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ABSTRACT: We discuss several aspects of second quantized scattering opera-

tors Ŝ for fermions in external time dependent �elds. We derive our results on a

general, abstract level having in mind as a main application potentials of the Yang{

Mills type and in various dimensions. We present a new and powerful method for

proving existence of Ŝ which is also applicable to other situations like external

gravitational �elds. We also give two complementary derivations of the change of

phase of the scattering matrix under generalized gauge transformations which can

be used whenever our method of proving existence of Ŝ applies. The �rst is based on

a causality argument i.e. Ŝ (including phase) is determined from a time evolution,

and the second exploits the geometry of certain in�nite-dimensional group exten-

sions associated with the second quantization of 1-particle operators. As a special

case we obtain a Hamiltonian derivation of the the axial Fermion-Yang-Mills anom-

aly and the Schwinger terms related to it via the descent equations, which is on the

same footing and traces them back to a common root.

1. INTRODUCTION

The main di�culty when quantizing fermions in higher than two space-time di-

mensions in background (gauge) �elds is that the interaction term generically is

too large to allow a naive application of the standard methods of canonical quan-

tization. More precisely, if � is the sign of the 'free' Hamiltonian, then only those

one-particle operators A are well-de�ned in the free Fock space which satisfy the

condition that [�;A] is Hilbert-Schmidt. For example, the minimal gauge inter-

action operator does not satisfy this condition when the space-time dimension is

higher than 2. The same holds for gauge transformation operators which makes

the implementation of these operators somewhat tricky, [M2].

The one-particle time evolution operator can be constructed for example by the

Dyson expansion provided that the potential is smooth and appropriate boundary

conditions are satis�ed. However, the time evolution cannot be quantized because

of the remarks above. The asymptotic scattering operator S is better behaving.
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One can show that it satis�es the Hilbert-Schmidt condition. The existing proofs

are rather involved, [P,R2]. In this paper we shall give a much simpler proof using

the methods introduced earlier for the construction of the quantum gauge transfor-

mations and computation of commutator anomalies, [M2]. The method is based on

the observation that the interaction Hamiltonians can be conjugated by unitary op-

erators such that the resulting equivalent Hamiltonians satisfy the Hilbert-Schmidt

condition with respect to �xed free Hamiltonian. Moreover, we give an e�ective

method for an actual construction of such unitary conjugations, as a function of

(time dependent) background �elds. This method is very general and does not use

the speci�c properties of gauge interactions. In general, it applies to any bounded

interactions such that its commutator with the absolute value of the free Hamilton-

ian does not have worse fall-o� properties in the momentum space than the original

operator. Gravitational background �elds can be also treated using a somewhat

modi�ed form of the conjugation (Appendix A).

In sections 3 and 4 we discuss the determination of the phase of the quantum

scattering operator. It is shown that the phase is uniquely determined by causality

(section 3), or, alternatively, by the geometric structure of the central extension of

the group of one-particle (renormalized) time evolution operators (section 4). Our

treatment relies heavily on the theory of in�nite-dimensional linear groups. Some of

the basic aspects of the theory of these groups in quantum �eld theory are recalled

on the way; for further reading we recommend [CR] and [GV].

2. EXISTENCE OF QUANTUM SCATTERING OPERATORS

Consider a family of Hamiltonians of the form HA(t) = D0 + A(t) acting in a

one-particle Hilbert space H where t 7! A(t) is a smooth and compactly supported

(t; t0 2 R here and in the following). We assume that D0 is a self-adjoint operator

and D0 +A(t) is essentially self-adjoint in the same domain for all t; the A(t) are

bounded self-adjoint operators. We study the time evolution equation

(2.1) i@tUA(t; t
0) = HA(t)UA(t; t

0); UA(t; t) = 1:

Writing VA(t; t
0) = eitD0UA(t; t

0)e�it
0D0 we obtain an equivalent equation

(2.2) i@tVA(t; t
0) = hA(t)VA(t; t

0); VA(t; t) = 1

where hA(t) = eitD0A(t)e�itD0: Since hA(t) is bounded, this equation has a solution

for all �nite times given by the Dyson expansion

(2.3)

VA(t; t
0) =

1X
n=0

Vn(t; t
0); V0(t; t

0) = 1; Vn+1(t; t
0) = �i

Z t

t0
dshA(s)Vn(s; t

0)

(it is easy to see that this series converges absolutely in the operator norm, see

Appendix B).

Let � = D0=jD0j: (This is well-de�ned even if zero is in the spectrum of D0 if

we set x=jxj = 1 and �1 for x � 0 and x < 0, respectively, and use the spectral

theorem of self-adjoint operators [RS].)
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The spectral decomposition H = H+�H� corresponding to the splitting of the

spectrum of D0 to positive and negative part �xes an irreducible representation

of the canonical anticommutation relations (CAR), uniquely de�ned up to unitary

equivalence, in a Fock space F with a vacuum j0 > which is annihilated by the

elements a�(v�) and a(v+); v� 2 H�, of the CAR algebra

(2.4) a�(v)a(v0) + a(v0)a�(v) = (v; v0);

and all the other anticommutators are equal to zero. Let fengn2Z be an orthonormal

basis in H such that fengn�0 span H+ and fengn<0 span H�. Set an = a(en)

and a�n = a�(en): Fix the usual normal ordering for the products of creation and

annihilation operators by : a�nam := �ama
�
n if n =m < 0 and all the other products

remain unchanged.

It is known that a bounded one-particle operator X = (Xnm) can be canonically

quantized as

(2.5) d�(X) =
X

Xnm : a�nam :

i� [�;X] is Hilbert-Schmidt, [SS,A,CR]. This quantization is such that [d�(X); a�(v)] =

a�(Xv) for all v 2 H, and preserves the commutation relations of the Lie algebra

of linear operators on H except for a complex valued cocycle ('Schwinger term'),

see section 3. Similarly, a unitary operator U on H can be second quantized to an

operator �(U) obeying �(U)a�(v)�(U)�1 = a�(Uv) if and only if [�; U ] is Hilbert-

Schmidt [SS,R1].

If we have a time evolution with [�;A(t)] Hilbert Schmidt for all t, then it is

easy to see that [�; VA(t; t
0)] is always Hilbert Schmidt (see Appendix B), and this

trivially implies that the scattering operator

(2.6) SA = lim
tf!1

lim
ti!�1

VA(tf ; ti):

can be second quantized (note that due to our compactness assumption, SA =

VA(T;�T ) for some T <1).

In many interesting situations [�;A(t)] is not Hilbert-Schmidt, and [�; VA(t; t
0)] is

not Hilbert-Schmidt either, and the canonical quantum operator �(VA(t; t
0)) does

therefore not exist. Nevertheless the scattering operator can be still second quan-

tized in many such cases. We will proof below a general, abstract result for this.

