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Abstract

The gauging of free di�erential algebras (FDA's) produces gauge �eld

theories containing antisymmetric tensors. The FDA's extend the Cartan-

Maurer equations of ordinary Lie algebras by incorporating p-form potentials

(p > 1). We study here the algebra of FDA transformations. To every

p-form in the FDA we associate an extended Lie derivative ` generating a

corresponding \gauge" transformation. The �eld theory based on the FDA is

invariant under these new transformations. This gives geometrical meaning

to the antisymmetric tensors. The algebra of Lie derivatives is shown to close

and provides the dual formulation of FDA's.
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1 Introduction

Free di�erential algebras [1, 2, 3] have emerged as underlying symmetries of �eld

theories containing antisymmetric tensors, as for example supergravity and super-

string theories. Within the group-geometric method of ref.s [4, 3, 5], a systematic

algorithm exists that produces lagrangians invariant under any given FDA.

Actually, the FDA symmetries related to the antisymmetric tensors were not

explicitly discussed in [1, 2, 3]. They were treated in [6, 5], where they could

be deduced from the BRST algebra of FDA's by interpreting the ghosts as gauge

parameters.

Here we present a direct geometric interpretation of antisymmetric tensors: they

are the gauge �elds of gauge transformations generated by a new type of Lie deriva-

tive. These new Lie derivatives, together with the usual Lie derivatives along the Lie

algebra tangent vectors, close on an algebra that can be called the dual formulation

of FDA's, extending ordinary Lie algebras.

Our arguments are developed in the case of the simplest FDA extension of the

Cartan-Maurer equations, containing a 2-form.

2 Group geometry and dynamical �elds

We sketch the basic steps of the group-geometric approach of ref.s [4, 3]. See [5] for

a short review.

Lie algebra, tangent vectors, vielbeins

Consider an ordinary Lie algebra Lie(G), with abstract generators TA satisfying

the commutation relations

[TA; TB] = C
C
ABTC (2.1)

On the group manifold G we can �nd a basis of tangent vectors tA closing on the

same algebra as in (2.1). Their duals are the left-invariant one-forms �A (cotangent

basis), also called vielbeins, satisfying the Cartan-Maurer equations:

d�
A +

1

2
C

A
BC�

B ^ �C = 0 (2.2)

as can be seen by using (2.1) and �
A(tB) = �

B
A . Thus, the commutation algebra

(2.1) and the Cartan-Maurer equations (2.2) are equivalent descriptions of the same

group structure. The Jacobi identities

C
A
B[CC

B
DE] = 0 (2.3)

necessary for the consistency of (2.1) ensure the integrability of eq.s (2.2), that is

the nilpotency of the external derivative d2 = 0.
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Dynamical �elds, curvatures and Bianchi identities

The main idea of ref.s [4, 3] is to consider the one-forms �A as the fundamental

�elds of the geometric theory to be constructed. More precisely, the dynamical �elds

are the vielbeins �A of ~G, a smooth deformation of the group manifold G referred

to as \soft group manifold". In general �A does not satisfy the Cartan-Maurer

equations any more, so that

d�
A +

1

2
C

A
BC�

B ^ �C � R
A 6= 0 (2.4)

The extent of the deformation G! ~G is measured by the curvature two-form R
A.

R
A = 0 implies �A = �

A and viceversa. The deformation is necessary in order to

allow con�gurations with nonvanishing curvature.

