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Abstract

The canonical Poisson structure of nonlinear sigma-model is pre-

sented as a Lie-Poisson r-matrix bracket on coadjoint orbits. It is

shown that the Poisson structure of this model is determined by some

`hidden singularities' of the Lax matrix.

Introduction

Two-dimensional nonlinear sigma models were studied for almost 20 years.

Their full treatment in quantum case proved to be much more di�cult than

for other related relativistic models, e.g. the Sine Gordon equation. Surpris-

ingly, a consistent r-matrix formulation of these models (which is a neccessary

prerequisite of the study of the quantum case) was lacking, although a Lax

pair for chiral model was found by Zakharov and Mikhailov many years ago.

The purpose of this note is to explain the origin of the Zakharov-Mikhailov

Lax pair and its generalizations and of the associated Poisson structures in

the r-matrix language. As it appears, the relevant r-matrices are non-unitary;

they belong to the hierarchy associated with the standard rational r-matrix.

Our method also applies to nonlinear sigma models with values in a rieman-

nian symmetric space; it represents a �rst step towards a solution of the

corresponding quantum problem. (Although the particle spectrum and the

corresponding factorized scattering matrices have been guessed many years
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ago by Zamolodchikov and later Faddeev and Reshetikhin [5] were able to

reproduce this result using an in�nite spin limit in an appropriate lattice

model, a systematic treatment of chiral models on the lines of the Quantum

Inverse Scattering Method still seems to be lacking.) It should be noted

that the non-unitarity of the r-matrix poses additional problems in our ap-

proach. The crucial point is to �nd consistent Poisson bracket relations for

the monodromy matrix of the Lax operator. The anomalies in these relations

are directly related to the non-unitarity of the r-matrix, and although their

regualrization in some cases is possible, for chiral models this technique fails.

In this paper we shall discuss sigma models with values in a semisimple

Lie group (following a suggestion of L.D.Faddeev we shall call them principal

chiral models), as well as sigma models with values in Riemannian symmetric

spaces.

I am grateful to L.D.Faddeev, F.A.Smirnov, and A.Yu.Alekseev for help-

ful discussions.

I would like to thank M.A.Semenov-Tian-Shansky who pointed out to me

the elegant ad�elic construction of the rational r-matrices and of the related

linear hierarchies of Poisson brackets [12], [9].

1 Hamiltonian formulation of chiral �elds.

We remind some standard facts on the canonical Poisson structures on cotan-

gent bundles of Lie groups [6]. Let G be a Lie group, g its Lie algebra, and

g� the dual space of g. The cotangent bundle T �G admits two canonical

trivializations by left and right translations, respectively. If Lg : h 7�! gh is

a left translation on cG; then
dL�g : T

�
gG ! T �eG ' g�:

Similarly, if Rg : h 7�! hg is a right translation, then

dR�g : T
�
gG ! T �eG ' g�:

Thus if (g; �g) 2 T
�G; �g 2 T

�
gG; then
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(g; �g)
L
7! (g; lt) ; lt = dL�g�g;

(g; �g)
R
7! (g; rt) ; rt = �dR�g�g;

T �G
L;R
! G � g�

(1)

are the left and right trivializations. Clearly, we have

rt = �Ad�g (lt) : (2)

The minus sign in (1), (2) re
ects the fact that the Lie algebras of left- and

right-invariant vector �elds on G are anti-isomorphic. Let bg = C1 (S1;g)

be the current algebra and bG the corresponding current group. Using the

trivializations of T �G described above the cotangent bundle T � bG may be

identi�ed with cG � bg�: The canonical Poisson bracket on T � bG [1], [7] is

described as follows:

Every functional on T � bG may be represented as a function of two vari-

ables g 2 bG and lt 2 bg� (or rt 2 bg�; depending on the trivialization chosen)

. The derivatives with respect to these variables are de�ned by:

hD0' (g; lt) ;Xi =
d

dt
jt=0 '

�
getX; lt

�
;

hX' (g; lt) ; Y i =
d

dt
jt=0 ' (g; lt + tY ) ;

' 2 Fun
�
T � bG� ;D0'; Y 2 bg�;X';X 2 bg;

(3)

where h�; �i is the natural pairing between bg and bg� . In our case we may

identify bg and bg� using an invariant scalar product on bg :

hX (x) ; Y (x)i =

2�Z
0

tr (X (x)Y (x)) dx; (4)

where tr is an invariant bilinear form on g .