As a motivation for our abstract setting, we �rst discuss a special case. We shall

use some basic facts about pseudodi�erential operators (PSDO) [H]; see Appendix

C for notation.

We assume that spacetime is Mn � R where Mn is a n-dimensional compact

manifold with spin structure, and H = L2(Mn) 
 V where V is a vector space

carrying the spin and color indices of the fermions. (Actually, the following dis-

cussion applies also to noncompact situations like M = Rn but then one has to

assume suitable fall-o� properties of the interaction as jxj ! 1: For example, in

the case of a gauge interaction the requirement that the vector potential and all its

derivatives fall o� faster than jxj�n=2 as jxj ! 1 would be su�cient.) Moreover,

the free hamiltonian D0 is a self-adjoint PSDO of order � 1:
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We denote as B2 the ideal of Hilbert Schmidt operators in the algebra of bounded

operators on H: In case zero is in the spectrum of D0 we interpret D
�1
0 as D0(D

2
0+

�)�2 for some � > 0, and similarly for jD0j
�1. We use this simpli�ed notation

since the precise value of � is irrelevant (the essential regularizations concern the

ultraviolet and � is a harmless infrared regulator). If not evident to the reader

already at this point, this will become clear in the following.

Denote as O�k the PSDOs of order � �k: We assume that the free hamiltonian

D0 satis�es [jD0j; a] 2 O�k for a 2 O�k and for each k; this is the case for example

when D0 is a Dirac operator. The algebra of bounded PSDO's is equal to O0: We

state the basic properties of PSDO's, on a compact manifold M or in Rn with the

asymptotic conditions discussed above, which we shall need in the proof of the main

theorem:

O�` � O�k 8` > k (i)

8a 2 O�k and b 2 O0 : ab; ba 2 O�k (ii)

8a 2 O�k : [jD0j; a] and jD0j
�1ajD0j

�1 2 O�k (iii)(2.7)

8a 2 O�k : jD0j
�1a and ajD0j

�1 2 O�k�1 (iv)

9p <1 : O�p � B2: (v)

In fact, we shall prove a result implying that SA can be quantized whenever

there are operator families fO�kgk=0;1;::: with the properties (2.7) and A 2 O0.

The idea is to construct a time dependent family of operators T (A) = Tt(A) for

a regularization at the one particle level [M2] i.e. consider the modi�ed time evo-

lution Tt(A)UA(t; t
0)Tt0(A)

�1 which can be second quantized even if UA(t; t
0) can-

not. It is easy to see that the latter is generated by the Hamiltonian H 0
A(t) =

Tt(A)HA(t)Tt(A)
�1 + i(@tTt(A))Tt(A)

�1) = D0 +A0(t) where

(2.8) A0(t) = i(@tTt(A))Tt(A)
�1 � [D0; Tt(A)]Tt(A)

�1 + Tt(A)A(t)Tt(A)
�1:

Our strategy thus is to choose T (A) in such a way that A0 is better behaved than the

original interaction A, i.e. that [�;A0] 2 B2. Note that a conjugation Tt(A) which

becomes the identity as jtj ! 1 does not alter the scattering matrix, SA0 = SA:

All di�erentiations of operators in the following are meant with respect to the

operator norm.

De�nition 2.9. Let D0 be a self-adjoint operator such that there are operator

families fO�kgk=0;1;::: with the properties (2.7). We call an interaction A regular

(w.r.t. to D0 and fO�kgk=0;1;:::) if A(t) and the derivatives (@t)
k[�;A(t)], k =

1 : : : p, are in O0 for all t 2 R. We denote the set of all such interactions as A.

Theorem 2.10. For all interactions A(t) 2 A, there is a family of unitary opera-
tors Tt(A) di�erentiable in t and such that the transformed time evolution VA0(t; t0),
A0 eq. (2.8), can be second quantized, [�; VA0(t; t0)] 2 B2 for all t; t0 2 R. Moreover,

T (A) can be chosen local in time, i.e. Tt(A) = 1 if A(t) = 0 and (@t)
kA(t) = 0 for

k = 1 : : : ; p.
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Corollary 2.11. For all interactions A(t) 2 A compactly supported in t, the scat-

tering operator SA exists and can be second quantized, [�; SA] 2 B2.

Before proving this theorem, we give one other example of such operator families

fO�kgk=0;1;::: with the properties (2.7). It is easy to see that it generalizes the

PSDO setting for the Dirac operator D0 on a compact spin manifoldMn discussed

above: Let D0 be such that for some � 2 R, (D0 + �)�1 exists and is in the

Schatten class Bp = fa 2 Bj (a�a)p=2 trace classg for some p < 1. Let O0 be all

bounded operators a such that (D0 + �)�`a(D0 + �)` is bounded for all integers `.

One can then check that the operator families O�k =
�
a 2 O0j ajD0j

k is bounded
	
,

k = 0; 1; : : : , satisfy (2.7).

Proof of Theorem. We say a map a : R! O�k is Cr if it is r times di�erentiable

with all derivatives @`ta, ` = 1; 2; : : : r, continuous maps R! O�k. We �rst prove

the following key lemma providing the recipe for constructing T (A):

Lemma 2.12. Let A : R! O0 such that [�;A] : R! O�k be Cr with r � 1. Then

A0(t); de�ned by (2.8), with the unitary operator

(2.13) Tt(A) = e�(t); �(t) = �
1

8

�
jD0j

�1[�;A(t)] + [�;A(t)]jD0j
�1
�

de�nes a map A0 : R! O0 such that [�;A0] maps R into O�k�1 and is Cr�1.

Proof of Lemma. We write A0(t) = A01(t) +A02(t) where

A01 = A+ [D0; �]

is the leading terms in an expansion in powers of jD0j, and

A02 = �iT (A)�1@t(T (A) � 1) + T (A)�1[D0; T (A) � �� 1] + T (A)�1[A;T (A) � 1]

is the rest. In the following we refer to maps a : R! O�k also as a 2 O�k etc.

Since obviously � and @t(�) are in O�k�1, A
0
2 2 O�k�1 trivially follows from

�D0;D0� 2 O�k and

T (A) � 1 = �T1 = T1�; T (A) � 1� � = �2T2 = T2�
2

where T1;2 and @t(T1) all are in O0.

