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The SU(2) Confining Vacuum as a Dual Superconductor
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We investigate the dual superconductivity hypothesis in pure SU(2) lattice gauge theory. We �nd evidence of
the dual Meissner e�ect both in the maximally Abelian gauge and without gauge �xing. We also obtain a rather
good extimation of the string tension using the value of the London penetration length.

1. INTRODUCTION

Understanding the mechanism of quark con-
finement is a central problem in the high energy
physics. According to a model conjectured long
time ago by G. ’t Hooft [1] and S. Mandelstam [2]
the confining vacuum behaves as a coherent state
of color magnetic monopoles, or, equivalently, the
vacuum resembles a magnetic (dual) supercon-
ductor.

Up to now there is some some numerical ev-
idence in favour of this model [3–8]. There are
also efforts [9] towards the detection of monopoles
condensation in the vacuum.

We analyzed the distribution of the color fields
due to static qq̄ pair in SU(2) lattice gauge theory,
moreover we studied the gauge dependence of the
London penetration length by working both with-
out gauge fixing and in the maximally Abelian
gauge [10]. The full details of this work can be
found in Ref. [8]

We performed Monte Carlo simulation using
the overrelaxed Metropolis algorithm in the range
2.45 ≤ β ≤ 2.7 on lattices of sizes 164, 204, and
244. After a number of thermalization sweeps
≥ 3000 we collect 1 measurement every 100 up-
grades in the case of SU(2) without gauge fixing,
for a total amount of 100 measurements. In order
to reduce the quantum fluctuations we cooled the
lattice configurations. This way quantum fluctu-
ations are reduced by a few order of magnitude,
while the relevant physical observables survives
and show a plateau vs. cooling steps. In the
case of maximally Abelian projected SU(2) we

took 1 measurement every 50 upgrades for a to-
tal amount of 700 measurements. Remarkably
in this case no cooling is needed to get a good
signal/noise ratio. We handled statistical errors
with jackknife algorithm modified to take into ac-
count correlations.

2. COLOR FIELDS

We can measure the color fields by means of the
correlation ρW of a plaquette Up with a Wilson
loop W [11]. The plaquette is connected to the
Wilson loop by a Schwinger line L (see Fig.1):

ρW =

〈
tr

(
WLUP L†

)〉
〈tr(W )〉 − 1

2
〈tr(UP )tr(W )〉

〈tr(W )〉 . (1)

The chromoelectromagnetic field strength tensor
is defined as

Fµν(x) =
√

β

2
ρW (x) . (2)

2.1. Maximally Abelian Projection
In the ’t Hooft formulation the dual supercon-

ductor model is elaborated through the Abelian
projection. To perform the Abelian projection on
the lattice we fix the gauge by diagonalizing an
operator X(x) which transforms according to the
adjoint representation and then extract the di-
agonal part UA

µ (x) out of the gauge transformed
links Ũµ(x) = V (x)Uµ(x)V †(x + µ̂):

UA
µ (x) = diag

[
eiθA

µ (x), e−iθA
µ (x)

]
, (3)
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Figure 1. The connected correlator Eq.(1) be-
tween the plaquette Up and the Wilson loop. The
subtraction appearing in the definition of corre-
lator is not explicitly drawn.

where θA
µ (x) = arg

[
Ũµ(x)

]
11

. The Abelian field
strength tensor is

FA
µν(x) =

√
β

2
ρA

W (x) (4)

with

ρA
W =

〈
tr

(
WAUA

P

)〉
〈tr (WA)〉 − 1

2

〈
tr

(
UA

P

)
tr

(
WA

)〉
〈tr (WA)〉 . (5)

We perform the Abelian projection in the
maximally Abelian gauge (in the continuum:
DµA±

µ (x) = 0). On the lattice the gauge is fixed
by maximizing (over all SU(2) gauge transforma-
tions g(x)) the lattice functional

Rl =
∑
x,µ̂

1
2
tr

[
σ3Uµ(x)σ3U

†
µ(x)

]
. (6)

This is equivalent to diagonalize (X(x) ∈ SU(2)
algebra):

X(x) =
∑

µ

[
Uµ(x)σ3U

†
µ(x)

+ U †
µ(x − µ̂)σ3Uµ(x− µ̂)

]
. (7)

Gauge fixing is performed by an iterative overre-
laxed algorithm [12]. Once we found the SU(2)
matrix g(x) which locally maximizes Rl, we keep
gover(x) = g(x)ω where the ω parameter has to
be properly tuned to increase the efficacy of the
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Figure 2. Efficacy of gauge fixing defined by
Eq. (8) as a function of the overrelaxation param-
eter ω for the L = 16 lattice. The case ω = ω∗

corresponds to alternate ω = 1.0 with ω = 2.0 in
the gauge fixing sweeps.

gauge fixing (Fig. 2). To establish a convergence
criterion for the iterative gauge fixing we consider
the average size of the non-diagonal matrix ele-
ments of X , Eq.(7), over the whole lattice:

〈∣∣Xnd
∣∣2〉 =

1
L4

∑
x

[
|X1|2 + |X2|2

]
(8)

where X = X1σ1 + X1σ2 + X1σ3. The optimal
overrelaxation parameter agrees with the one rel-
evant to the Landau gauge fixing [12]:

ωc =
2

1 + c
L

, c ' 0.7 . (9)

2.2. Results
In both cases of SU(2) without gauge fixing

and SU(2) in the maximally Abelian gauge we
obtained that (see Fig. 3 for the case of SU(2)
without gauge fixing) the longitudinal chromo-
electric field Ex ≡ El is sizeable (the other field
strength components are a few order of magni-
tude smaller). Furthermore El is almost constant
along the qq̄ flux tube and decreases fast along
the direction transverse to the flux tube.
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Figure 3. The field strength tensor Fµν(xl, xt)
evaluated at xl = 0 on a 244 lattice at β = 2.7,
using Wilson loops of size 10× 10 in Eq. (1).