Now we are ready to de�ne the canonical Poisson bracket on T � bG :

f'; g (g; lt) = hD0 ;X'i � hD0';X i+ hlt; [X';X ]i : (5)

In tensor notations we have the following formulas for the brackets of

matrix elements of g and lt :

flt (x)1 ; lt (y)2g =
1

2
[t; lt (x)1 � lt (y)2] � (x� y) ;

fg1 (x) ; lt (y)2g = �g1 (x) t� (x� y) ;

fg1 (x) ; g2 (y)g = 0;

(6)
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where lt (x)1 = lt (x)
 I; lt (x)2 = I 
 lt (x) , and t is the tensor Casimir

in g 
 g .

Our sign convention in formula (1) makes the mapping (2) which converts

left trivialization into right trivialization a Poisson mapping.

The following series of results is connected with the Hamiltonian reduc-

tion on T � bG [1], [2]. The natural actions of bG on itself by left and right

translations may be canonically lifted to T � bG; if we use the trivialization of

T � bG by left translations the lifted actions are given by

bG � T � bG L;R
! T � bG;

Lh (g; lt) = (hg; lt) ;

Rh (g; lt) = (gh;Ad�h�1 (lt))

(7)

These actions are Hamiltonian; the Hamiltonians which correspond to

X 2 bg are given by

HL
X (g; lt) = �hX;Ad�g (lt)i ;

HR
H = hX; lti ;

X 2 bg: (8)

The corresponding moment maps are

�L = �Ad�g (lt) = rt;

�R (g; lt) = lt:
(9)

Let �L; �R be the left-invariant (respectively, the right-invariant) Maurer-

Cartan form onG: The left-invariant (right-invariant) current associated with

g 2 Ĝ is de�ned by

lxdx = g��L; rxdx = �g��R

If G is a matrix group we have simply

lx(x) = g�1@xg(x); rx(x) = �@xg(x)g
�1:

Remark. The notation we use suggests that (lt; lx) and (rt; rx) are two

components of a single two-dimensional Noether current (left-invariant or

right-invariant, respectively). This notation will be motivated later.

The currents lx; rx parametrize the quotient space obtained by reduction

of T � bG over the action of the subgroup G of constant loops by left (respec-

tively, right) translations. The moment map which coresponds to this action

is given by
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�GL (g; lt) =

2�Z
0

rt (x) dx: (10)

The quotient spaceGnT � bGmay be identi�ed with bg�bg� via the mapping:

(g; lt) 7! (lx; lt)

The coordinates lx; lt have the following Poisson brackets in the tensor nota-

tions:

flt (x)1 ; lx (y)2g =
1
2
[t; lx (x)1 � lx (y)2] � (x� y)�

�t�0 (x� y) ;

flt (x)1 ; lt (y)2g =
1

2
[t; lt (x)1 � lt (y)2] � (x� y) ;

flx (x)1 ; lx (y)2g = 0:

(11)

This Poisson structure is slightly degenerate and the space G n T � bG de-

composes into symplectic leaves; among these latter there is one which cor-

responds to the zero moment. This leaf is the reduced phase space over the

point �GL (g; lt) = 0 [1] ,[2] .We denote this symplectic manifold by M.

