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Abstract

We classify nonultralocal Poisson brackets for 1-dimensional lattice

systems and describe the corresponding regularizations of the Poisson

bracket relations for the monodromy matrix . A nonultralocal quan-

tum algebras on the lattices for these systems are constructed.For some

class of such algebras an ultralocalization procedure is proposed.The

technique of the modi�ed Bethe-Anzatz for these algebras is devel-

oped.This technique is applied to the nonlinear sigma model problem.

Introduction

This article is devoted to an old problem, which arose in the beginning of

the development of the Classical Inverse Scattering Method (CISM) [?]. An
important point of CISM is the calculation of the Poisson brackets relations
for the monodromy matrix of an auxiliary linear problem. This calculation

is usually performed under the technical assumption of 'ultralocality' of the

Poisson brackets for local variables (this condition means simply that the
Poisson operator de�ning the bracket is a multiplication operator and does

not contain any derivations). In many interesting models this condition is
violated, and in this case getting consistent Poisson brackets relations for the
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monodromy becomes nontrivial. Technically, the trouble is that the Frechet

derivative of the monodromy has a discontinuity, and so one has to extend

a di�erential operator to functions with a jump. It is easy to observe that

Poisson operators are nonultralocal precisely for the models with non-skew-

symmetric r-matrices. A naive calculation of the Poisson brackets for the

monodromy in this case gives:

fM1;M2g = aM1M2 �M1M2a;

a = 1
2
(r � r�) :

(1)

This bracket does not satisfy the Jacobi identity, since the skew part of

r usually does not satisfy the Yang-Baxter identity (in fact, the bracket( 1)

is inconsistent even if it does). A natural way to regularize the monodromy

brackets in this case has been proposed in [?]. This method allows to regu-
larize some (though not all) of the Poisson brackets of the type (1). The idea
is that to extend the Poisson operator to functions with a jump one has to
add to it a boundary form sensitive to the jump, which is well in the spirit

of the operator extensions theory. In this article we classify all regularized
r-matrices and all regularizations of this kind using the Belavin-Drinfeld clas-
si�cation theorem for the modi�ed Yang-Baxter equation [?]. Unfortunately,
our classi�cation is given in an implicit form because the Belavin-Drinfeld
classi�cation theorem describes solutions of the modi�ed Yang-Baxter equa-
tion only up to automorphisms of the corresponding a�ne Lie algebra. This

fact doesn't enable to write all regularizations in the explicit form. But we
give a natural way to �nd all regularizations. We de�ne the corresponding
quantum algebras by means of the Faddeev-Reshetikhin-Takhtajan approach
[?]. The same class of Poisson structures and of the corresponding quantum
algebras has been recently studied in a slightly di�erent way by J.M.Maillet

and L.Freidel [?] and by S.Parmentier [?]; to describe them we use the uni�ed
approach based on the notion of the twisted double (cf.[?], [?])

The second goal of the present work is to construct quantum nonultralocal
systems on the lattice ,which possess in�nite series of conservation laws and to

calculate the spectrum of the corresponding commuting operators. For this

calculation we develop a generalization of the Bethe-Ansatz construction.
Some words about the contents of this paper.

In section 1 we review the construction of Poisson algebras on the lat-
tice arising in the study of Lax equations on the lattice with non-ultralocal

Poisson brackets.
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In section 2 we remind the main construction of [?]. We reformulate

the Belavin-Drinfeld classi�cation theorem [?] in terms of the a�ne root

systems. This reformulation is convenient for our purposes. We reduce the

classi�cation of regularizations to the search of some class of solutions of the

Yang-Baxter equation on the square of a �nite-dimensional Lie algebra.

In section 3 we discuss the main examples of regularizations and the cor-

responding nonultralocal algebras and investigate their algebraic properties.

