
DO-TH 95/15

RAL-TR-95-043

August 1995

Spin-dependent non-singlet structure functions

in next-to-leading order

M. Stratmann, A. Weber*

Universit�at Dortmund, Institut f�ur Physik,

D-44221 Dortmund, Germany

W. Vogelsang

Rutherford Appleton Laboratory

Chilton Didcot, Oxon OX11 0QX, England

Abstract

We study in detail the 
avor-non-singlet component of polarized structure functions in

the framework of a consistent and complete next-to-leading order (O(�s)) analysis. In

this context, we discuss some important features of the calculation of the next-to-leading

order corrections. Particular emphasis is put on the Q2-evolution of sum-rules for the

�rst moments of the non-singlet structure functions which, as we show, could serve to

explore SU(2) and SU(3) breaking e�ects in relations between baryonic �-decay matrix

elements and in the proton's polarized sea. Furthermore we make predictions for polarized

non-singlet structure functions measurable in a conceivable ~e~p collider mode of HERA.
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1 Introduction

The spin-dependent structure functions of protons, neutrons, and deuterons have received

much attention both experimentally and theoretically in the past years. Since the advent

of the EMC result [1] on the proton's gp1(x; hQ
2i = 10:7GeV2), most theoretical studies

have been focussed on the singlet component of this structure function in order to explain

its unexpected experimental smallness, hereby assuming that the non-singlet (NS) com-

ponent is rather well understood. First experimental evidence for this latter assumption

was provided recently by the con�rmation [2, 3] of the Bj�rken sum-rule [4] which relates

the integrals (�rst moments) of gp1 and g
n
1 . However, this sum-rule, which depends merely

on the fundamental SU(2) isospin (u$ d) symmetry between matrix elements of charged

and neutral axial currents and is therefore expected to hold, does not entirely �x the �rst

moment of the NS component, gp1;NS, of g
p
1, since the latter can be written (in leading

order (LO)) as

gp1;NS =
1

12
�A3(1) +

1

36
�A8(1) ; (1)

where in terms of the �rst moments of the polarized (anti)quark densities �
(�)
q (x;Q2) we

have

�A3(1) =
Z 1

0

�
�u+��u��d���d

�
(x;Q2)dx ;

�A8(1) =
Z 1

0

�
�u+��u+�d+��d� 2(�s+��s)

�
(x;Q2)dx : (2)

The Bj�rken sum-rule [4] is equivalent to

�A3(1) = F +D = gA = 1:2573 � 0:0028 ; (3)

but information on �A8 can only be obtained from hyperon �-decays. Assuming full

SU(3) symmetry between hyperon decay matrix elements of the 
avor-changing weak

axial currents and the neutral ones, one �nds (with F , D taken from ref. [5])

�A8(1) = 3F �D = 0:579 � 0:025 : (4)

This approach has been seriously questioned in ref. [6], where the suggestion was made

that SU(3)f symmetry is broken in such a way that only the valence �qv = �q � ��q

content of �A3(1), �A8(1), rather than the full combinations �A3(1), �A8(1), enters eqs.
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(3),(4). In view of these uncertainties and of the fact that the baryonic �-decays cannot

tell us anything about gp1;NS except for the �rst moment, it is interesting to examine the

NS sector of polarized structure functions in more detail in order to �nd other possible

experimental clues to �A3, �A8, and the polarized valence densities �uv, �dv, hereby

improving our present understanding of the relation between the �rst moments of these

quantities and the F and D values. In this respect, it is necessary to consider not only

the NS piece of the electromagnetic (e.m.) structure functions gp;n1 � g
ep;en
1 , but also the

polarized electroweak structure functions g3, g4 studied in refs. [7-14], which partly are

pure NS quantities. Since possible measurements of such structure functions are likely

to be performed at Q2 much higher than those relevant for eqs. (3),(4), it is important

to theoretically understand the Q2-evolution of spin-dependent NS structure functions as

well as possible. For this purpose, it is necessary to improve the theoretical predictions

in the NS sector, by performing a complete and consistent next-to-leading order (NLO)

analysis. All ingredients for this are available as we will see below, and there are some

features of the NLO corrections which are interesting in themselves. Also, the theoretical

predictions are much more reliable for the NS sector since it is not plagued by the anomaly

contribution as is the case for the singlet contributions to polarized structure functions

[15].