The nontrivial part thus is to show that [�;A01] 2 O�k�1. This can be seen by

the following calculation,

[�;A01] = [�;A]�
1

8

�
�;
�
D0; jD0j

�1[�;A(t)] + [�;A]jD0j
�1
��

=
1

8

�
8[�;A]�

�
�; �[�;A] � jD0j

�1[�;A(t)]jD0j�+ �jD0j[�;A(t)]jD0j
�1 � [�;A(t)]�

��

=
1

8

�
8[�;A]� 4[�;A]� 2jD0j[�;A]jD0j

�1 � 2jD0j
�1[�;A]jD0j

�

=
1

4

�
jD0j

�1 [jD0j; [�;A]]� [jD0j; [�;A]] jD0j
�1
�
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where we used [�;A] = ��[�;A]� and �D�1
0 = D�1

0 � = jD�1
0 j. Thus

[�;A01] =
1

4

�
jD0j

�1; [jD0j; [�;A]]
�

which is in O�k�1 by de�nition. If we replace D�1
0 by D0(D

2
0 + �)�1 a similar

calculation leads to the same conclusion,

[�;A01] =
1

4

�
jD0j(D

2
0 + �)�1; [jD0j; [�;A]]

�
+
1

2
�
�
(D2

0 + �)�1[�;A] + [�;A](D2
0 + �)�1

�
:

This proves our Lemma.

We can apply this method successively: Starting from some interaction A0 = A

such that [�;A] 2 O0 we get a new interaction A1 = A0 using the conjugation

T (A); with [�;A1] 2 O�1: We can then insert A1 as an argument to T (�) and

obtain an unitary operator T (A1): This de�nes again a new interaction A2 = A01
such that [�;A2] 2 O�2: Continuing this way we obtain, after p steps, an unitary

operator T (p)(A) = T (Ap�1) : : : T (A0) such that the time evolution for the operator

T
(p)
t (A)U(t; t0)T

(p)
t0 (A)�1 is determined by an interaction Ap such that [�;Ap(t)] 2

O�p for all t. For su�ciently big p the new interaction satis�es the Hilbert-Schmidt

condition, and thus the corresponding scattering operator can be second quantized.

Since T
(p)
t (A) by construction is equal to the identity for times t where A(t) and all

its t-derivatives vanish, the latter scattering operator is equal to SA. This implies

theorem 2.10.

Remark 1. As a particular case, our result gives the existence of the scattering

operators for Dirac (or Weyl) fermions in external Yang-Mills �elds, on a compact

space manifoldM or on Rn with su�cient fall-o� properties for the vector potential

as jxj ! 1. Here our discussion above implies p > n=2, but for n odd one can show

that actually p = (n � 1)=2 is already su�cient (e.g. for n = 1 no regularization is

necessary).

Remark 2. We stress the Hilbert-Schmidt property of the scattering operator since

only this is of primary interest for quantum �eld theory. However, our the argument

above shows that usually [�; SA] is much better behaved: e.g. in the fermion-Yang-

Mills case it is in all Schatten classesBq for q > 0. (This follows fromO�k � Bn+1

k
.)

3. PHASE OFQUANTUM SCATTERINGOPERATOR: CAUSAL APPROACH

In the previous section we have shown that the one-particle scattering operator

S satis�es the Hilbert-Schmidt condition for [�; S] and therefore it can be promoted

to an unitary operator Ŝ = �(S) in the Fock space F : However, by this the operator

Ŝ is uniquely de�ned only up to a phase. In this section we show that the regular-

ization for the time evolution operators in the previous section �xes the phase in a

natural causal manner.
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We denote the group of unitary operators U on H with [�; U ] Hilbert-Schmidt

as U1. All U 2 U1 can be second quantized, and the second quantization �(U) =

�(U�1)�1 of U 2 U1 is unique up to a phase (= element in U(1)) which implies

that for some local (near the unit element in U1, e.g.) choice of of phases

(3.1) �(U)�(V ) = �(U; V )�(UV ) 8U; V 2 U1;

where � : U1 � U1 ! U(1) is only de�ned locally (a derivation of an explicit,

locally valid formula of � is given in [PS]; in the second quantization setting see

also [L1]). The latter is a nontrivial local 2-cocycle providing a central extension

Û1 of U1 by U(1): Similarly the (complexi�cation of the) Lie algebra u1 of U1
contains all bounded operators X on H with [�;X] Hilbert-Schmidt, and its second

quantization u1 3 X ! d�(X) = d�(X�)� gives a representation of a central

extension û1 = u1 � C of u1,

(3.2) [d�(X); d�(Y )] = d�([X;Y ]) + cL(X;Y );

with a Lie algebra 2-cocycle [Lu]

(3.3) cL(X;Y ) =
1

4
tr�[�;X][�; Y ]

which is the in�nitesimal version of the Lie group 2-cocycle � above. It is possible

to choose phases such that

(3.4) �(eiX) = eid�(X) 8X = X� close to 0 2 u1

(the existence of the eid�(X) as a unitary operator follows from Stone's theorem

[RS] since d�(X) is self-adjoint [CR]). This equation actually is true for all X 2 u1,

but it �xes the phase of �(U) for only for U 2 U1 su�ciently close to the identity

where local bijectivity of the exponential mapping is guaranteed. We will assume

this phase convention in the following. Then (3.2) implies

(3.5)

�(e�i�sXe�i�tY ei�sX) = e�s�t cL(X;Y ) �(e�i�sX) �(e�i�tY ) �(ei�sX) +O(�s2; �t2)

for all X;Y 2 u1 and su�ciently small �s; �t 2 R (to see this, use (3.4) and expand

both sides of this equation in powers of �s and �t).

We now consider a time evolution VA(t; t
0) = V (t; t0) de�ned in eq. (2.2) with

hA = h : R! u1 smooth and compactly supported. We �rst consider the simple

case where h(t) 2 u1 so that V (t; t0) 2 U1 for all t; t0 2 R. As shown in the

last section, many interesting cases can be brought to this simplest situation using

the conjugation by a family of operators T (A) (we will discuss this in more detail

further below).

We �rst note the essential group property of the time evolution,

(3.6) V (t; t0)V (t0; t00) = V (t; t00) 8t; t0; t00 2 R;

which follows from (2.2); it is this what we mean by causality. Somewhat parallel

to our discussion, the use of the causality condition in the renormalization of a

quantum �eld theory has been stressed by Scharf and his coworkers, [S].
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To construct the second quantization of the scattering operator S = SA (2.6)

including the phase, we �rst second quantize the time evolution. The naive guess

�(V (t; t0)) for this is not right since this is not a time evolution: it does not obey an

equations similar to (3.6) due to the Schwinger term � in (3.1) which gives nontrivial

contributions in general. One can, however, de�ne bV (t; t0) = limN!1
bV (N)(t; t0)

with

(3.7) bV (N)(t; t0) =
Y

N���1

� (V (t� ; t��1)) ; t� = t0 +
(t � t0)�

N

where
Q

N���1 F (t� ; t��1) is the ordered product F (tN ; tN�1)F (tN�1; tN�2) � � �F (t2; t1)

for any operator valued function F on R�R. This is a time evolution by construc-

tion, and with (3.1)

(3.8a) bV (t; t0) = �(t; t0)�(V (t; t0))

where � a phase valued function on R�Rwhich can be explicitly computed in terms

of � (for V (t; t0) in some neighborhood of the identity) [L1]. This allows to calculate

the scattering operator Ŝ = bV (T;�T ) including phase as follows (here and in the

following we assume that T is big enough so that h(t) vanishes for jtj > T=2, say):

choose some partition t0 = �T < t1 < � � � < tn = T of the time interval [�T; T ]

such that all V (ti; ti�1) are in the neighborhood of the identity for which �(t; t0) is

de�ned. Then

(3.8b) Ŝ =
Y

n�i�1

�(ti; ti�1)�(V (ti; ti�1))

can be shown to be independent of which particular partition is chosen.