In particular, we determine their centers; under some additional conditions it

is possible to �nd a new system of generators of these algebras which already

satisfy local commutation relations This ultralocalization procedure has been

discussed earlier in [?]. We present new examples of ultralocalization; the

new system of generators is related to the original one by an appropriate

quantum lattice gauge transformation. At the end of section 3 we describe
a generalization of the algebraic Bethe Ansatz for nonultralocal algebras.

In section 4 we apply the technique developed in the previous sections
to the nonlinear sigma model problem. It is well known that integrable

models usually admit several di�erent Poisson structures; the simplest one
for the nonlinear sigma model is associated with its standard Lagrangian
formulation. We were unable to �nd a regularization of this Poisson struc-
ture; however, the general scheme introduced in section 2 may be applied to
another, and a fairly natural Poisson structure which we introduce in this
section for a nonlinear sigma model with values in an arbitrary Riemannian

symmetric space. We explicitly describe the corresponding quantum lattice
systems . For the n-�eld (i.e., the sigma model with values in the unit sphere
S2) we get a representation of the local quantum lattice Lax operator via the
canonical Weyl pairs. It turns out that the n-�eld with this Poisson structure
is gauge equivalent to the lattice Sine-Gordon model.

In the conclusion we discuss some open problems.

1 General construction of lattice algebras

It is natural to assume that the phase space of a mechanical system associ-
ated with a 1-dimensional lattice � = Z=NZ is the direct product MN of

"1-particle spaces". In applications to integrable systems these "elementary"

phase spaces are parametrized by Lax matrices and hence are modeled on
submanifolds of an appropriate Lie group (usually, a loop group associated
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with a �nite-dimensional semisimple Lie group). In simple cases the Pois-

son structure on MN is the product structure. (The corresponding Poisson

bracket is called ultralocal.) The auxiliary linear problem associated with

Lax equations on the lattice is

 n+1 = Ln n: (2)

The associated monodromy map is the product map

M : GN ! G : (L1; :::; LN) 7!
NY
n=1

Ln: (3)

It is natural to demand that M is a Poisson map. In ultralocal case this

condition means that G should be a Poisson Lie group. It is interesting (and

also important for applications) to study the most general Poisson structures
on GN which are compatible with this property of the monodromy. The cor-
responding Poisson algebras are referred to as lattice algebras. First examples
of nonultralocal lattice algebras appeared in [?]; further examples and a clas-

si�cation (for �nite dimensional semisimple Lie algebras) appeared in [?], [?],
[?]. In this section we briey recall the construction of lattice algebras using
the approach proposed in [?], [?].

Fix an a�ne Lie algebra g with a normalized invariant bilinear form h�; �i.
It is well known that g admits the structure of a quasitriangular Lie bialgebra

(the corresponding classical r-matrices are listed in [?]). Put d = g � g: We
de�ne the bilinear invariant form on the square of g in the following way:

hh(X1; Y1) ; (X2; Y2)ii = hX1;X2i � hY1; Y2i ; (4)

so that the diagonal subalgebra is isotropic. As a Lie algebra, d is isomor-
phic to the double of g: (This isomorphism does not depend on a particular

choice of the r-matrix.) Hence d carries a natural r-matrix, the r-matrix of
the double; for our present goals, however, we shall need arbitrary classi-
cal r-matrices on d which de�ne on it the structure of a quasitriangular Lie
bialgebra. In other words, we are interested in r-matrices which are skew

with respect to( 4) and satisfy the modi�ed classical Yang-Baxter equation

on g � g:

Let R be such a solution; it may be written in the block form:

R =

 
A B

B� D

!
; A� = �A; D� = �D: (5)
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For ' 2 Fun (D) ;D = G � G let D'; D0' 2 (g � g)
�
be the left and

right derivatives of ':

hhD' (g) ;Xii = d

dt
jt=0 '

�
etXg

�
;

hhD0' (g) ;Xii = d

dt
jt=0 '

�
getX

�
;

g 2 D ; X 2 g � g:

(6)