Now we de�ne the principal chiral �eld as a Hamiltonian system on this

symplectic manifold with the Hamiltonian function:

H =
1

2

2�Z
0

tr (lxlx + ltlt) dx: (12)

The equations of motion have the form:

@tl� = fH; l�g ;
@xlx = @tlt;

@xlt � @tlx + [lx; lt] = 0:

(13)

The last equation is the zero curvature condition which serves to restore

the group variable g (x) 2 bG using the variables lx; lt modulo the left action

of constant loops.

To justify the notation introduced above let us observe that the action

functional which corresponds to our choice of the Hamiltonian is given by

S (g) =
1

2

Z
tr (lxlx � ltlt) dxdt: (14)
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where lt = g�1@tg; lx = g�1@xg; clearly, the Legendre transform associated

with (14) identi�es lt; lx with our canonical variables and hence our notation

is consistent. The same remark applies, of course, to right currents rt =

�@tgg
�1; rx = �@xgg

�1; since both the Hamiltonian (12) and the action

functional (14) are Ad-invariant.

We turn to the study of chiral �elds with values in symmetric spaces. Our

exposition follows [4]; we add some details on the canonical formalism.

Let g = k
:

+ p be a Cartan decomposition [3], i.e.

[k;k] � k; [k;p] � p; [p;p] � k; (15)

so that k is a Lie subalgebra in g . Put bk = C1 (S1;k) , and let cK be

the corresponding subgroup in bG . There is a Hamiltonian action of cK on

T � bG which arises from right translations by elements of bG . Its moment map

is given by

�KR (g; lt) = Pklt; (16)

where Pk is the orthogonal projection operator onto the subspace k � g

.

Since the left and right actions of cG on T �cG commute, the above de�ned

action of cK on T �cG generates the action of cK on GnT �cG and even on the

symplectic submanifold M in this space with the same moment map (16).We

introduce the quotient space over this action GnT �cG=cK. The quotient Pois-

son structure on this space is degenerate. The phase space of the chiral �eld

is the symplectic leaf corresponding to the zero values of the left and right

moments of the actions of G and cK �GL (g; lt) = �KR (g; lt) = 0 . This is the

reduced phase space over these actions. We denote it by M1.

Let us choose the following coordinates on the space GnT �cG :

Pkl� = A�; P pl� = B�; � = t; x: (17)

Now we describe the Poisson structure of the phase space. First of all we

calculate the Poisson brackets of the variables Ax; Bx; Bt .

Let tA= (Pk 
 Pk) t; tB= (Pp 
 Pp) t be the k and p components of the

Casimir element of g ,. t = tA+ tB. In this realization we have the following

Poisson brackets for Ax and B� :
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fBt (x)1 ; Bt (y)2g = 0;

fBt (x)1 ; Bx (y)2g =
1

2
[tB; Ax (x)1 �Ax (y)2] � (x� y)�

�tB�
0 (x� y) ;

fBt (x)1 ; Ax (y)2g = [tA; Bx (x)1] � (x� y) :

(18)

These brackets give the Poisson structure on the subspace in GnT �cG (and

hence on M ) on which �KR (g; lt) = 0 .The space M1 carries the quotient

Poisson structure of the Poisson structure (18) under the right action of the

group cK on M .

The chiral �eld is a Hamiltonian system on the phase spaceM1described

above with the Hamiltonian function:

H =
1

2

2�Z
0

tr (BxBx +BtBt) dx; (19)

This function is invariant under the right action cK on M so that it is a

well de�ned function on the phase space. The equations of motion have the

form:

@tBt = @xBx + [Ax; Bx] ;

�@tAx + [Bx; Bt] = 0;

@xBt � @tBx + [Ax; Bt] = 0:

(20)

As above, the two last equations are zero curvature conditions which serve

to restore the �eld variable g (x) 2 bG=cK given the currents Ax and B� (this

correspondence is unique modulo constant loops).

Note that the functions A;B are coordinate functions on the spaceGnT �cG
which is larger than the phase space M1 ; the genuine observables for the

reduced system are gauge invariant functionals of A;B: However it is conve-

nient to look at the evolution on this larger space as well; as we shall see it

admits a Lax representation.