The remainder of this paper is organized as follows: In Section 2 we review the main

LO results on spin-dependent NS structure functions. Section 3 gives a detailed account

of the determination of the NLO corrections. Section 4 contains the numerical evaluation

of our results, and in Section 5 we summarize our �ndings.

2 Spin-dependent non-singlet structure functions in

leading order

The structure functions g1, g3, and g4 appear in the hadronic tensor as (see, e.g., [12])

W�� = �i�����
q�p�

p � q
g1 +

 
�g�� +

q�q�

q2

!
g3 +

1

p � q

 
p� �

p � q

q2
q�

! 
p� �

p � q

q2
q�

!
g4 ; (5)

where we have already replaced s� ! p� for the spin vector of a longitudinally polarized

nucleon with momentum p. In eq. (5), q denotes the momentum of the virtual boson
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probing the hadron. As is well-known, g3 and g4 do not contribute to purely e.m. scatter-

ing, but appear in (parity-violating) electroweak neutral current (NC) or charged current

(CC) lepton-nucleon interactions. Therefore, their experimental accessibility may seem

remote presently. However, they could be measured in
(�)
� -scattering o� a polarized tar-

get, and they would certainly play a role in deep-inelastic scattering (DIS) experiments

at HERA if also the 820 GeV proton beam could be longitudinally polarized [16]. All

relevant cross section formulas for
(�)
� ~p, e�~p interactions in terms of g1, g3, and g4 can be

found, e.g., in refs. [12, 13] and need not be repeated here. As was shown in [12], the LO

expressions for the structure functions can be cast into the forms

g1(n;Q
2) =

1

2

X
q

Sq
�
�q(n;Q2) + ��q(n;Q2)

�

g3(n;Q
2) =

1

2

X
q

Rq

�
�q(n;Q2)���q(n;Q2)

�
(6)

g4(n� 1; Q2) =
X
q

Rq

�
�q(n;Q2)���q(n;Q2)

�
= 2g3(n;Q

2) ;

where, as usual, the Mellin-n moments of a Bj�rken-x-dependent function g(x) are de�ned

as g(n) =
R 1
0 x

n�1g(x)dx. The coe�cients Sq and Rq in eq. (6) depend on the exchanged

boson, 
�, Z0, W�, in the DIS process and can be found in [12]. Obviously, for W�-

exchange (CC interactions), only the quark or the antiquark of a given 
avor contributes,

depending on the charge of the W . To become more speci�c, we write the various con-

ceivable structure functions in LO in terms of the NS quark combinations (for eqs. (7-20)

below we drop the obvious argument (n;Q2) from all quantities)

�uv = �u���u ; �dv = �d���d ;

�A3 = �u+��u��d���d ;

�A8 = �u+��u+�d+��d� 2(�s+��s) (7)

and the singlet

�� = �u+��u+�d+��d +�s+��s (8)

(for f = 3 
avors) as [7]

g
ep (e:m:)
1 =

1

12
�A3 +

1

36
�A8 +

1

9
�� (9)

g
ep;NC
3 =

1

4

�
2

3
�uv +

1

3
�dv

�
(10)
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for ~e~p NC interactions, where for gep1 we have only written the purely electromagnetic

contribution (which dominates [12] if polarized electrons are used) since the other NC

contributions do not easily lead to NS quantities. g
ep;NC
3 has been written only for the

dominant [12] contribution from 
Z0 interference1. For CC structure functions (
(�)
� p !

e�X or e�p!
(�)
� X scattering) one has [12]

g
�p
1 = �d+��u+ f1(�)�s =

1

2
(�dv ��uv +��)�

1

6
(1 � f1(�)) (����A8) (11)

g
��p
1 = �u+��d+ f1(�)��s =

1

2
(�uv ��dv +��)�

1

6
(1 � f1(�)) (����A8) (12)

g
�p
3 = ��d+��u� f3(�)�s =

1

2
(�A3 ��uv ��dv)�

f3(�)

6
(����A8) (13)

g
��p
3 = ��u+��d+ f3(�)��s = �

1

2
(�A3 +�uv +�dv) +

f3(�)

6
(����A8) ; (14)

where we have introduced functions fi(� = Q2=(Q2+m2
c)) with fi(1) = 1 (massless limit)

which take fully into account the e�ects of the charm mass mc in the s ! c transition.