It is well known that for any two solutions R;R0 of the modi�ed classical

Yang-Baxter equation the bracket

f'; g
R;R0

= hhR1D';D ii + hhR2D
0';D0 ii (7)

satis�es the Jacobi identity. Let us take, in particular, R1 = R;R2 = �R
we get the following important brackets

f'; g
D�

= hhRD';D ii � hhRD0';D0 ii : (8)

We denote by D� the group D with the bracket f�; �g
D�

. The bracket
f; g

D�
equips D with the structure of a Poisson-Lie group, while the "+"

sign corresponds to an almost nondegenerate Poisson structure on D+. (It is
symplectic on an open cell in D containing the unit element, see [?] for the
description of the symplectic leaves of D+:)

Multiplication map D�D ! D de�nes a Poisson group action D��D+ !
D+; its restriction to the diagonal subgroup G� D is admissible [?], and hence

it is possible to perform Poisson reduction over the action of G: The quotient
space is canonically identi�ed with G itself; in fact, it is clear that the map
� : D ! G : (g1; g2) 7! g1g

�1
2 is constant on the right coset classes of G:

To calculate the explicit form of the quotient Poisson structure on G
choose ' 2 Fun (G) and put '̂ = ��'; let r';r0' be the left and right

derivatives of ':

hr' (g) ;Xi = d

dt
jt=0 '

�
etXg

�
;

hr0' (g) ;Xi = d

dt
jt=0 '

�
getX

�
;

g 2 G; X 2 g:

(9)

Then

D'̂ (g1; g2) =
�
r'

�
g1g

�1
2

�
;r0'

�
g1g

�1
2

��
: (10)

After a short computation this yields:
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f'; g
G
= hAr';r i� hDr0';r0 i+ hBr0';r i� hB�r';r0 i : (11)

In general, this Poisson structure is degenerate.

Suppose that � is an automorphism of g;then � � � is an automorphism

of g� g: Let us assume that � � � commutes with R . To twist the r-matrix

on d we shall use another extension of � to d; namely, we put �̂ = � � ��1:

Put

R� = �̂R�̂�1 =

 
A B��1

�B� D

!
: (12)

R � satis�es the Yang-Baxter equation. Put R1 = R� ;R2 = R in (7)

and denote by D� the group D with the corresponding Poisson structure:

f'; g
D�

= hhR�D';D ii+ hhRD0';D0 ii : (13)

(If R is the r-matrix of the double of g, the group D� is usually referred
to as the twisted double.) This Poisson structure on D� also admits reduction
with respect to the action of the diagonal subgroup; the quotient structure
on G= �(D�) is given by

f'; g
�
= hAr';r i � hDr0';r0 i+

D
B��1r0';r 

E
� h�B�r';r0 i :

(14)
In particular, let us apply this construction to the group G = GN ;in this

case D = (G �G)N ; and � is the cyclic shift in the direct sum
NL
1
g. Let

r =

 
A B

B� D

!
(15)

be a solution of the modi�ed classical Yang-Baxter equation on g � g;

put R =
NL
1
r: Evidently, R commutes with � � �: To describe the resulting

lattice Poisson algebra it is convenient to introduce tensor notations. Fix an
exact matrix representation �V of G and denote

Ln = �V (gn) ; L
n
1 = Ln 
 I; Ln2 = I 
 Ln;

g = (g1;:::;gn) 2 GN :
(16)

6



The reduced Poisson brackets of the matrix coe�cients of Ln have the

form:

fLn1 ; L
n
2g = �ALn1L

n
2 + Ln1L

n
2D;n

Ln1 ; L
n+1
2

o
= Ln1B

�Ln+12 ;

fLn1 ; L
m
2 g = 0; jn�mj � 2:

(17)

Here we denote (�V 
 �V )A as well as A ;etc. The main property of the

Poisson bracket (17) is given by the following assertion:

Theorem 1.1 [?]

Equip G = GN with the Poisson structure (11); then the monodromy

map
M : G� ! G; M (g1; : : : ; gN) = g1 � : : : � gN

is a Poisson mapping if and only if the r-matrix (15) satis�es the ad-
ditional constraint

A+B = B� +D: (18)

In that case the Poisson structure in the target space of the monodromy
map is given by (11).

