0:40 � 0:17 �0:450
Average (4-Jet) 2:20 � 0:26 0:32 � 0:14 �0:220
2&3{Jet [87] 4:49 � 1:35 2:01 � 0:99 +0:945

Average (Jet-Studies) 2:22 � 0:22 0:33 � 0:12 +0:007

Table 4: Measurements of the QCD colour factors based on jet studies in e
+
e
�-annihilation processes

into hadrons.

The results from jet studies are collected in Tab. 4. The 4{jet results are averaged taking
correlations into account using the e�ective procedure proposed in [73]. The 4{jet average and
the 3{jet result are considered to be uncorrelated for the �nal average. The results are in good
agreement with the QCD expectation, CA=CF = 2:25 and TF=CF = 0:375. Assuming three
colours for the quarks the latter ratio corresponds to a measurement of the number of gluons

NA = 8:8 � 3:3. The combined result is displayed in Fig. 10 together with the expectation

for all simple Lie{groups with the fermions in the fundamental and the gluons in the adjoint
representation. Also shown is the expectation for the case of a light gluino contributing to the

dynamics of QCD, which cannot yet be ruled out by jet studies alone.

Other measurements of colour factors come from p�p collider data [93] or the analysis of
the running of the strong couping constant [70]. That the energy evolution of �s contains

information about the underlying gauge structure is evident from Eq.(2). To fully exploit the

available information in a consistent way, however, is complicated by the fact that almost all

available measurements of the strong coupling constant are based on the assumption of an SU(3)

gauge symmetry. A consistent analysis of the running thus would require a prior re{evaluation
of the coupling constant as function of the colour factors, which in most cases is not feasible.

An exception is the case of RZ and R� , which are conceptually su�ciently simple to facilitate a

consistent re{analysis, while at the same time being very sensitive to the running of �s because
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Figure 10: Combined results from colour factor measurements done at LEP based on jet-studies. In
addition to the experimental 68% and 95% con�dence level contours the expectations for all simple Lie
groups with the fermions in the fundamental and the gluons in the adjoint representation are shown.

of the large energy range spanned. Other candidates for low-energy points could be the �s{

determinations based on sum rules. The potential of those kinds of analyses may be illustrated

by doing an analysis along the lines presented in [70], using the values RZ = 20:800 � 0:035
and R� = 3:641� 0:017 as input. Combined with the results from jet studies the errors of the
colour factor measurements are reduced by almost 30%. The total size of the error ellipse is

reduced even further because the colour factor ratios extracted from the analysis of the running

of �s are 100% correlated.

4 Summary

Perturbative QCD has successfully been tested in a large variety of reactions and over a large

energy range, involving both space{like and time{like momentum transfers. The strong coupling

constant has been found to evolve with energy as predicted by QCD, with a value consistent with
the current PDG average �s(MZ) = 0:117� 0:005. A new average based on the measurements

presented here suggest a slightly smaller error �s(MZ) = 0:117 � 0:004. The structure of
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QCD is consistent with the expectation from a gauge theory based on an unbroken SU(3)

symmetry. Quarks and gluons are shown to be spin 1/2 and spin 1 particles, respectively.

Within an error of 2.5% the strong coupling is found to be avour independent. From the

study of multi{jet events in e+e�{annihilation processes the colour factor ratios are measured

as CA=CF = 2:221 � 0:225 and TF=CF = 0:353 � 0:132, compatible with the SU(3) prediction

CA=CF = 2:25 and TF=CF = 0:373. Assuming three colours for the quarks, the number of

gluons is measured as NA = 8:8 � 3:3.
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