In the LO considered in eqs. (11-14), the fi(�) are simply given by the 'slow-rescaling'

prescription [17] which yields xBj = Q2=2pq ! xBj=� and therefore f1(�) = f3(�) �

f(�) = �n for the nth moment in eqs. (11-14). The expressions for the nth moment of the

structure function g4=2x, g4(n�1; Q
2)=2, are the same [7, 8, 11, 12] as the right-hand-sides

(rhs) of eqs. (10),(13),(14) with, however [12], f4(�) = f(�)=� in the CC case. In this way

one �nds a (slight) violation of the Callan-Gross-like relation g4(n�1; Q2) = 2g3(n;Q2) by

terms of O(m2
c=Q

2) due to the CC s! c transitions. Note that eqs. (11-14) can be easily

seen to receive only corrections of O(sin2 �cm2
c=Q

2) when taking into account the e�ects

of Cabibbo-mixing; we can safely neglect these small terms. The structure functions for

DIS scattering o� neutron-targets can be easily obtained by changing the signs of the

�A3 terms and interchanging �uv $ �dv in eqs. (9-14). From eqs. (9-14) we can, e.g.,

construct the following NS combinations [7]:

g
ep (e:m:)
1 � g

en (e:m:)
1 =

1

6
�A3 (15)

g
��p
1 � g

�p
1 = �uv ��dv (16)

g
�p
3 � g�n3 = �A3 (17)

g
��p
3 + g

�p
3 = � (�uv +�dv) (18)

1As compared to ref. [12] we have dropped a factor
�
4 sin2�W cos2�W (Q2 +M2

Z)=Q
2
��1

from the

normalization of g
ep;NC
3 , where �W is the Weinberg angle and MZ the Z0 mass.
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9
�
g
ep (e:m:)
1 + g

en(e:m:)
1

�
�

6

2 + f(�)
(g�p1 + g�n1 ) =

1

2

5f(�) � 2

f(�) + 2
�A8 (19)

g
��p
1 + g

�p
1 �

2 + f(�)

f(�)

�
g
��p
3 � g�n3

�
= �A8 ; (20)

etc. Besides these relations, the NC g
ep;NC
3 (n;Q2) in eq. (10) is obviously also an entire

NS quantity.

3 Next-to-leading order corrections

In order to study the evolution of the polarized NS structure functions in NLO it is

necessary to recall the well-known solution (see, e.g., [18]) of the NS renormalization group

equation relating the Mellin-n moments of a polarized NS structure function ~gi;NS = g1,

g3, g4=2x at the input scale Q2
0 and at Q2 > Q2

0:

~gi;NS(n;Q
2) =

 
1 +

�s(Q2)� �s(Q2
0)

4�

"
2�C i

q(n) +
�
1NS(n)

2�0
�
�1


0
NS(n)

2�20

#!

�

 
�s(Q2)

�s(Q2
0)

!
0
NS

(n)=2�0

~gi;NS(n;Q
2
0) (21)

=

 
1 +

�s(Q2)

2�
�C i

q(n)

!
�qiNS(n;Q

2) ; (22)

where
�s(Q2)

4�
'

1

�0 lnQ2=�2
MS

�
�1

�30

ln lnQ2=�2
MS�

lnQ2=�2
MS

�2 (23)

with the QCD scale parameter �MS, �0 = 11 � 2f=3, �1 = 102 � 38f=3, and

�qiNS(n;Q
2) =

 
1 +

�s(Q2)� �s(Q2
0)

4�

"
�
1NS(n)

2�0
�
�1


0
NS(n)

2�20

#!

�

 
�s(Q2)

�s(Q2
0)

!
0
NS

(n)=2�0

�qiNS(n;Q
2
0) (24)

is the suitable NS combination of polarized quark densities evolved from Q2
0 to Q2 via

the LO (one-loop) and NLO (two-loop) NS anomalous dimensions2 
0NS(n) and �
1NS(n).