In tensor notations we have the following brackets for M :

fM1;M2g = �AM1M2 +M1M2D +M1B
�M2 �M2BM1 (19)

Later we shall describe symplectic leaves of the bracket (17) in the main

examples. In the particular case when B = 0; A = D the bracket is ultralocal.
The reader may keep in mind this possibility as a degenerate case.

The remainder of this section is devoted to the quantization of the Poisson
brackets (17), (19). It may be easily performed on the lines of [?] provided
that we know the quantum R-matrix which corresponds to the chosen clas-

sical r-matrix on d: More precisely, let Uq(d;R) be the quantized universal
enveloping algebra of d which corresponds to R [?]; note that its description

is not quite obvious since in the existing literature only the standard algebras
Uq(d;R) which correspond to simplest solutions of the classical Yang-Baxter

equation are usually considered. It is widely believed that all solutions from
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the Belavin-Drinfeld list [?] give rise to quasitriangular Hopf algebras. (Ex-

amples in section 3 below give evidence to support this belief.) Assuming

that the algebra Uq(d;R) exists, let

Rq =

 
Aq Bq

B�
q Dq

!
2 Uq(d;R) 
 Uq(d;R) (20)

be its universal quantum R-matrix. We omit the explicit form of the

relations in the algebra Uq(d;R): Let �V be some representation of the algebra

Uq(d;R) in the space V and let

RV V
q = (�V 
 �V )Rq =

 
Aq Bq

B�
q Dq

!
(21)

The following theorem is parallel to the description of the twisted quan-
tum double and of the lattice current algebra [?], [?].

Theorem 1.2 The free algebra FunRq (G�) generated by the matrix elements
of the matrices Ln 2 FunRq (G�)
End (V ), satisfying the following relations:

AqL
n
1L

n
2 = Ln2L

n
1Dq

Ln1B
��1

q Ln+12 = Ln+12 Ln1
; (22)

is the quantization of the Poisson algebra (17).

Theorem 1.3 The free algebra FunRq (G) generated by the matrix elements
of the matrix M 2 FunRq (G) 
 End (V ), satisfying the relations:

AqM1B
��1

q M2 =M2B
�1
q M1Dq (23)

is the quantization of the Poisson algebra (19).

Finally, we formulate the quantum version of theorem 1.1

Theorem 1.4 The map

M : FunRq (G� )! FunRq (G) ;�
L1; : : : ; LN

�
7! L1 � : : : � LN

is an homomorphism of algebras.

The algebras (22), (23) are the principal objects of our investigation.
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2 Regularization of nonultralocal Poisson brack-

ets

The goal of this section is to link the construction of lattice algebras with

Hamiltonian systems on coadjoint orbits of current algebras. This approach

is outlined in [?] where a regularization procedure for the Poisson brackets

of the monodromy matrix is proposed which matches naturally with lattice

Poisson algebras described in section 1. This will also allow us to construct

consistent lattice approximations of nonultralocal systems on the circle.

We remind some details of the construction of dynamical systems on

coadjoint orbits [?], [?].

Let G = C1 (S1;g) be a current algebra with the values in some a�ne

Lie algebra g . Let us de�ne the invariant scalar product on G:

(X;Y ) =

2�Z
0

hX;Y i dz; (24)

where X;Y 2 G; h�; �i is a invariant bilinear form on g. Let cG be the
central extension of the algebra G which corresponds to the 2-cocycle

! (X;Y ) = (X; @zY ) : (25)

By de�nition, cG is the set of pairs (X; a) ;X 2 G; a 2 C with the com-
mutator

[(X:a) ; (Y; b)] = ([X;Y ] ; ! (X;Y )) : (26)

If r is a solution of the modi�ed classical Yang-Baxter equation on g, we
put as usual