Remark 1. We note our formulas (3.8a,b) still do not �x the phase of Ŝ completely

since the function �(t; t0) is unique only up to

(3.9) �(t; t0) 7! exp

�
�i

Z t

t0
d�tE(�t)

�
�(t; t0)

with E a smooth real-valued functions on R. This is due to the ambiguity of the

second quantization map u1 3 X ! d�(X) which can be changed by smooth,

linear functions b : u1 7! C with b(X�) = b(X)� and b(0) = 0. A shift d�(X) !

d�(X)+b(X) changes (3.3) by a trivial 2-cocycle, cL(X;Y )! cL(X;Y )�b([X;Y ]),

and this implies (3.9) with E(t) = b(h(t)).

Remark 2. Since h(t) 2 u1 for all t, the second quantized Hamiltonian ĥ(t) =

d�(h(t)) (in the interaction picture) always exists, and it should be the generator

of the second quantized time evolution bV (t; t0). Moreover, the ambiguity (3.9) of

the phase of bV (t; t0) corresponds to a shift ĥ(t) ! ĥ(t) + E(t) which physically

amounts to a change of the zero-point energy. It would be di�cult to constructbV (t; t0) directly from ĥ(t) since the latter is unbounded which makes the existence
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of a Dyson series nontrivial. This technical problem is avoided in our approach

above.

In the following we are interested in the change of the second quantized time

evolution operator under transformations

(3.10) V (t; t0) 7! (g:V )(t; t0) � g(t)V (t; t0)g(t0)�1

where g : R 7! U1 where g(t) is assumed to be su�ciently smooth and such that

g(t) = 1 for jtj > T=2. We will derive an explicit formula for the gauge anomaly of

the time evolution,

(3.11) �(t; g) � �(g(t))�1\(g:V )(t;�T ) bV (�T; t);
which is a phase factor according to our discussion above (since the r.h.s. is the

second quantization of g(t)�1(g:V )(t;�T )V (�T; t) equal to the identity). Espe-

cially, �(g) � �(T; g) is the change of the quantum scattering operator Ŝ under the

transformation g.

We �rst consider only in�nitesimal gauge transformations g(t) = e�i�sX(t) for

�s! 0. We calculate �(t; g) as limN!1 �(N) where

�(N) = �(g(t))�1

8<
:

Y
N���1

�
�
g(t�)V (t� ; t��1)g(t��1)

�1
�
9=
;
8<
:

Y
1���N

� (V (t��1; t�))

9=
;

with t� = �T + (t + T )�=N . Now (3.1) implies

�
�
g(t+ �t)V (t+ �t; t)g(t)�1

�
= �(t+�t;t)(g)�(g(t + �t))�(V (t + �t; t))�(g(t))�1

for some phase factors �(t+�t;t), and we explicitly see that the various factors

�(g(t�)) and �(g(t��1))
�1 cancel each other leaving only phase factors. Using

V (t + �t; t) ' e�i�th(t), g(t + �t) ' e�i�sX(t) and (3.5), we get �(t+�t;t)(g) '

e�s�t cL(X(t);h(t)) (`'' means `equal up to irrelevant higher order terms in �s and

�t'). Thus �(N) is just the exponent of a Riemann sum, and in the limit N !1

�
�
t; e�i�sX

�
= exp

�
�s

Z t

�T

d�t cL(X(�t); h(�t))

�
+O(�s2):

We now consider the case of �nite gauge transformations g(t) and introduce a

homotopy gs(t), 0 � s � 1, smoothly deforming it to the identity,

(3.12) g1(t) = g(t) and g0(t) = 1 8t; gs(t) = 1 for jtj > T=2:

To be speci�c, we �rst restrict ourselves to gauge transformations g(t) = e�iX(t)

with X(t) 2 u1 for all t, and gs(t) = g(t) = e�isX(t). We de�ne Vs(t; t
0) �

(gs:V )(t; t
0) and

�s;s0 � �(gs(t))
�1 bVs(t;�T )bVs0 (�T; t)�(gs0(t))
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so that �(g) = �1;0. We observe that these phases have the group property,

�s;s0�s0;s00 = �s;s00 for all 0 � s; s0; s00 � 1, thus we can evaluate �(g) as limM!1 �M
where

�M =
Y

M���1

�s�;s��1 ; s� =
�

M
:

Now �s+�s;s is the change of phase of bVs(T;�T ) under an in�nitesimal gauge trans-

formation gs+�s(t)gs(t)
�1 ' e�i�sXs(t) and thus equal to exp(�s

R t
�T

d�tcL(Xs(�t); hs(�t)))

with

(3.13)

hs(t) = i f@tVs(t)g Vs(t)
�1; Xs(t) = i f@sVs(t)g Vs(t)

�1; Vs(t) = gs(t)V (t;�T )

(we used gs(�T ) = 1). Again �M becomes the exponential of a Riemann sum, and

in the limit M !1 we obtain

Theorem 3.14.

�(t; g) = exp

�Z 1

0

ds

Z t

�T

d�t cL (Xs(�t); hs(�t))

�
:

Note that this result was derived for the special homotopy gs(t) = e�isX(t), but

our derivation can be immediately generalized to arbitrary gauge transformations

g(t) and homotopies gs(t) (su�ciently smooth in s and t) obeying (3.12). For

t � T , �(t; g) = �(g) (3.14) is then actually independent of the homotopy chosen

(this follows from its de�nition (3.11) which does not depend on the homotopy).

For intermediate times �T < t < T this is not true. The reason is that then

the phase of the implementors �(g(t)) in (3.11) depends on the homotopy: our

derivation above implies that this phase has to be chosen such that

�(g(t)) = lim
M!1

Y
M���1

�(gs�(t)gs��1(t)
�1) ; s� =

�

M
;

and this coincides with our phase convention (3.4) only for homotopies s 7! gs(t) =

e�isX(t).

Remark 3. Our derivation of (3.14) above was given for 1-parameter groups in U1
for simplicity, but the result immediately generalizes to GL1 which is the group of

all (not only unitary) invertible operators U on H with [�; U ] Hilbert Schmidt: eq.