The precise form of the NLO pieces (�C i
q, �


1
NS) in eqs. (21), (22) and (24) depends

on the factorization scheme convention adopted for the relation (22) between the NS

2For the perturbative expansions of the QCD-�-function and the anomalous dimensions we use the

expansion parameter �s=4� (see, e.g., [18] for detailed expressions). Note also that we have omitted the

'�' for the (polarized) 
0NS (n) since this quantity is trivially equal to its unpolarized counterpart [9, 19].
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structure function and the relevant NS quark densities beyond the leading order. Since

the ~gi;NS are physical, i.e. measurable, quantities and the 
0NS(n) [9, 19] is convention-

independent, it becomes evident from eq. (21) that the scheme dependences of �C i
q(n) and

�
1NS(n) cancel each other such that the combination 2�C i
q(n)+�
1NS(n)=2�0 is scheme

independent [18]. Needless to say that removing all NLO quantities (�C i
q, �


1
NS, �1) in

eqs. (21-24), we recover the LO results of eqs. (9-14) with the quark density combinations

evolving according to the LO (
0NS [9, 19]) NS evolution equation.

Both the essential ingredients for the NLO calculation, �C i
q(n) and �
1NS(n), can

be found in the literature. To facilitate the further discussion, let us �rst turn to the

�rst moments, n = 1, which are of particular interest in the polarized case. As was

discussed in ref. [20] in the framework of the OPE, the operator corresponding to the

�rst moments �A3(1; Q2) and �A8(1; Q2) is nothing but the NS axial current which is a

conserved quantity and thus has vanishing anomalous dimensions to all orders, which in

particular means �
1NS(1) = 0. Furthermore, the value of the �rst moment of the Wilson

coe�cient �C1
q (n) for g

ep (e:m:)
1 was found in [20, 21] to be �C1

q (1) = �3CF=2, giving

�3CF for the scheme independent combination 2�C i
q(1) + �
1NS(1)=2�0 and, according

to eq. (22), leading to the factor (1 � �s=�) in the NS sector of g1. Of course, both

�C1
q (n) and �
1NS(n) depend on the regularization scheme adopted in their calculation3,

and di�erent schemes will in principle give di�erent answers even for the �rst moments

�C1
q (1), �


1
NS(1), though still respecting the condition 2�C1

q (1)+�

1
NS(1)=2�0 = �3CF .

However, the conservation of the NS axial current dictates the vanishing of �
1NS(1), and

hence the value �C1
q (1) = �3CF =2, which means that a scheme transformation has to be

performed if these results are not automatically respected by the regularization scheme

used.

Let us brie
y list the results obtained for �C1
q (1) (to be calculated in the process

~
�~q ! q(g) to O(�s)) using various regulators also used previously in the corresponding

calculations in the unpolarized case. The result of ref. [20], �C1
q (1) = �3CF=2, was

found using massless but o�-shell incoming quarks and on-shell outgoing gluons. The

same result for �C1
q (1) is obtained [22] if one uses massless on-shell quarks, but o�-shell

gluons (k2 > 0). Turning to dimensional regularization in MS, the result depends on how

3Needless to say that this has to be the same in the calculations of these quantities.
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the Dirac matrix 
5, appearing due to the projector on the quark's helicity, is treated in

n 6= 4 dimensions. The prescription of a totally anticommuting 
5 by Chanowitz et al.

[23] yields [24, 25] again4 �C1
q (1) = �3CF=2. The same result is obtained [26] in the

closely related 
5 scheme of ref. [27], taking the 
�q vertex as the 'reading point' to be

de�ned in that scheme. However, when using the original scheme of 't Hooft and Veltman

[28] and Breitenlohner and Maison [29] (HVBM), or the equivalent prescription of refs.

[30, 31], one obtains [25, 32]

�C1
q (1) = �

7

2
CF ; (25)

(naively) corresponding to a correction (1� 7�s=3�) in the NS sector of g1 and to a non-

zero value for the anomalous dimension, �
1NS(1), in contradiction to the conservation

of the NS axial vector current. Finally, the same result, �C1
q (1) = �7CF=2, is obtained

for massive on-shell quarks (mq 6= 0) in the process ~
�~q ! q(g). For completeness,

we list all the results for �C1
q (n) for arbitrary Mellin-n in the Appendix. Comparing

with the corresponding results [33-37] for the Wilson coe�cient C2
q (n) for the unpolarized

structure function F2=2x in the various regularizations, one �nds that all the �C1
q (n) with

the property �C1
q (1) = �3CF=2 satisfy

C2
q (n)��C1

q (n) = CF

�
1

n
+

1

n+ 1

�
(26)