As well as for the principal chiral �eld one can calculate the Lagrangian

function given the Hamiltonian function and the Poisson structure of the

phase space. This calculations gives the well known result:

S (g) =
1

2

Z
tr (BxBx �BtBt) dxdt: (21)
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This shows that Ax; Bx; Bt are the components of the current and S is a

well de�ned function on cG=cK .

If g = su(2) and k = h is the Cartan subalgebra of su(2) our description

of the nonlinear sigma-model is equivalent to the formulation given in [6].

This formulation uses the space T � bG=cK as the phase space of our model. In

this realization the coordinates on T � bG=cK are:

n = gXg�1; � = � [rt; n] ;

here X =

 
i 0

0 �i

!
;

(22)

and it is supposed that �KR (g; l) = Pklt = 0 . We don`t need the explicit

form of the equations of motion in this realization nor the formulas expressing

the Poisson structure in terms of n and � . The reader may easily restore

these formulas using [6]. For instance, we rewrite the action (21) in the terms

of n and � :

S =
1

2

Z �
(@xn)

2 � (�)
2
�
dxdt: (23)

2 The coadjoint orbits formulation for prin-

cipal chiral �elds.

In this section we shall develope the Lie-algebraic point of view on the Pois-

son structure of the principal chiral �eld. Our goal is to propose an r-matrix

formulation of the Zakharov-Mikhailov Lax pair [6], [10]. The Lax matrix

of Zakharov and Mikhailov is a rational function on CP1 with two poles at

� = �1; there is also a 'hidden' singularity at � = 0 . As we shall see, it

is this latter singularity that determines the Poisson structure of the chiral

model. By contrast, apparent singularities at � = �1 do not in
uence the

Poisson structure; instead each of them produces a series of local conserva-

tion laws. A convenient formalism allowing to work with Lax matrices with

arbitrary poles uses the algebra of ad�eles of rational functions; the rational

r-matrix is associated with the canonical decomposition of this algebra into

complementary subalgebras.

We remind some de�nitions [9]. Let g is a semisimple Lie algebra, g� the

Lie algebra of rational functions on C with values in g: Let �� be the local
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parameter at � 2 C; �� = � � �; � 2 C; �1 = � 1

�
: Let g� = g ((��)) be the

algebra of formal Laurent series with values in g . Put gA =
`
�2C

g� . In this

formula it is supposed that the sum is taken over the extended complex plane

C and for every element of gA only a �nite number of series in the direct

sum are Laurent series and all the others are Taylor series. The algebra g� of

rational functions with values in g is embedded in gA in the following way:

X (�)!
M
�2C

X (�)� ; (24)

here X (�) 2 g� and X (�)
�
is the Laurent series of X (�) at the point �

. The subalgebra g� is isotropic in gA with respect to the invariant scalar

product:

(X (�) ; Y (�)) =
P
�2C

Res� trX� (��)Y� (��) d�;

X (�) =
L
�2C

X� (��) ; Y (�) =
L
�2C

Y� (��) :
(25)

For every element X 2 gA there exists a rational function P�X (�) such

that the principal parts of its Laurent series of at all points coincide with

the principal parts of the Laurent series of X� (��) at the same points. This

function is given by the formula:

P�X (�) =
X
�2C

Res
�

tr
t

� � �
X� (��) d�: (26)

So there exists a direct decomposition of the linear space gA :gA = g�
:

+

g+ , where g� is the algebra of rational functions and g+ is the subalgebra of

gA which consists of Taylor series. Evidently, the subalgebra g+ is isotropic

with respect to the scalar product (25) , so that there are natural pairings:

g�+ ' g�;g
�
� ' g+ . And if we de�ne the projection operator P� onto g(�) by

the formula (26) and the complementary projection operator P+ = I � P� ,

then P �
+ = P� with respect to the scalar product (25). The rational r-matrix

is de�ned by the standard formula [9], [6]:

r = P+ � P�;

r� = �r;
(27)
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It satis�es the modi�ed classical Yang-Baxter equation. In standard ap-

plications the space g� is used as a model of the dual space g�+; a generic

point L 2 g� is regarded as a Lax matrix and the Lie-Poisson bracket of

g+ provides a 'universal' hamiltonian structure for Lax equations in ques-

tion. For our purposes we modify this construction in the following way. To

identify the space gA with g�A we use the modi�ed scalar product on gA :

(X (�) ; Y (�))� =
X
�2C

Res
�

trX� (��)Y� (��)� (�) d�; (28)

where � (�) is some rational function with numerical values. This scalar

product allows to consider a nontrivial model for the space g�+ . Namely the

space g+ is not isotropic with respect to this scalar product and

g�+ '
n
��1 (�)X (�) ;X (�) 2 g�

o
: (29)

The rational r-matrix is not skew-symmetric with respect to this scalar

product:

r� = ���1r�; (30)

where � denotes the operator of multiplication by � .We use the scalar

product (28) and the r-matrix (27) to de�ne the r-matrix Lie-Poisson bracket

for the central extension of the current algebra bgA = C1 (S1;gA) . It has

the form [6],[11],[8]:

f'; g (L) =
2�R
0

dy (L; [rX';X ] + [X'; rX ])��

�
2�R
0

dy ((r + r�) @yX';X )� ;

L 2 bg�A; and X' is a derivative of ' :
2�R
0

dy (X'; Y )� =
d

dt
jt=0 ' (L+ tY ) ; Y 2 bg�A:

(31)

The Jacobi identity for this bracket follows from the Yang-Baxter equa-

tion for r . It is well known that this bracket may be restricted to the spacebg�+ and symplectic leaves of this bracket are coadjoint orbits of the algebrabg+ in the space bg�+ . The Lax operators of integrable models lie in this space.

In our realization they have the form (29) with respect to the spectral pa-

rameter � . It is evident from the de�nition (31) that the Poisson structure
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of such models will be connected only with the poles of X (�) in (29). while

local conservation laws are connected with the asymptotic expansion of the

monodromy matrix in the neighbourhood of the poles of the Lax operator

and hence they depend on the poles of the function ��1 (�)X (�) in (29).

In the tensor notations introduced above this bracket has the form:

fL1 (x; �) ; L2 (y; �)g = [a; L1 (x; �) + L2 (y; �)] � (x� y)+

+ [s; L1 (x; �)� L2 (y; �)] � (x� y) + 2s�0 (x� y) ;

here a and r are kernels of the operators:

a = 1
2
(r � r�) ; s = 1

2
(r + r�)

in the scalar product (28).

(32)

For instance, P� has the following kernel

P� (�; �) =
t

�� �
� (�)

�1
: (33)

Moreover,

s = �P� + ��1P��; (34)

so that

s jg
�

= 0; s jg+= ��1P�� jg+ ; (35)

s jg� 6= 0 if and only if � has a pole at the point � .

a = I � P� � ��1P��: (36)

Thus we have

s (�; �) = t

���

�
� (�)

�1 � � (�)
�1
�
;

a (�; �) = t

���

�
� (�)

�1
� � (�)

�1
�
:

(37)

For another point of view on the bracket (31) see [8].