(3.14) remains true for h(t) 2 u1 not self-adjoint and g(t) 2 GL1. The technical

problem for proving this more general result by the method above is that e�i�td�(X)

is unbounded if d�(X) is not self-adjoint, thus one has to be careful with the

domains of operators (the latter could, however, be handled by methods described

in [GL]). Our alternative derivation of (3.14) in the next section is for GL1 and

bypasses such domain questions.

We consider now time evolutions generated by Hamiltonians HA(t) = D0+A(t)

with A(t) 2 A (cf. de�nition 2.9) and generalized gauge transformations

(3.15) A(t)! g:A(t) = i(@tg(t))g(t)
�1 � [D0; g(t)]g(t)

�1 + g(t)A(t)g(t)�1
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so that Ug:A(t; t
0) = g(t)UA(t; t

0)g(t0)�1:We denote the group of all g(t) which leave

A invariant as G. Note that G contains all g(t) su�ciently smooth in t (i.e. Cp+1),

which are unitary operators in O0 for all t. We also introduce the Lie algebra LieG

of G. In the following, all A are in A, all g; g0; g00 in G, and all X;Y;Z 2 LieG,

except when stated otherwise. As before, we assume all these functions are trivial

for jtj > T=2.

By theorem 2.10, there exist appropriate regularization operators T (A) and

T (g:A) such that A0 and (g:A)0; de�ned in (2.8), all lead to time evolutions which

can be second quantized i.e. they are always in u1. This also implies that the

operators Tt(g:A)g(t)Tt(A)
�1 = Ug:A(t;�T )UA(�T; t) all are in U1, and thus

(3.16) �t(g;A) � � (g0A(t)) ; g0A(t) � eitD0 Tt(g:A) g(t)Tt(A)
�1 e�itD0

always exist. These unitary operators have the natural interpretation as implemen-

tors of the generalized gauge transformations g at �xed time t. They are local in

time i.e. only depend on g, A and t-derivatives thereof, at time t. We observe that

they obey the relations

(3.17a) �(g0; g:A) �(g;A) = �(g0; g;A) �(g0g;A):

were we have dropped the common time argument t; with

(3.17b) �t(g
0; g;A) = �

�
(g0)0g:A(t); g

0
A(t)

�

de�ned locally (this follows from (3.1)). Note that (3.17a) and associativity of the

operator product imply the 2-cocycle relation

(3.18) �(g00; g0g;A)�(g0; g;A) = �(g00; g0; g:A)�(g00g0; g;A):

Our construction above can now be used to calculate

(3.19) �(t; g;A) � �t(g;A)
�1 \V(g:A)0(t;�T )dVA0 (�T; t)

which we de�ne as the change of the quantum time evolution dVA0 under the gener-

alized gauge transformation g. We immediately get the formula

(3.20a) �(t; g;A) = exp

�Z 1

0

ds

Z t

�T

d�t cL
�
f@sVs(�t)gVs(�t)

�1; f@tVs(�t)g Vs(�t)
�1
��

with

(3.20b) Vs(t) = eitD0 Tt(gs:A) gs(t)UA(t;�T ) e
iTD0

and gs(t) 2 G a homotopy interpolating between 1 and g(t). Similarly as discussed

above after theorem 3.14, for t � T (but in general not for intermediate times

�T < t < T ) this formula is independent of the homotopy s 7! gs(t) chosen.
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We observe that these phases are connected with the Schwinger terms in (3.17b)

via the relation

(3.21) �(t; g0; g:A)�(t; g;A)�t(g
0; g;A) = �(t; g0g;A)

(this follows from a simple calculations using the de�nition (3.19) and (g0g):A =

g0:(g:A),

�t(g
0; g:A)�(t; g0; g:A) �t(g;A)�(t; g;A)

= \V(g0g:A)0(t;�T )\V(g:A)0 (�T; t)\V(g:A)0(t;�T )dVA0 (�T; t)

= �t(g
0g;A)�(t; g0g;A);

and inserting (3.17a)). According to our derivation, this equation is valid only

locally (i.e. g(t) and g0(t) close to identity).

Especially for t = T , �(g;A) � �(T; g;A) is equal to the change of the quantum

scattering matrix ŜA under the transformation g, and equation (3.21) reduces to

the 1-cocycle relation, �(g0; g:A)�(g;A) = �(g0g;A) (since �(1; 1; 0) = 1). The

physical meaning of �(g;A) is as follows. We recall that the log of the vacuum

expectation value of ŜA is equal to the Minkowskian action of the fermions in the

time dependent external �eld A, thus log �(g;A) is the change of the latter by the

generalized time dependent gauge transformation g(t). Especially for in�nitesimal

transformations g(t) = 1 � i�sX(t) + � � � it gives the generalized gauge anomaly

Anom(X;A) = d
ds
log�(e�isX ;A)

��
s=0

. We obtain

(3.22)

Anom(X;A) =

Z T

�T

dt �!1(X(t); A(t)); �!1(X(t); A(t)) = cL (X
0
A(t); hA0 (t))

where hA0(t) = eitD0A0(t)e�itD0 with A0 given in eq. (2.8), and

(3.23) X 0
A(t) � eitD0

�
fLXTt(A)g Tt(A)

�1 + Tt(A)X(t)Tt(A)
�1
�
e�itD0

is in u1 for all A 2 A and X 2 LieG; we introduced the Lie derivative acting on

functionals f on A as

LXf(A) = i
d

ds
f(e�isXA)

����
s=0

:

Similarly, the in�nitesimal version of (3.17a,b) is [M2]

(3.24a) [G(X;A); G(Y ;A)] = G([X;Y ];A) + S(X;Y ;A)

where G(X;A) = LX + d�(X 0
A) are implementors of in�nitesimal gauge transfor-

mations and

(3.24b) St(X;Y ;A) = cL(X
0
A(t); Y

0
A(t))
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a Schwinger term satisfying the 2-cocycle relation LXS(Y;Z;A)+S(X; [Y;Z];A)+

cycl: = 0 (the latter is the in�nitesimal version of (3.18) and also follows from the

Jacobi identity).

Especially, if we consider the Yang-Mills case and in�nitesimal chiral gauge

transformations, Anom(X;A) is just the axial gauge anomaly and S(X;Y ;A) the

Schwinger term appearing in the commutators of the chiral Gauss' law generators

G(X;A). We thus have obtained a Hamiltonian derivation of these two di�erent

manifestations of the gauge anomaly in a Hamiltonian framework which traces them

back to a common root, i.e. the 2-cocycle cL in (3.2).

It is interesting to consider also the in�nitesimal version of the equation (3.21)

which can be written as

(3.25) ��!1 + @tS = 0

where

(�!1)(X;Y ;A) = LX!
1(Y ;A) �LY !