(corresponding to C2
q (z) ��C1

q (z) = CF (1 + z) in Bj�rken-x space). This implied regu-

larization scheme independence of C2
q (n) ��C1

q (n) can be understood as follows: As a

consequence of the factorization theorem, the di�erence CDY
q (n)�2C2

q (n), where C
DY
q (n)

are the n-moments of the O(�s) (NS) quark corrections to the unpolarized Drell-Yan

process q�q ! 
�(g), has to be the same in any scheme (see, for example, [33, 34]). The

same is true (see [24, 25]) for the di�erence �CDY
q (n) � 2�C1

q (n) with the O(�s) quark

corrections ��CDY
q (n) to the polarized Drell-Yan process ~q~�q ! 
�(g). On the other

hand, the annihilating quark lines in this process trivially give �CDY
q (n) = CDY

q (n) if the

regularization scheme used in the calculation of �CDY
q (n) respects chirality conservation.

It then automatically follows that C2
q (n)��C1

q (n) is also the same in all such schemes5.

4The same result in dimensional regularization was found earlier in [21] without specifying the 
5-

prescription.
5Alternatively, one can see the expected scheme invariance of C2

q (n) � �C1
q (n) from the fact that

[33, 34] C2
q (n) � C3

q (n) = CF

�
1

n
+ 1

n+1

�
is scheme invariant (where C3

q (n) is the coe�cient function of

the unpolarized structure function F3) and from the similar appearance of F3 and g1 in the hadronic

tensor.

7



In contrast to eq. (26), we have for the calculation in the HVBM scheme and for the

mq 6= 0 calculation (which gave �C1
q (1) = �7CF=2)

C2
q (n)��C1

q (n) = CF

�
1

n
+

1

n+ 1

�
+

(
4CF

�
1
n
� 1

n+1

�
HVBM

2CF
1
n

(mq 6= 0) :
(27)

According to our previous observations, these regulators then necessarily break the rela-

tion �CDY
q (n) = CDY

q (n), i.e., break chirality. In fact, it was shown in ref. [25] that

�CDY
q;HVBM(n) = CDY

q (n)� 8CF

�
1

n
�

1

n+ 1

�
(28)

in the HVBM scheme, showing how the terms � (1=n � 1=(n + 1)) in eqs. (27),(28)

cancel out in the di�erence �CDY
q (n) � 2�C1

q (n), but individually break the relations

�CDY
q (n) = CDY

q (n) and C2
q (n) � �C1

q (n) = CF (1=n + 1=(n + 1)). Furthermore, the

terms � (1=n�1=(n+1)) in the HVBM scheme originate [25] from a con�guration where

the incoming and the outgoing particles in the process 
�q ! qg become collinear, and

thus should rather be understood as part of the polarized (NLO) quark densities. Finally,

as far as the massive calculation is concerned, the term 2CF=n after the curly bracket in

eq. (27) can be traced back to have its origin in a chirality breaking term � m2
q which

survives the eventual limit mq ! 0 since it happens to be multiplied by a double-pole

term. Having found the origin of the additional terms in eq. (27) which lead to �C1
q (1) =

�7CF=2, we expect that similar terms would be present in the �
1NS(n) when calculated

in the HVBM or the massive scheme, such that scheme transformations, by means of

2�C1
q (n) + �
1NS(n)=2�0 = invariant, could be performed to eliminate these terms from

both �C1
q and �
1NS(n). Hereby one would obtain the correct values �C1

q (1) = �3CF=2

and �
1NS(1) = 0 (as dictated [20] by the the conservation of the NS axial current), and

the relation C2
q (n)��C1

q (n) = CF (1=n + 1=(n + 1)) would be restored in each case.

To complete the discussion of the Wilson coe�cients �C i
q, let us specify our �nal

choices for the coe�cients for g1, g3, and g4. Since, as we will see below, the anomalous

dimension �
1NS(n) is known within dimensional regularization in the MS-scheme, we

have to choose the Wilson coe�cients accordingly. This means that the coe�cient in

(A.4) [21, 24, 26] (or the one in (A.5) after elimination of the chirality breaking term

� (1=n�1=(n+1))) is the relevant one for g
(e:m:)
1 . It turns out [32, 38] that the coe�cient

is the same if electroweak contributions to g1 (e.g. g
�p
1 ) from transitions between massless

8



(� = 0) quarks q ! q0 are considered. For the corrections to the structure functions g3,

g4=2x one �nds6 [32, 38]

�C3
q (n) = �C1

q (n) + CF

�
1

n
�

1

n+ 1

�

�C4
q (n) = �C3

q (n) + 2CF

1

n+ 1
: (29)

One notes the striking similarity to the relations between the quark corrections to the

unpolarized structure functions F3, F1, F2=2x which is readily explained by the similarity

of the corresponding hadronic tensors. Equation (29) shows that the Callan-Gross-type

relation g4 = 2xg3 mentioned earlier is broken even for massless quarks beyond the LO.