Now we are going back to the principal chiral �eld. For this model there

exists the Zakharov-Mikhailov Lax pair [6]:

L = � 1

1��2
(lx + �lt) ;

T = � 1

1��2
(lt + �lx) :

(38)
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The equations of motion (13) are expressed as the zero curvature condi-

tion:

[@x � L; @t � T ] = 0: (39)

We propose the following Lie-algebraic interpretation of this pair. Let us

consider the algebra gA with the scalar product (28), where

� (�) = 2
�2 � 1

�2
: (40)

. Our main result is the theorem:

Theorem 2.1 The r-matrix Lie-Poisson bracket (31) for the Lax operator

(38) coincides with the brackets (11) for the canonical Poisson structure of

the principal chiral �eld if � in the de�nition (31) is given by the formula

(40). In this case we must put in (32):

s (�; �) = �1

2

t(�+�)

(1��2)(1��2)
;

a (�; �) = 1
2

t
���

�
�2

1��2
+ �2

1��2

�
:

(41)

The theorem is veri�ed by a direct computation. Thus the principal chiral

�eld is described by the general Lie-algebraic scheme used in the Classical

Inverse Scattering Method [6],[10]. We conclude this section with the formula

allowing to restore the square of moment (10) using only the monodromy

matrix of our model. It should be mentioned that the moment (10) is not well

de�ned quantity on the space GnT �cG because we may restore the variable

rt on the space GnT �cG only up to constant loops. The well de�ned quantity

is the square of the moment �GL with respect to the scalar product tr on g .

Let us consider the equation for the monodromy matrix:

@x	(x; �) = �
1

1� �2
(lx + �lt)	 (x; �) ;	(0; �) = I; (42)

so that M (�) = 	 (2�; �) .We have:

@x	(x; 0) = �lx	(x; 0) = �g�1@xg	(x; 0) ;

so that modulo left actions of constant loops 	 (x; 0) = g�1 (x) :
(43)
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It means that there exist an element g0 2 G such that 	 (x; 0) g0 = g�1 (x)

.

Let

�

	 (x; 0) =
@

@�
j�=0 	(x; �) : (44)

For this function we have the equation:

@x
�

	 (x; 0) = �ltg
�1 (x)� lx

�

	 (x; 0) : (45)

This equation has the following general solution:

�

	 (x; 0) = �g�1 (x)

xZ
0

g (y) lt (y) g (y)
�1
dy; (46)

and

�

M (0) =
d

d�
j�=0 M (�) =M (0)

2�Z
0

rt (y) dy; (47)

where we use (10). Finally we modulo left action of constant loops :

�GL (g; lt) =

2�Z
0

rt (x) dx =M�1 (0)
�

M (0) : (48)

We remind that on the phase space of the principal chiral �eld one must

put �GL = 0. Our formula allows to impose this condition only by means of

the additional constraint for the monodromy matrix.

3 The coadjoint orbits formulation for a non-

linear sigma-model.

We shall try to generalize the construction of the previous section for a non-

linear sigma-model. To make this it is natural to consider so-called twisted

algebra of ad�eles.

Let � be the involution de�ned by the Cartan decomposition (15):
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� : g! g; � jk= id; � jp= �id: (49)

This involution gives rise to an involution b� on the algebra gA :

b� : gA ! gA; b� (X (�)) = �X (��) ;

X (�) =
L
�2C

X� (��) 2 gA; �X (��) =
L
�2C

�X� (��� �)� �X1

�
1

�

�
:

(50)

We de�ne the twisted algebra of ad�eles g�A as the subalgebra of elements

of gA invariant under b� :

g�A = fX (�) 2 gA : b� (X (�)) = X (�)g : (51)

We introduce the following notations:

g�� = g�A \ g�;g
�
+ = g�A \ g+: (52)

As above, there exists a direct decomposition of the linear space g�A :

g�A = g�+
:

+ g��: (53)

We de�ne on g�A the invariant scalar product:

(X (�) ; Y (�)) =
X
�2C

Res
�

trX� (��)Y� (��)
d�

�
: (54)

Let P �
� be the projectors on g�� .Then we construct the standard r-matrix

on g�A :

r� = P �
+ � P �

�: (55)

This r-matrix is not skew-symmetric with respect to the scalar product

(54), because the subalgebras g�� are not isotropic with respect to this scalar

product. The projector P �
� has the following kernel:

P �
� (�; �) = tA

�2

�2 � �2
+ tB

��

�2 � �2
; (56)

and r� has the symmetric part with the kernel:
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s (�; �) = tA; (57)

and the skew-symmetric part:

a (�; �) = �tA
�2 + �2

�2 � �2
� tB

2��

�2 � �2
: (58)

With the same purposes as in the previous section, we shall use the de-

formed scalar product:

(X (�) ; Y (�))� =
X
�2C

Res
�

trX� (��)Y� (�� )�
�
�2
� d�
�
; (59)

here we must use only a scalar rational function � depending on the

variable �2 to de�ne the scalar product correctly.