1(X;A) � !1([X;Y ];A)

is de�ned on functions !1 on LieG�A. To interpret this equation, we recall that the

above mentioned fermion-Yang-Mills anomalies are connected by descent equations

[Z]: the axial anomaly on a n+ 1 (even) dimensional space-time manifold Mn+1 is

the integral of a (n + 1)- (de Rham) form !1n+1(X;A) over Mn+1; it depends on

one in�nitesimal gauge transformations X and the Yang-Mills �eld A. The corre-

sponding Schwinger term is on n dimensional spaceMn and an integral of a n-form

!2n(X;Y ;A) over M
n depending on two in�nitesimal gauge transformations X;Y

and A. EmbeddingMn inMn+1, the descent equations are �!1n+1+d!
2
n = 0 where

� is de�ned as above and n is the usual exterior di�erentiation of de Rham forms.

Setting Mn+1 =Mn�R and �!1 =
R
Mn !

1
n+1 and S =

R
Mn !

2
n, one exactly obtains

our equation (3.25). We thus have obtained an explicit �eld theory derivation of

this descent equation for all odd dimensions n in the Hamiltonian framework. We

stress, however, that our eq. (3.25) is not restricted to the Yang-Mills case but in

fact is much more general.

Remark 4. As just mentioned, fermion-Yang-Mills anomalies are local de Rham

forms, whereas our formulas (3.22) for the axial anomaly and (3.24b) for the

Schwinger term are not explicitly local in space. In the Yang-Mills case one can

prove, however, that they cohomologous to local de Rham forms. General argu-

ments and mathematical techniques for showing this by explicit calculations have

been given recently, [M2,LM,M4]. Nevertheless it would be interesting to explicitly

do this latter calculations for all dimensions. In this paper we will only sketch the

simplest case n = 1 (end of next section).

In the next Section we will give a di�erent, more geometric approach to the phase

of the scattering operator where the path independence of the anomaly becomes

evident. Another important bene�t in the geometric approach is that we can easily

compute the cohomology class of the anomaly without going to the details of the

renormalization T (A).

4. THE QUANTUM PHASE AND PARALLEL TRANSPORT
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Let Ĝ be a central extension of a Lie group G by C� : The Lie algebra ĝ of Ĝ is

a vector space direct sum g � C : Let � be the projection on the second summand

and let � = g�1dg be the left Maurer-Cartan one-form. We can then de�ne a

complex valued one-form � on Ĝ by � = �(�): This is a connection form in the

principal C� bundle Ĝ! G: Its curvature is a left invariant two-form on G given

by !(X;Y ) = c(X;Y ); where left invariant vector �elds X;Y on G are identi�ed as

elements of the Lie algebra and c is the 2-cocycle on g de�ning the central extension,

(4.1) [(X;�); (Y; �)] = ([X;Y ]; c(X;Y )):

Recall that GL1 is the group of invertible linear transformations g : H ! H

such that [�; g] is Hilbert-Schmidt and U1 its unitary subgroup. Let us apply the

above remarks to G = U1; and to the Lie algebra cocycle cL (3.3) arising when

promoting the one-particle operators to operators (2.5) in the fermionic Fock space,

as discussed in the last section.

The central extensiondGL1 is a nontrivial C� bundle over the baseGL1; [PS]. The

elements of the groupdGL1 (containing the unitary subgroup Û1) can be thought of

equivalence classes of pairs (g; q); where g 2 GL1 and q : H+ ! H+ is an invertible

operator such that a � q is a trace-class operator,

(4.2) g =

�
a b

c d

�
:

We have assumed that ind a = 0: If this is not the case, the subspace H+ must be

either enlarged or made smaller by a suitable �nite-dimensional subspace in order to

achieve ind a = 0: The equivalence relation is determined by (g; q) � (g0; q0) if g = g0

and det(q0q�1) = 1: Thus the �ber of the extension is C� and it is parameterized

by (the nonexisting ) determinant of q:

The product is de�ned simply (g; q)(g0; q0) = (gg0; qq0): Near the unit element in

G we can de�ne a local section g 7! (g; a); [PS]. Denoting

g�1 =

�
� �

 �

�

we can write the connection form as

(4.3) �g;q = tr[(g�1dg)a � q�1dq] = tr[�da + �dc� q�1dq]:

The curvature of this connection is

(4.4) ! = tr(d�d)

and is easily checked to agree with cL in (3.3).

We compute the parallel transport determined by the connection in the range

of the local section. Let g(t) be a path in GL1; �T � t � T; with g(�T ) = 1: The

lift (g(t); q(t)) is parallel if

0 = �g(t);q(t)(dg; dq) = tr[�(t)a0(t) + �(t)c0(t) � q(t)�1q0(t)]:
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Thus the parallel transport, relative to the trivialization g 7! (g; a); along the path

g(t) in the base is accompanied with the multiplication by the complex number

(4.5) expf�

Z T

�T

tr[(�(t) � a(t)�1)a0(t) + �(t)c0(t)]dtg

in the �ber C :

Formally,

tr q�1q0 = tr[�a0 + �c0]

and so

det q(T ) = exp

Z T

�T

tr[�(t)a0(t) + �(t)c0(t)]dt

and also

det a(T ) = exp

Z T

�T

tr a(t)�1a0(t)dt:

Individually, the traces in these two expressions do not converge, but putted to-

gether the trace converges and gives

(4.6) det(a(T )q(T )�1) = expf

Z T

�T

tr[(�� a�1)a0 + �c0]dtg:

Note that the exponent diverges outside of the domain of the local section, reecting

the fact that det a(T ) = 0 outside of the domain.

We can now apply the above results to the 'renormalized' one-particle time

evolution operators g(t) = VA0(t) = eitD0Tt(A)UA(t;�T )e
iTD0 : For all times t,

these are elements of the group U1: On the other hand, in the Fock representation

of dGL1 these correspond to elements dVA0(t) in the central extension Û1: The phase

of the quantum time evolution operator is then uniquely given by the parallel

transport described above.