However, unlike its unpolarized analogue, FL � F2�2xF1, which (in the singlet case) also

receives contributions from gluon-induced O(�s) corrections, g4�2xg3 = 0 is broken only

by quark-induced corrections (eq. (29)) even in the singlet case, since corrections from

incoming gluons cancel out for massless produced quarks [12].

In the case of the CC transition s ! c we again have to take into account the mass

of the charm quark which has an in
uence on the coe�cient functions. For this purpose

we have calculated the contribution of the process W+s! c(g) with mc 6= 0 to g1, g3, g4

in MS dimensional regularization, following the techniques developed in [39]. The results

of our calculation can be found in the Appendix. It should be noted that the expressions

have a smooth limit m2
c=Q

2 ! 0 (�! 1), in which they reproduce eqs. (A.4),(29). From

eqs. (A.6-A.9) we immediately read o� the O(�s) corrections to the functions fi(�; n)

introduced in eqs. (11-14). For the �rst moment, n = 1, these functions then read in

NLO:

f1(�; 1) = �

 
1� 3

�s

2�
CF

(1� �)

�
ln(1 � �)

!

f3(�; 1) = �

 
1 +

�s

2�
CF

1 � �

�2

"
1�

�

2
+
�
1

�
� 1 � 3�

�
ln(1� �)

#!

f4(�; 1) = 1 : (30)

The last result that f4(�; 1) receives no O(�s) corrections also holds for the corresponding

function for the unpolarized structure function F2 [40], where it is in accordance with the

Adler sum-rule [41]. We emphasize that, similar to the unpolarized case [42, 43], our

6Eqs. (29) are actually independent of the regularization scheme chosen even in schemes where

�C1
q (1) 6= �3CF =2.
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results (A.6-A.9) for the contribution of the transition s ! c to the spin-dependent

structure functions would enable a determination of the proton's MS polarized strange

quark distribution via a detection of charmed �nal states in polarized CC DIS.

The (de facto) regularization scheme independence of the relation C2
q (n)��C1

q (n) =

CF (1=n+1=(n+1)) immediately implies that the scheme-dependent parts of the polarized

and the unpolarized NS anomalous dimensions �
1NS(n), 

1
NS(n) equal each other in

all schemes. Even more, as was �rst observed in [20] and recently established in more

detail in [26], the full expressions for �
1NS(n) and 
1NS(n) are exactly identical. This

statement is correct in all regularization schemes, provided one has taken care to warrant

�C1
q (1) = �3CF =2 in the scheme used, eliminating, if present, chirality breaking terms

as explained above.

There is, however, another subtlety involved in the equality of �
1NS(n) and 
1NS(n):

As is well-known [44-46], there is no analytical continuation of the unpolarized 
1NS(n)

to arbitrary n, needed for the transformation from Mellin-n space into Bj�rken-x space,

that reproduces the results for 
1NS(n) for all integer values of n. This is not unexpected

since the OPE, �rst used to derive 
1NS(n) in MS dimensional regularization [46], gives

only an answer for even n if the moments of the NS contribution to the e.m. structure

function F2=x are considered, hereby arti�cially excluding odd values of n. Therefore,

the analytic continuation of 
1NS(n) only has to correctly reproduce the results for even

values of n. On the other hand, as was shown in [47], odd values of n are relevant in

the OPE for the NS combination F ��p
2 =x� F �p

2 =x or for F ��p
3 + F �p

3 , meaning that in this

case the analytic continuation of 
1NS(n) has to reproduce the results at these values.