[X;Y ]
r
= [rX; Y ] + [X; rY ] :

Let gr be the algebra g equipped with this bracket. Put Gr = C1 (S1;gr) ;
it is easy to see that

!r (X;Y ) = ! (rX; Y ) + ! (X; rY )

is a 2-cocycle on Gr; thus we may de�ne the second structure of a Lie algebra
on cG
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[(X; a) ; (Y; b)]r = ([X;Y ]r ; !r (X;Y )) : (27)

In this formula it is not assumed that r is skew-symmetric with respect to

the scalar product h�; �i. (In fact, if it is, the cocycle !r vanishes identically.)

Let cG� be the dual space of cG ; using the inner product (24) we may

identify it with G � C: The Poisson bracket used in the CISM is the Lie-

Poisson bracket which corresponds to the commutator (27). The variable

e 2 C is central with respect to this bracket. If X' 2 cG is a derivative of a

function ' 2 Fun
� cG�

�
:

((X';X)) = d
dt
jt=0 ' (L+ tX) ;

X;L 2 cG�;

here ((�; �)) is a natural pairing between cG and cG�:

(28)

then

f'; g (L; e) =
��
(L; e) ; [X';X ]r

��
: (29)

Without loss of generality we may assume that e = 1 and suppress it in
the notations. The bracket (29) may be represented as the bilinear form of
the Poisson operator:

H = adL � r + r� � adL � (r + r�) @z; (30)

f'; g (L) = (HX';X ) : (31)

The operator H is unbounded, so the formula (31) requires some caution
when the gradients are not smooth on the circle. This is precisely the case for

the Poisson brackets of the monodromy matrix. Let  be the fundamental
solution of the equation:

@z = L (32)

normalized by  (0) = I; then the monodromy matrix is equal to

M =  (2�) 2 G: (33)

Fix � 2 Fun(G). According to [?], the Frechet derivative of the func-

tional L 7! �(M [L]) is given by
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X� (z) =  (z)r0�(M) (z)
�1

(34)

and in general is discontinuous at z = 0 :

X� (0) = r0�(M) ;

X� (2�) = r�(M) :
(35)

To regularize Poisson brackets of the monodromy we shall use an idea bor-

rowed from the theory of self-adjoint extensions [?]. Let4 : C1([0; 2�] ;g)!
g�g be the map which associates to a function on [0; 2�] its boundary values,

4X' =

 
X' (0)

X' (2�)

!
: (36)

Choose B 2 End
�
�
g �

�
g
�
; here

�
g� g is the spreading �nite-dimensional

Lie algebra which corresponds to an a�ne Lie algebra g ; we extend operator

B to the space g � g as a zero operator outside
�
g �

�
g and de�ne the

regularized Poisson bracket in the following way:

f'; g (L; 1) =
1

2
((HX';X )� (HX ;X')) + hhB4X';4X ii : (37)

The bracket (37) must coincide with the bracket (31) on smooth functions,
hence B must satisfy the condition:**

B

 
X

X

!
;

 
Y

Y

!++
= 0: (38)

The additional restriction on B imposed in [?] follows from the study of
the linearized bracket for the monodromy (37) for M ! 1; it is natural to
demand that this linearized bracket should coincide with the one de�ned by

r. This gives, after a short computation:

f�;	g (M) =

**
R

 
r�
r0�

!
;

 
r	
r0	

!++
; (39)

where
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R =

 
�a+ � ��� s

� � s �a� �

!
; �� = ��; a = 1

2
(r � r�) ; s = 1

2
(r + r�) ;

where � 2
�
g ^

�
g because B 2 End

�
�
g �

�
g
�
;

(40)

and our choice of B supposes that s 2
�
g 


�
g.The Jacobi identity for this

bracket will be valid if R satis�es the modi�ed Yang-Baxter equation. In

tensor notations a Poisson brackets of monodromy matrix have the form:

fM1;M2g = (a� �)M1M2�M1M2 (a+ �)+M1 (� � s)M2+M2 (�+ s)M1:

(41)

The corresponding lattice Poisson algebra for which the monodromy ma-
trix has the brackets (41) is:

fLn1 ; L
n
2g = (a� �)Ln1L

n
2 � Ln1L

n
2 (a+ �) ;n

Ln1 ; L
n+1
2

o
= Ln1 (� � s)Ln+12 ;

fLn1 ; L
m
2 g = 0; jn�mj � 2:

(42)

Our next step is a classi�cation of the Poisson brackets of type (31) for
which the Poisson brackets of the monodromy matrix may be regularized. It
is di�cult to classify all non-skew solutions of the Yang-Baxter equation for

which there exists an � 2
�
g ^

�
g such that a matrix R in (40) is a solution of

the Yang-Baxter equation. But we can easily construct all solutions of the
Yang-Baxter equation for g� g according to the Belavin-Drinfeld classi�ca-
tion theorem [?], and then choose solutions of the form (40). To realize this

program we start with an easy theorem:

Theorem 2.1 If R is a solution of the modi�ed Yang-Baxter equation for
g � g of the type (40), then a+ s is a solution of the modi�ed Yang-Baxter

equation for g.

Proof. Let r1 = �a + �; r2 = �� � s,then r = � (r1 + r2). From the

Yang-Baxter equation for R it follows:
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[r1X; r2Y ]� r1 ([r1X;Y ] + [X; r1Y ]) = � [X;Y ] ;

[r2X; r2Y ]� r2 ([(r1 � 2�)X;Y ] + [X; (r1 � 2�) Y ]) = 0;

[r1X; r2Y ]� r1 [X; r2Y ]� r2 [(r2 + 2�)X;Y ] = 0;

X; Y 2 g:

(43)

It is easy to check that the (43) implies the Yang-Baxter equation for r:

[rX; rY ]� r ([rX; Y ] + [X; rY ]) = � [X;Y ] : (44)

Let us turn now to the detailed study of the case of a�ne Lie algebras.

We use the terminology and notations of the book [?].

Let g be an a�ne Lie algebra, 4+ the set of its positive roots,
�
g the

corresponding spreading simple Lie algebra,
�

4+ the set of its positive roots.

Let 4++ = 4+n
�

4+. Using this notations we formulate some version of the
Belavin-Drinfeld classi�cation theorem.

Theorem 2.2 [?] Up to an automorphism any solution of the modi�ed clas-
sical Yang-Baxter equation for an a�ne Lie algebra g has the form:

R =
X

�24++

e� ^ e�� + r;

where r is a solution of the modi�ed Yang-Baxter equation for
�
g.

For an explicit form of such solutions see [?].
In [?] such solutions are called trigonometric.

Thus from theorem 2.2 we have the following ansatz for a:

a =
X

�24++

e� ^ e�� + a0; a0 2
�
g ^

�
g : (45)

and we reduce our problem to the Yang-Baxter equation on the square of a

�nite dimensional Lie algebra
�
g. Namely, R is a solution of the Yang-Baxter

equation i�  
�a0 + � ��� s

�� s �a0 � �

!
(46)

is a solution of the Yang-Baxter equation for
�
g �

�
g.
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Theorem 2.3 Let  
A B

B� D

!
; A� = �A;D� = �D

be a solution of the Yang-Baxter equation for
�
g �

�
g. It has the form (46) i�

A+B = B� +D: (47)

Under this condition

� =
B� �B

2
; a0 = �

A+D

2
; s = �

B +B�

2
: (48)

Notice that we again come to the condition (18).
Remark. It may be showed that it is not necessary to impose the con-

dition B 2 End

�
�
g �

�
g
�
a priori. Actually, this condition follows from the

generalization of theorem 2.2 for a direct sum of two copies of an a�ne Lie

algebra, because � 2
�
g ^

�
g; s 2

�
g 


�
g for every solution of the modi�ed

Yang-Baxter equation for g � g of the form (40).