3. THE LONDON PENETRATION
LENGTH

If the dual superconductor scenario holds, the
transverse shape of the longitudinal chromoelec-
tric field El should resemble the dual version of
the Abrikosov vortex field distribution. Hence we
expect that El(xt) can be fitted according to

El(xt) =
Φ
2π

µ2K0(µxt) , xt > 0 (10)

where K0 is the modified Bessel function of or-
der zero, Φ is the external flux, and λ = 1/µ is
the London penetration length. We try the fit
outside the coherence region xt > ξ, ξ being the
coherence length, i.e. ξ measures the coherence
of the magnetic monopole condensate. We fit our
data for xt ≥ 2 obtaining χ2/f . 1 and check
the stability of the fit parameters µ and Φ by fit-
ting the data with the cuts xt ≥ xmin

t = 2, 3, 4, 5.
Since in the case of SU(2) without gauge fixing we
adopted a cooling procedure, we verified [8] the
stability of the fit parameter µ versus the number
of cooling steps.

We found that the London penetration length
extracted from the gauge invariant correlator ρW

µ

ΛMS

= 8.96(31) , χ2/f = 2.11 (11)
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Figure 4. µ and µA (in units of ΛMS) versus β for
square Wilson loops. Circles, squares, and trian-
gle refer to L = 16, 20, 24 respectively. Crosses
and diamond refer to the Abelian projected cor-
relator ρA

W with L = 16, 20 respectively.

agrees with the one extracted from the Abelian
projected correlator ρA

W (Fig. 4)

µA

ΛMS

= 8.26(67) , χ2/f = 0.41 . (12)

4. STRING TENSION

We have shown that the longitudinal chromo-
electric field El is almost constant along the flux
tube (i.e. the long distance potential which feel
the color charges is linear). We have also ascer-
tained that the longitudinal chromoelectric field
El is the only sizeable component of the field
strength tensor, and its transverse distribution
El(xt) can be fitted by Eq.( 10). Since the string
tension is given by the energy stored into the flux
tube per unit length, using the above results and
extrapolating the K0-distribution up to xt → 0
(with negligible error if λ = 1/µ & ξ), we get the
simple relation between the string tension and the
penetration length:

√
σ ' Φ√

8π
µ . (13)
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Figure 5. String tension (in units of ΛMS) evalu-
ated through Eq. (14). Star refers to the contin-
uum extrapolated value of the string tension ob-
tained using Wilson loops on lattice larger than
ours. Points and crosses refer to L = 16, squares
and diamond to L = 20, triangles to L = 24.
Crosses and diamond correspond to the maxi-
mally Abelian gauge. For figure readability not
all the available data are displayed.

The main uncertainty comes out from the fit pa-
rameter Φ. However we observe that in the max-
imally Abelian projection ΦA ' 1, and Φ ' ΦA

when β → ∞. We feel that the external flux
Φ is strongly affected by lattice artifacts which,
however, are strongly reduced in the maximally
Abelian projection. We can try to get rid of these
effects by assuming that in the limit β → ∞:
Φ ' ΦA ' 1. This way we get:

√
σ ' µ√

8π
. (14)

Fitting all together the data to a constant we get
(purely statistic error)
√

σ

ΛMS

= 1.76(6) , χ2/f = 1.44 . (15)

Our extimation of the string tension is consistent
with the linear asymptotic extrapolation of the

string tension data extracted from Wilson loops
on lattices larger than ours [13]
√

σ

ΛMS

= 1.79(12) . (16)

Moreover note that, due to µ ' µA, we have
√

σ ' √σA . (17)

5. CONCLUSIONS

We found evidence that the SU(2) vacuum be-
haves like a dual superconductor. In particu-
lar, we verified that the flux tube color field is
composed by the chromoelectric component par-
allel to the line joining the static charges. This
longitudinal chromoelectric field is almost con-
stant far from the color sources and decreases
rapidly in the direction transverse to the flux
tube. The transverse distribution of the longi-
tudinal chromoelectric field behaves according to
the dual London equation Eq. (10). The Lon-
don penetration length extracted from the Monte
Carlo data using Eq. (10) is a physical quantity
λ max. Ab. proj. = λSU(2). So that the long range
properties of the SU(2) confining vacuum can be
described by an effective Abelian theory. More-
over we established a simple relation between the
string tension and the penetration length which
gives an extimate of

√
σ close to the extrapolated

continuum limit available in the literature.
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