These observations �t nicely and consistently to parton model considerations, where the

NS quark combinations q � q0 and qv = q � �q can be easily seen to evolve [44, 48] with

P+ � Pqq+Pq�q and P� � Pqq�Pq�q, respectively, which are di�erent beyond the LO, where

Pqq, Pq�q are the q ! q and �q ! q NLO NS splitting functions with 
avor-non-diagonal

contributions subtracted [44, 48]. The explicit calculation of Pqq, Pq�q [44] shows that their

Mellin-n moments satisfy7


1NS(n) = Pqq(n) + (�1)nPq�q(n) ; (31)

7For simplicity we have normalized the P� relative to 
1NS .
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which means that the analytic continuation of 
1NS(n) which reproduces the values of


1NS(n) for even n equals the combination P+(n) for arbitrary n, whereas the other analytic

continuation of 
1NS(n), which is correct for odd n, corresponds to P�(n). In this way, the

parton results of [44] provide the rule for the analytic continuation of the OPE results.

The essence of all this is that the moments of the combination F ep
2 =x�F en

2 =x, or, more in

general, the unpolarized A3(n;Q2), A8(n;Q2) (de�ned in analogy to eq. (7)) evolve with

P+(n), whereas, e.g., the moments of F
��p
2 =x � F

�p
2 =x, F ��p

3 + F
�p
3 (which consist of pure

valence, uv(n;Q2), dv(n;Q2)), evolve with P�(n).

The important di�erence in the polarized case is that the relevance of even and odd

n in the OPE and for the analytic continuation is reversed here. As was shown in [7, 9],

odd n contribute in the OPE analysis to the combinations (gep (e:m:)1 � g
en (e:m:)
1 )(n;Q2),

(g��p1 + g
�p
1 )(n;Q2), (g�p3 � g�n3 )(n;Q2), (g�p4 � g�n4 )(n� 1; Q2), whereas even n are relevant,

e.g., for (g��p1 � g�p1 )(n;Q2), (g��p3 + g�p3 )(n;Q2), (g��p4 + g�p4 )(n � 1; Q2). In terms of the

polarized NS quark distribution combinations this means that �A3(n;Q2), �A8(n;Q2)

(as de�ned in (7)) evolve with P�(n) and the polarized valence densities �uv(n;Q2),

�dv(n;Q2) with P+(n) [49]. This situation is summarized by the relations �Pqq = Pqq,

�Pq�q = �Pq�q for the polarized analogues, �Pq(�)q , of Pq(�)q .

4 Numerical results

We are now equipped with all ingredients for a consistent NLO analysis of the spin-

dependent NS structure functions. Let us consider the �rst moment of the NS combina-

tions in eqs. (10,15-20). To begin with, we recall that the �rst moment P�(1) = 
1NS(1) =

�
1NS(1) vanishes [44]. In the unpolarized case this is in accordance with the Adler sum-

rule [41] and the conservation of the number of valence quarks. In the polarized case it

means that �A3(n;Q2) and �A8(n;Q2) for n = 1 correctly do not evolve with Q2, as

required by the conservation of the NS axial current (see above):

�A3;8(1; Q
2) = �A3;8(1; Q

2
0) : (32)
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In contrast to this, the �rst moment of P+ is non-zero, which means that the �rst moment

of the polarized valence densities evolves with Q2 beyond the LO:

�qv(1; Q
2) =

 
1 +

�s(Q2)� �s(Q2
0)

4�

P+(1)

2�0

!
�qv(1; Q

2
0) ; (33)

with [44] P+(1) = 4CF (CF � CA=2)(�13 + 12�(2) � 8�(3)) � 2:5576, and where we have

used eq. (24) and the fact that the �rst moment of the LO NS anomalous dimension

vanishes, 
0NS(1) = 0 [9, 19]. This yields the following sum-rules for the �rst moments of

the polarized NS structure functions to O(�s):

�
g
ep (e:m:)
1 � g

en (e:m:)
1

�
(1; Q2) =

1

6

 
1�

�s(Q
2)

�

!
�A3(1; Q

2
0) (34)

g
ep;NC
3 (1; Q2) =

1

4

 
1�

2�s(Q2)

3�
+
�s(Q2)� �s(Q2

0)

4�

P+(1)

2�0

!�
2

3
�uv +

1

3
�dv

�
(1; Q2

0)

(35)

1

2
gep;NC
4 (0; Q2) =

1

4

 
1 +

�s(Q2)� �s(Q2
0)

4�

P+(1)

2�0

!�
2

3
�uv +

1

3
�dv

�
(1; Q2

0) (36)

�
g
��p
1 � g

�p
1

�
(1; Q2) =

 
1 �

�s(Q2)

�
+
�s(Q2)� �s(Q2

0)

4�

P+(1)