Applying the external derivative d to the de�nition (2.4), using d2 = 0 and the

Jacobi identities (2.3), yields the Bianchi identities

(rR)A � dR
A � CA

BCR
B ^ �C = 0 (2.5)

An example: G = Poincar�e group

Consider ~G= smooth deformation of the Poincar�e group, whose structure con-

stants are read o� the corresponding Lie algebra :

[Pa; Pb] = 0 (2.6)

[Mab;Mcd] = �adMbc + �bcMad � �acMbd � �bdMac (2.7)

[Mab; Pc] = �bcPa � �acPb (2.8)

Denoting by V a and !ab the vielbein �A when the index A runs on the transla-

tions and on the Lorentz rotations respectively, eq.s (2.4) take the form:

R
a = dV

a � !ab ^ V c
�bc (2.9)

R
ab = d!

ab � !ac ^ !db
�cd (2.10)

The fundamental �elds V a and !ab are interpreted as the ordinary vierbein and

the spin connection, respectively, and eq.s (2.10) de�ne the torsion and the Riemann

curvature. These satisfy the Bianchi identities

dR
a �Rab

V
b + !

ab
R
b � DRa �Rab

V
b = 0 (2.11)

dR
ab �Rac

!
cb + !

ac
R
cb � DRab = 0 (2.12)

Products between forms are understood to be exterior products, D is the Lorentz

covariant derivative, and repeated indices are contracted with the Minkowski metric

�ab.
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Note that the �elds �A(y) depend on all the soft group manifold coordinates

y. In the Poincar�e example, this means that the vierbein and the spin connection

depend on the coordinates ya associated to the translations (the ordinary space-

time coordinates) and on the coordinates yab associated to the Lorentz rotations.

Since we want to have space-time �elds at the end of the game, we have to �nd

a way to remove the yab dependence. This is achieved when the curvatures are

horizontal in the yab directions (see later).

How do we �nd the dynamics of �A(y) ? We want to obtain a geometric the-

ory, i.e. invariant under di�eomorphisms of the soft group manifold ~G. We need

therefore to construct an action invariant under di�eomorphisms, and this is simply

achieved by using only di�eomorphic invariant operations as the exterior derivative

and the wedge product. The building blocks are the one-form �
A and its curva-

ture two-form R
A, and exterior products of them can make up a lagrangian D-form

(where D is the dimension of space-time).

Di�eomorphisms

The variation under di�eomorphisms y+ " of the vielbein �eld �A(y) is given by

the Lie derivative of the vielbein along the in�nitesimal tangent vector � � "
A
tA:

��
A = �

A(y + ")� �A(y) = d(i��
A) + i�d�

A � `��
A (2.13)

On p-forms !(p) = !B1:::Bp�
B1 ^ ::: ^ �Bp, the contraction iv along an arbitrary

tangent vector v = v
A
tA is de�ned as

iv !(p) = p v
A
!AB2:::Bp �

B2 ^ :::^ �Bp (2.14)

and maps p-forms into (p � 1)-forms.

The operator

lv � d iv + iv d (2.15)

is the Lie derivative along the tangent vector v and maps p-forms into p-forms. Eq.

(2.13) gives the variation under di�eomorphisms of any p-form.

We now rewrite the variation ��
A of eq. (2.13) in a suggestive way, by adding

and subtracting CA
BC�

B
"
C :

��
A = d"

A + C
A
BC�

B
"
C � 2�B"C(d�A)BC �C

A
BC�

B
"
C

= (r")A + i�R
A (2.16)

where we have used the de�nition (2.4) for the curvature, and the G-covariant

derivative r acts on "A as

(r")A � d"
A + C

A
BC�

B
"
A (2.17)
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Horizontality

All the invariances of the geometric theory are contained in eq. (2.16). In par-

ticular, suppose that the two-form R
A = R

A
BC �

B ^ �C has vanishing components

along the directions of a subgroup H of G:

R
A
BH = 0

A runs on G

H runs on H (2.18)

Then we say that RA is horizontal on H, and the di�eomorphisms along the H-

directions reduce to gauge transformations:

��
A(y) = (r")A (2.19)

Moreover, the dependence on the yH coordinates becomes inessential, in the sense

that it factorizes after a �nite gauge transformation (see ref.s [3, 5]). The the-

ory "remembers" the invariance under yH-di�eomorphisms by retaining the gauge

invariance under H, with "H interpreted now as a gauge parameter.