The Minkowskian e�ective action is by de�nition the vacuum expectation value

of the quantum scattering operator ŜA: The vacuum is invariant under the free time

evolution exp(itD0) and taking into account the assumption that the interaction

has essentially compact support in time, we can write

(4.7) Z(A) =< 0j(VA0 (T ); q(T ))j0 > :

The vacuum expectation value is given by a simple formula, [PS], [M3],

(4.8) < 0j(g; q)j0 >= det(aq�1)

and therefore the parallel transport (4.5) (with respect to the given local trivializa-

tion) is equal the e�ective action Z(A):

The above formalism can be applied for computing the gauge anomaly in the

space-time formalism starting from the commutator anomaly (3.3). Let g(t) 2 G
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be a time-dependent gauge transformation such that at t = �T it is equal to the

identity. The change in the phase of the e�ective action is now

�(g;A) = exp

�Z


�

�

where  is the closed loop in U1 obtained by �rst following backwards in time from

T to �T the time evolution UA0(t), following then the gauge transformed time

evolution operators g(t)UA0(t) back from �T to T . The parallel transport around a

closed loop can be written as an integral of the curvature ! over a surface S enclosed

by the loop : By construction, the gauge anomaly � satis�es the 1-cocycle condition

�(gg0;A) = �(g; g0:A)�(g0;A):

Joining g(t) to the identity by a homotopy gs(t); 0 � s � 1; and writing Vs(t) =

gs(t)UA0 (t) we get

(4.9) log�(g;A) =

Z
S

cL(@tV V
�1; @sV V

�1) =
1

4

Z
tr �[�; @tV V

�1][�; @sV V
�1]:

This result agrees with (3.14). For in�nitesimal gauge transformations gs(t) '

1� isX(t) + : : : we get axial anomaly (3.22) as discussed in the last Section.

Let us complete the calculation for 1+1 spacetime dimensions in the case of chiral

fermions in external Yang-Mills �eld. Now the chiral Hamiltonian on the circle S1

acting on one-component spinors is H(t) = �i @
@x
�A+; where A+ = A0 +A1: We

now use that for n = 1 one can choose Tt(A) = 1 independent of A (see our remark

1 at the end of section 2). Thus, applying (3.22) derived either from (3.20) or (4.9),

we get

Anom(X;A) =
1

4

Z T

�T

dt tr �[�;A+][�;X(t)] =
1

2�i

Z T

�T

dt

Z
S1
dx trA+(t; x)

@

@x
X(t; x):

Here we have used the general formula

(4.10)
1

4
tr �[�;X][�; Y ] =

1

2�i

Z
S1
dx trX@xY

valid for smooth multiplication operators X;Y on the unit circle. Up to a cobound-

ary (= a gauge variation of the local functional /
R
trA+A1) this form of the

anomaly is equal to the standard form of the two-dimensional chiral anomaly

(4.11) Anoms(X;A) =
1

4�i

Z
S1�R

trAdX:

We �nally note that this same equation also allows to calculate the Schwinger

term (3.24b),

(4.12) S(X;Y ;A) =
1

2�i

Z
S1

trXdY
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which actually is independent of A. This is the Kac-Moody cocycle and also the

Schwinger term related to the axial anomaly (4.11) via the descent equations, as

discussed at the end of the last section.

The cohomology class of the anomaly in dimensions n+ 1 > 2

The groupGLp consists of all bounded invertible operators (4.2) inH = H+�H�
such that the o�-diagonal blocks b; c are in the Schatten ideal B2p: For any p � 1

the groupGLp contracts to the subgroupGL1; [Pa]. On the other hand, in GL1 one

can produce cohomologically equivalent cocycles cp � cL such that cp extends from

GL1 to GLp: These are relevant for understanding the gauge group action in space-

time dimension n + 1 > 2: The static gauge transformations are elements of GLp
for p > n=2: For example, when n = 3 the gauge group Gn =Map(Mn; G) � GL2
and one has, [MR],

(4.13) c2(X;Y ; f) =
1

8
tr [�; f ]f�1[[�;X]; [�; Y ]];

where c2(X;Y ; f) is the value of a 2-form on GL2 at a point f to the directions

of the left invariant vector �elds (= Lie algebra elements) X;Y: This formula has

been generalized for arbitrary p, [FT,L4].

In order to �x the cohomology class of the one-cocycle �(g;A) it is su�cient

to look how � winds around the circle when a family f(t; s) of time dependent

gauge transformations wraps around a closed surface S (parameterized by s; t) in

the group Gn of static gauge transformations. This follows from the fact that the

cohomology class of any two-form is determined by giving its integral over all closed

two-cycles. The winding number is given by the integral of the curvature cL around

the surface S in GL1 de�ned by the family of gauge transformed renormalized

evolution operators.

For any �xed potential A and a homotopy f(t; s) of time dependent gauge trans-

formations we have a map S ! GLp given by (t; s) 7! f(t; s)U(t); where U(t) is the

nonrenormalized time evolution operator determined by A: The renormalization

T (A) does not change the homology class of the surface S in GL1 � GLp since T

is de�ned over a contractible parameter space. It follows that the integral over a

closed surface S of the curvature on GL1 is given by the integral of cp of the non-

renormalized operators f(t; s)U(t): Furthermore, the surface (t; s) 7! f(t; s)U(t)

contracts to (t; s) 7! f(t; s): This follows from the fact that each component of Up
is simply connected and so (t; s) 7! U(t) is contractible. Therefore, the �nal result

for the anomaly around a closed surface isZ
f(t;s)

cp:

In the case M = S1 (p = 1) this gives

1

4

Z
S

tr �[�; (@tf)f
�1][�; (@sf)f

�1 ] =
1

2�i

Z
S�S1

tr(@tf)f
�1@x((@sf)f

�1)

=
i

12�

Z
S�S1

tr(f�1df)3;
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where we have used (4.10) in the �rst step and performed integration by parts in

the second step. In dimension n = 3 we insert X = i(@tf)f
�1 and Y = i(@sf)f

�1

into (4.13). A similar calculation gives, using a three dimensional equivalent of

(4.10), [L2],
1

240�2

Z
S�M3

tr(f�1df)5

and so on in higher dimensions. This agrees with the integral of the two form over

S in a gauge orbit obtained by the descent equations. For example, in three space

dimensions the form is

(4.14)
�i

24�2

Z
M3

trdA(XdY � Y dX)

which gives the commutator anomaly in three space dimensions, [M1, FS].

Conclusions: In section 2 we gave a new proof for the existence of the second

quantized fermionic scattering operator in external Yang-Mills �elds. The proof

is valid also in a more abstract setting of generalized gauge interactions in the

spirit of Connes' noncommutative geometry. In section 3 we derived a formula

for the phase of the scattering operator and its gauge variation from the concept

of causality by using the local 2-cocycle on the group GL1: In section 4 we gave

an alternative geometric derivation using a connection on the global group exten-

siondGL1: A constructive interpretation for the descent equations was given in the

hamiltonian framework, linking the anomaly of the Minkowskian e�ective action

to the Schwinger terms. This is complementary to the standard approach which

starts from the euclidean functional determinant.
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APPENDIX: THE CASE OF EXTERNAL METRIC

Let g = (gij(x; t)) be a time-dependent metric tensor in Rn. We assume that

space and time has been foliated by a choice of the time coordinate such that

the space coordinates x1; : : : ; xn are orthogonal with respect to the time t; i.e.

g0i = gi0 = 0 for 1 � i � n: The Dirac equation is written as

(A1) ig00@t = khkj(i@j + �j) ' g00Dh 

where hkj(x) are the components of an oriented orthonormal basis in (Rn; g);

(A2) hkjhmj = gkm:
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The matrices �j are the components of the spin connection (de�ned by the Levi-

Civita connection of g), taking values in the Lie algebra of the spin group Spin(n):

We assume that the deviation of the metric g from the euclidean metric has only

compact support in space and time. Furthermore, g(x; t) is assumed to be smooth.