Then with respect to this scalar product the kernel of the operator P �
�

has the form:

P �
� (�; �)� =

 
tA

�2

�2 � �2
+ tB

��

�2 � �2

!
�
�
�2
��1

: (60)

For the description of the Poisson structure of a nonlinear sigma-model

we remind that , as well as for the principal chiral �eld , there exists a Lax

pair for this model:

L = �
�
Ax +

�
2
(Bx +Bt) +

1
2�
(Bx �Bt)

�
;

T = �
�
+�

2
(Bx +Bt)�

1

2�
(Bx �Bt)

�
;

(61)

and the equations of a motion have the form (39).

We choose the following form of � :

�
�
�2
�
= �

4�2

(�2 � 1)
2
: (62)

For our purposes we need to deform the bracket (31). Let us de�ne the

operator r0 acting on the algebra g�A :

r0 (X (�)) = (Pkr
�X) (1) : (63)

This operator has the kernel:
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P k
� (�) = tA

�2

1 � �2
�
�
�2
��1

(64)

The operator

br = r� � r0 (65)

does not satisfy the classical Yang-Baxter equation, so that this operators

may not be used as an r-matrix for the de�nition of the Poisson brackets (31).

But we may use this operator for the de�nition of the Poisson brackets (31) of

the functions ' for which the derivatives X' lie in the kernel of the operator

r0 , because the Lie-Poisson bracket (31) depends on r only via combinationsbrX'. For instance it is not di�cult to verify that derivatives of functions

depending on the coe�cients of the Lax operator (61) satisfy this condition.

Hence we may de�ne the Poisson brackets of the Lax operator (61) by

the formula (31) using the operator br . Our main result is

Theorem 3.1 Let � be given by the formula (62); choose the r-matrix br as

in (65) .Then for the Lax operator L (61) the r- bracket (31) coincides with

the canonical Poisson structure of the nonlinear sigma-model (18). In this

case we must put in (32):

s (�; �) = tB
4

�
1

��
� ��

�
;

a (�; �) = P �
� (�; �)� + P k

� (�) � P �
� (�; �)� � P k

� (�) :
(66)

We conclude this section with a formula for the square of moment map

(10). Without comments we present the straightforward calculation which is

similar to the one in the previous section (42)-(48)

@x	(x; �) = �
�
Ax +

�

2
(Bx +Bt) +

1

2�
(Bx �Bt)

�
	(x; �) ;	(0; �) = I;

M (�) = 	 (2�; �) ;

@x	(x; 1) = � (Ax +Bt) 	 (x; 1) = �lx	(x; 1) ;

	(x; 1) = g�1 (x) ;modulo left action of constant loops,
�

	 (x; 1) = @

@�
j�=1 	(x; �) ;

@x
�

	 (x; 1) = �lx
�

	 (x; 1)�Bt	(x; 1) =

16



= �lx
�

	 (x; 1)�Btg
�1 (x) ;

�

	 (x; 1) = �g�1 (x)
xR
0

g (y)Bt (y) g
�1 (y)dy = 	(x; 1)

xR
0

rt (y) dy;

M�1 (1)
�

M (1) =
2�R
0

r (x) dx = �GL (g; l) modulo constant loops.

On the phase space of the chiral �eld �GL (g; l) = 0 . Our formula for the

moment allows to impose this constraint in explicit form as an additional

condition on the monodromy matrix.
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