For example, in Poincar�e gravity the curvatures are horizontal along the Lorentz

directions : then the �elds V a and !ab live on the coset space

G

H
=

Poincare0

Lorentz
(2.20)

i.e. on ordinary spacetime. The lagrangian is integrated on a D- volume (D-

dimensional spacetime), and is therefore a D-form. The resulting theory is invariant

under D-spacetime di�eomorphisms, and under local Lorentz rotations.

Finally, we recall the algebra of Lie derivatives on the group manifold. From

`"BtB�
A = d"

A +
�
C

A
BC � 2RA

BC

�
�
B
"
C (2.21)

cf. (2.16), we deduce

h
`"A

1
tA
; `"B

2
tB

i
= `["A1 @A"C2 �"A2 @A"C1 +"A

1
"B
2 (CCAB�2RC

AB)]tC
(2.22)

where the partial derivative @A of a function f is de�ned by df � (@Af)�
A or also

@Af � tA(f). One can can verify the standard formula:

[`"A
1
tA
; `"B

2
tB
] = `["A

1
tA; "

B
2
tB ] (2.23)

In particular, the Lie derivatives `tA on the undeformed group manifold G close on

the Lie algebra:

[`tA; `tB ] = C
C
AB`tC (2.24)
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3 Free di�erential algebras

The dual formulation of Lie algebras provided by the Cartan-Maurer equations (2.2)

can be naturally extended to p-forms (p > 1):

d�
i
(p) +

X 1

n
C

i
i1:::in

�
i1
(p1)
^ :::^ �in(pn) = 0; p + 1 = p1 + :::+ pn (3.1)

p; p1; :::pn are the degrees of the forms �i; �i1; :::; �in; the indices i; i1; :::; in run on

irreps of a group G, and C i
i1:::in

are generalized structure constants satisfying gen-

eralized Jacobi identities due to d2 = 0. When p = p1 = p2 = 1 and i; i1; i2 belong

to the adjoint representation of G, eq.s (6.1) reduce to the ordinary Cartan-Maurer

equations. The (anti)symmetry properties of the indices i1; :::in depend on the

bosonic or fermionic character of the forms �i1; :::�in

If the generalized Jacobi identities hold, eq.s (3.1) de�ne a free di�erential alge-

bra (FDA). The possible FDA extensions G0 of a Lie algebra G have been studied

in ref.s [1, 2], and rely on the existence of Chevalley cohomology classes in G [7].

Suppose that, given an ordinary Lie algebra G, there exists a p-form:


i
(p)(�) = 
i

A1:::Ap
�
A1 ^ ::: ^ �Ap; 
i

A1:::Ap
= constants; i runs on a G� irrep

(3.2)

which is covariantly closed but not covariantly exact, i.e.

r
i
(p) � d
i

(p) + �
A ^D(TA)

i
j


j

(p) = 0; 
i
(p) 6= r�

i
(p�1) (3.3)

Then 
i
(p) is said to be a representative of a Chevalley cohomology class in the Di

j

irrep of G. r is the boundary operator satisfying r2 = 0 (it would be proportional

to the curvature 2-form on the soft group manifold). The existence of 
i
(p) allows

the extension of the original Lie algebra G to the FDA G
0:

d�
A +

1

2
C

A
BC�

B ^ �C = 0 (3.4)

r�i
(p�1) + 
i

(p)(�) = 0 (3.5)

where �i
(p�1) is a new (p� 1)-form, not contained in G. Closure of eq.s (6.4) is due

to r
i
(p) = 0.

It is clear that 
i
(p) di�ering by exact pieces r�i

(p�1) lead to equivalent FDA's,

via the rede�nition �i
(p�1) ! �i

(p�1) + �i
(p�1). What we are interested in are really

nontrivial cohomology classes satisfying eq.s (3.3).