If the dimension n = 2N + 1 then the g's are 2N � 2N complex matrices with the

property

(A3) ij + ji = 2�ij :

The Lie algebra of Spin(n) is spanned by the commutators [i; j ]: If n = 3 the

-matrices are just the 2 � 2 Pauli matrices which are also the generators of the

Spin group Spin(3) = SU(2):

The principal symbol of the Dirac Hamiltonian is khkjpj : The complete symbol

is the sum of the principal symbol and of a symbol of order zero in the momenta.

Because for any given pair q; p of nonzero vectors there is a rotation R such that

q = Rp; there exists an element B(p; x) 2 Spin(n) such that

(A4) BkpkB
� = �(x; p)khkjpj :

Here the product is a matrix product, no momentum space di�erentiation is in-

volved, and the scale factor � is the ratio of the euclidean lengths of the vectors

p = kpk and q = khkjpj : Both � and B are homogeneous functions of order zero

in momenta.

At the �rst sight it appears that it is not possible to construct B as a continuous

function of the h �eld, the apparent obstruction being the hairy ball theorem: For

a given direction q one can always choose a rotation Rq such that Rq �p = q; but Rq

is not a continuous function of q when n is odd and at least equal to 3. However,

here we can pro�t from the information encoded in the matrix h:

The set of all orthogonal transformations which takes p to q = h � p (up to a

scale) form a �ber Pp;q in a principal bundle P with base X = GL+(n;R)� Sn�1;

consisting of the pairs (h; p=jpj), and the �ber is isomorphic with SO(n � 1); the

'+' refers to matrices with positive determinant. The base contracts to X 0 =

SO(n) � Sn�1 (by the Cartan decomposition). On the other hand, over X 0 the

bundle P is trivial, the trivialization being given by (h; p) 7! h: Thus P is trivial.

We choose a trivialization (h; p) 7! R(h; p): We choose B(h; p) 2 Spin(n) which

projects down to R 2 SO(n): There is a Z2 ambiguity in the choice which does not

bother us since the transformation law for the Dirac operator is quadratic in B:

If we compute the left-hand side in (A4) with the complete star product instead

of the matrix product, we generate symbols of order less than or equal to zero.

Thus we have proven the following lemma:

Lemma. There is a function B(h) of the basis h taking values in the group of

invertible PSDO's of order zero such that B�khkjpjB di�ers from �(x; p)�1kpk
by an operator of order zero.

The unitarily equivalent Hamiltonian B0 = B�DhB has then the property that

[�;B�DhB] is a PSDO of order zero. One can now apply the recursive method in

section 2 to obtain the renormalization operator T = T (A) where now A = B0�D0
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and D0 = kpk: This method applies as well to the case of combined background

gauge and gravitational interactions.

APPENDIX B: ESTIMATES ON DYSON SERIES

We consider here the Dyson series (2.3) solving the time evolution equation (2.2)

with hA(t) = eitD0A(t)e�itD0 : If A(t) is bounded for all t, one can easily prove by

induction that

jjVn(t; t
0)jj �

1

n!

�Z t

t0
drjjA(r)jj

�n

which shows that (2.3) converges in the operator norm jj � jj for all t; t0 2 R.

Similarly, if [�;A(t)] is Hilbert Schmidt for all t, then the Hilbert Schmidt norm

of Vn can be estimated as

jj[�; Vn(t; t
0)]jj2 �

Z t

t0
drjj[�;A(r)]jj2

1

(n � 1)!

�Z t

t0
drjjA(r)jj

�n�1

showing that [�; V (t; t0)] is also Hilbert Schmidt.

APPENDIX C: PSEUDODIFFERTIAL OPERATORS (PSDO)

To �x our notation we summarize here the basic de�nitions and facts about PS-

DOs [H]. A PSDOA on the Hilbert space L2(Mn)
V ,Mn a smoothmanifold and V

a �nite dimensional vector space, is given locally by its symbol a(x; p) = �(A)(x; p)

which is a smooth matrix- (gl(V; V )-) valued function of the local coordinates

x 2 U � Rn and momenta p 2 Rn; [H]. The action of A on a section  with

support in U is given as

(C1) (A )(x) =
1

(2�)n=2

Z
a(x; p) ̂(p)e�ip�xdp

where  ̂ is the Fourier transform of the function  : U ! V;

 ̂(p) =
1

(2�)n=2

Z
eix�p (x)dx:

We shall consider the restricted class of PSDO's which admit an asymptotic

expansion of the symbol as

a(x; p) � ak(x; p) + ak�1(x; p) + ak�2(x; p) + : : :

where k is an integer and each aj is a homogeneous matrix valued function of the

momenta, of order j; with jaj j � jpjj as
p
p21 + � � �+ p2n = jpj ! 1: The order of

such a PSDO is orda = k.
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The asymptotic expansion for the product of two PSDO's is given by the formula

(C2) a � b �
X (�i)jmj

m!
[(@p)

ma(x; p)] [(@x)
mb(x; p)] ;

where the sum is over all sets of nonnegative integers m = (m1; : : : ;mn =); jmj =

m1 + � � �+mn; @x
m = ( @

@x1
)m1 : : : ( @

@xn
)mn ; etc., and m! = m1! : : :mn!.

The order of a � b is equal to the sum of orda+ ordb since the leading term in

a � b is just the matrix product ab of the symbols.

The symbol of a massless Dirac operator DA in an external vector potential A

is k(pk +Ak) where ij + ji = gij are the Dirac gamma matrices and g = (gij)

is the metric tensor. The symbol for the square D2
A is p2+ lower order terms in

p and therefore the symbol of jDAj is jpj+ lower order terms. From this follows,

using (A2), that the symbol of [jDAj; B] is
pk
jpj

@
@xk

b(x; p)+ terms of order ordB for

any PSDO B with symbol b: In particular, the order of [jDAj; B] is at most equal

to the order of B:

On a compact manifold of dimension n a PSDO is trace class if its order is

strictly less than �n and it is Hilbert-Schmidt if the order is < �n=2: In Rn one

has to assume in addition that the symbol is either compactly supported in x or

at least the asymptotic behavior of the symbol and its derivatives at jxj ! 1 is as

jxj�k, where k > n in case of trace class operators and k > n=2 for Hilbert-Schmidt

operators. In Rn the trace (when it exists) of a PSDO is simply given as

trA =
1

(2�)n

Z
tr a(x; p)dpdx:
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