Unfortunately, condition (47) is not stable under the automorphisms of
�
g.

So we cannot use the Belavin-Drinfeld theorem to classify all regularizations.
But this theorem gives a possibility to construct su�ciently general examples
of such regularizations. These examples will be presented in the next section.

In the dsl (2) case we shall able to classify all regularizations.

3 Main examples of regularizations

Now we are ready to discuss examples of regularizations using the results
of the previous sections. We shall consider a�ne Lie algebras of type X

(1)
N

and X
(2)
N in the loop realization. We shall describe the corresponding lattice

quantum algebras and their Casimir elements. In the dsl (2) case we shall

explain the Algebraic Bethe Ansatz construction for such algebras.

Example 3.1 Nontwisted loop algebras.
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The �rst example is connected with the r-matrix of the double of a �nite

dimensional Lie algebra
�
g equipped with the structure of a quasitriangular

Lie bialgebra. Let g be an a�ne Lie algebra of typeX
(1)
N ,

�
g the corresponding

�nite-dimensional Lie algebra. To apply theorem 2.3 consider the r-matrix

of its double
�

d=
�
g �

�
g; we have

r =

 
� �2�+

2�� ��

!
; (49)

where � is some solution of the modi�ed Yang-Baxter equation for
�
g and

�� = 1
2
(� � I). (I is the identity operator in

�
g; its kernel is the Casimir

element t:) According to theorem 2.3, in this case one gets:

s = I; a0 = 0: (50)

In this case r = a + I is the rational r-matrix for g. We choose for
g the non-twisted loop realization [?]. We remind that in this realization

g =
�
g 
C [�; ��1], and the invariant bilinear form is given by

hX (�) ; Y (�)i = Res tr (X (�)Y (�))
d�

�
; (51)

where tr is an invariant bilinear form on
�
g.

The kernel of a in this realization is:

a (�; �) = �t
�+ �

�� �
; (52)

where we identify g 
 g with
�
g 


�
g 
C [�; ��1] 
C [�; ��1]. Thus we

have the following formulas for �a� �:

�a+ � = �

���
2�+ �

�

���
2��;

�a� � = �

���
2�+ �

�

���
2��:

(53)

Let R� be the �nite-dimensional quantum R-matrix in the fundamental

representation, which corresponds to 2�� after quantization. In the classical

limit

R� = I + 2��h + o (h) ; (54)
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where h is the deformation parameter.

We have:

R� = P
�
R�1

+

�
; (55)

where P is the permutation operator in the tensor square.

Using these data we may construct the quantum R-matrices correspond-

ing to �a��. If we denote the quantum R-matrix corresponding to �a��
by R (�; �) ; then

R (�; �) =
�

� � �
R�1
� �

�

�� �
R�1

+ ; (56)

and the quantum R-matrix R (�; �)T corresponds to �a+ �:

R (�; �)T =
�

� � �
R+ �

�

�� �
R�; (57)

here T is the conjugation with respect to the scalar product tr.
Finally, we have the quantum R-matrix on the square of g :

Rq =

 
R (�; �)T R�1

+

R� R (�; �)

!
: (58)

According to theorem 1.2 one can get the relations in the quantum lattice
algebra FunRq (G�), which gives a lattice approximation of the continuous
system:

R (�; �)
T
Ln1 (�)L

n
2 (�) = Ln2 (�)L

n
1 (�)R (�; �) ;

Ln1 (�)R
�1
� Ln+12 (�) = Ln+12 (�)Ln1 (�) ;

Ln (�) 2 FunRq (G�)
End (V ) ;

(59)

here V is the fundamental representation space.

From theorem 1.3 we get the following commutation relations for the
monodromy matrix:

R (�; �)T M1 (�)R
�1
� M2 (�) =M2 (�)R+M1 (�)R (�; �) : (60)

The algebra (59) is connected with the Lattice Kac-Moody algebra ALC

[?]. Namely, the algebra (59) admits a family of representation for which
there exists the limit
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