The whole game can be repeated on the free di�erential algebra G0 which now

contains �A, �i
(p�1). One looks for the existence of polynomials in �A, �i

(p�1)


i
(q)(�;�) = 
i

A1:::Ari1:::is
�
A1 ^ ::: ^ �Ar ^ �i1

(p�1) ^ ::: ^ �is
(p�1) (3.6)

satisfying the cohomology conditions (3.3). If such a polynomial exists, the FDA

of eq.s (3.4), (3.5) can be further extended to G00, and so on.
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Note 1: In constructing D-dimensional supergravity theories we usually choose

as starting point the superPoincar�e Lie algebra. The possible G
0 extensions to

FDA's depend on the spacetime dimension D. For example in D = 11 there is a

cohomology class of the superPoincar�e algebra in the identity representation:


(V; !;  ) =
1

2
� �ab V a

V
b (3.7)

where  is the gravitino �eld, dual to the supersymmetry charge; d
 = 0 holds

because of the D = 11 Fierz identity

� �ab � �a V b = 0 (3.8)

This allows the extension of the algebra (3.4) by means of a three -form A:

dA� 
(V; !;  ) = 0 (3.9)

Note 2: Only nonsemisimple algebras can have FDA extensions in nontrivial G-

irreps. Indeed a theorem by Chevalley and Eilenberg [7] states that there is no

nontrivial cohomology class of G in nontrivial G-irreps when G is semisimple.

As we have done in the case of ordinary Lie algebras, we �nd a dynamical theory

based on FDA's by allowing nonvanishing curvatures. This means, for example, that

D = 11 supergravity is based on a deformation of the �elds V; !;  ;A such that

the superPoincar�e curvatures and the A-curvature are di�erent from zero. For the

geometric construction of the action we refer the reader to refs. [3, 5]. Other theories

with antisymmetric tensors have been interpreted as gaugings of free di�erential

algebras: see [3] for a detailed study.

4 The FDA1 algebra

We consider here the simplest extension of a Lie algebra, denoted by FDA1:

d�
A +

1

2
C

A
BC �

B
�
C = 0 (4.1)

dB
i + C

i
Aj�

A
B

j +
1

6
C

i
ABC�

A
�
B
�
C � rBi +

1

6
C

i
ABC�

A
�
B
�
C = 0 (4.2)

where Bi is a two-form in a representation Di
j of G. The generalized Jacobi iden-

tities (d2 = 0), besides the usual ones for CA
BC, are

C
i
AjC

j
Bk � C

i
BjC

j
Ak = C

C
ABC

i
Ck; representation condition (4.3)

4C
j

[ABCC
i
D]j + 6CE

[ABC
i
CD]E = 0; 3� cocycle condition (4.4)

Eq. (4.3) implies that (CA)
i
j � C

i
Aj is a matrix representation of G, while eq.

(4.4) is just the statement that C i � C
i
ABC�

A
�
B
�
C is a 3-cocycle, i.e. rC i = 0. If
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we allow the left hand sides of eq.s (4.1), (4.2) to be nonvanishing curvatures RA,

R
i respectively, we �nd the Bianchi identities:

dR
A � CA

BC R
B
�
C = 0 (4.5)

dR
i � C i

AjR
A
B

j + C
i
Aj�

A
R
j �

1

2
C

i
ABCR

A
�
B
�
C = 0 (4.6)

where we use the same symbol Bi for the "soft" 2-form. The curvatures can be

expanded on the �A; Bi basis as

R
i = R

i
ABC�

A
�
B
�
C +R

i
Aj�

A
B

j (4.7)

R
A = R

A
BC�

B
�
C +R

A
iB

i (4.8)

Lie derivatives

Using the de�nition (2.15) and the expression of the FDA curvatures, we �nd

the action of the Lie derivative on Bi:

`"B tBB
i =

�
R
i
Aj � C

i
Aj

�
"
A
B

j +

�
3Ri

ABC �
1

2
C

i
ABC

�
"
A
�
B ^ �C (4.9)

the action on �A remaining the one given in (2.21). Here we �nd something inter-

esting: the Lie derivatives do not close any more as in eq. (2.22). Before computing

this modi�ed algebra, let us de�ne

i) a new contraction operator i"jtj by its action on a generic p-form ! =

!i1:::inA1:::AmB
i1 ^ :::Bin ^ �A1 ^ :::�Am as

i"jtj! = n "
j
!ji2:::inA1:::AmB

i2 ^ :::Bin ^ �A1 ^ :::�Am (4.10)

where "j is a 1-form. This operator still maps p-forms into (p � 1)-forms. We can

also de�ne the contraction itj , mapping p-forms into (p � 2)-forms, from

i"jtj = "
j
itj (4.11)

In particular

itj(B
i) = �

i
j (4.12)

so that tj can be seen as the \tangent vector" dual to Bj. Note that i"jtj vanishes

on p-forms that do not contain at least one factor Bi.

ii) a new Lie derivative given by:

`"iti � i"itid+ d i"iti (4.13)

This new derivative commutes with d, satis�es the Leibnitz rule, and acts on the

fundamental �elds as

`"jtj�
A = "

j
R
A
j (4.14)

`"jtjB
i = d"

i + (C i
Aj �R

i
Aj)�

A ^ "j (4.15)
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Using these new objects, and the Bianchi identities (4.7), (4.8), we can compute

the commutator of two \usual" Lie derivatives (acting on �A or on Bi) and �nd:

h
`"A

1
tA
; `"B

2
tB

i
= `["A1 @A"C2 �"A2 @A"C1 +"A

1
"B
2 (CCAB�2RC

AB)]tC
+ `(CiABC�6Ri

ABC)�A"B1 "C2 ti
(4.16)

This result has an important consequence: if the �eld theory based on FDA1 is ge-

ometric, i.e. its action is invariant under di�eomorphisms generated by the \usual"

Lie derivative, then the new Lie derivative de�ned in (4.13) must also generate a

symmetry of the action, since it appears on the right-hand side of (4.16). Thus,

when we construct geometric lagrangians gauging FDA1, we know a priori that

the resulting theory will have symmetries generated by the new Lie derivative. In

other words, the transformations (4.14), (4.15) are invariances of the action.

It becomes now essential to �nd the total FDA algebra of transformations, and

show that it closes. Using the Bianchi identities, it is a straightforward exercise to

�nd the remaining commutators:

h
`"AtA; `"jtj

i
= `[`

"AtA
"k+(CkBj�RkBj)"B"j ]tk

(4.17)
h
`"i

1
ti
; `

"
j
2
tj

i
= `

RB
i
("i
1
("2)

j

B
�"i

2
("1)

j

B
)tj

(4.18)

where "iA are the components of the 1-form "
i, i.e. "i � "

i
A�

A. In particular, we

can �nd the commutators of the Lie derivatives on the rigid FDA1 \manifold" by

taking "A = const., "iB = const. and vanishing curvatures:

[`tA; `tB ] = C
C
AB`tC + C

i
ABC `�C ti (4.19)

[`tA; `�Bti] = [Ck
Aj�

B
F � (CB

AF � 2RB
AF )�

k
j ]`�F tk (4.20)

[`�Ati; `�Btj ] = 0 (4.21)

This algebra can be considered the dual of the FDA1 system given in (4.1), (4.2),

and generalizes the Lie algebra of ordinary Lie derivatives (generating usual dif-

feomorphisms) of (2.24). Notice the essential presence of the 1-form � in front of

the \tangent vectors" ti. There are dim(G) � dim(D) independent extended Lie

derivatives `�Ati, with dim(G)=dimension of the Lie algebra, dim(D)= dimension

of the Di
j irrep of G to which Bi belongs .
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