2�0

!
(�uv ��dv)(1; Q

2
0) (37)

(g�p3 � g�n3 ) (1; Q2) =

 
1�

2�s(Q2)

3�

!
�A3(1; Q

2
0) (38)

1

2
(g�p4 � g�n4 ) (0; Q2) = �A3(1; Q

2
0) (39)

�
g��p3 + g�p3

�
(1; Q2) = �

 
1�

2�s(Q2)

3�
+
�s(Q2)� �s(Q2

0)

4�

P+(1)

2�0

!
(�uv +�dv) (1; Q

2
0)

(40)

1

2

�
g��p4 + g�p4

�
(0; Q2) = �

 
1 +

�s(Q2)� �s(Q2
0)

4�

P+(1)

2�0

!
(�uv +�dv) (1; Q

2
0) (41)

"
9
�
g
ep (e:m:)
1 + g

en(e:m:)
1

�
�

6

2 + f1(�; 1)
(g�p1 + g�n1 )

#
(1; Q2)

=
1

2

5f1(�; 1)� 2

f1(�; 1) + 2

 
1�

�s(Q2)

�

!
�A8(1; Q

2
0) ; (42)

etc. It should be noted that eq. (20) receives singlet contributions beyond the leading

order, therefore we have not written down this equation any more. Eqs. (34-42) show how

in principle measurements of the �rst moments of polarized NS structure functions even

at large Q2 can serve to independently determine the combinations (�uv ��dv)(1; Q2
0),

�A3(1; Q2
0) and �A8(1; Q2

0). This is particularly interesting considering the question

raised earlier of which combination of polarized parton distributions can be related to

the F , D values measured in baryonic �-decays. To simplify the discussion, we follow

12



the recent NLO analysis [49] to assume that at the low input scale Q2
0 = 0:34 GeV2

(� �2NLO [49]) we can neglect any e�ects of SU(2) isospin breaking in relating �-decay

matrix elements of charged and neutral currents as well as SU(2)f breaking in the proton's

polarized sea. We then have �A3(1; Q2
0) = (�uv ��dv)(1; Q2

0) = F +D, and the rhs of

eqs. (34,37-39) are completely speci�ed, leading to unique predictions for the combinations

of structure functions on the lhs in NLO of QCD. The �rst of these is of course the well-

known Bj�rken sum-rule [4] to O(�s) [20]8. The results for eqs. (34,37-39) are displayed

in Fig. 1 as functions of Q2, where we have used [49] �(f=4)

MS
= 200 MeV. To account for

SU(3) breaking e�ects we parametrize the input quantities appearing on the rhs of eqs.

(40-42) in the following way:

�A8(1; Q
2
0) = (3F �D)(1 � �1) (43)

(�uv +�dv) (1; Q
2
0) =

1

1� �2
(3F �D) ; (44)

which yields (3F�D)=2(1��2)+(F+D)=6 for the combination (2�uv=3+�dv=3)(1; Q2
0)

in eqs. (35,36). Eqs. (43,44) are general enough to take into account all possible sources

of SU(3) breaking: �1 determines the deviation of the �rst moment �A8(1; Q
2
0) from the

value 3F �D obtained from hyperon �-decays. Such a deviation will occur if the use of

SU(3) symmetry for relating the matrix elements of charged and neutral axial currents

is not justi�ed. In this case, �1 could be signi�cantly di�erent from zero, even such that

only the valence quarks contribute to 3F �D [6]. This possibility is taken into account

by the parameter �2 which would vanish in the latter case. From the de�nition of �A8

one furthermore sees that �1 and �2 together determine the amount of SU(3)f breaking

in the proton's polarized sea:

2
��u+��d� 2��s

�uv +�dv
(1; Q2

0) = (1 � �1)(1� �2)� 1 : (45)

Fig. 1 shows our predictions for the NS structure functions of eqs. (35,36,40-42) for the

conceivable choices [49] �1 = 0, �2 = 0:105 and �1 = 0:40, �2 = 0. It becomes obvious that

the e�ects of changes in the �i are larger than the present experimental 4%-uncertainty [5]

in the value for 3F �D (see eq. (4)) and that therefore a measurement of the quantities

shown would help to decide about the amount of SU(3) breaking. In particular, the

parameter �2 could be determined in NC,CC experiments with polarized beams at HERA

8Note that actually the corrections to O(�2s), O(�
3
s) to this sum-rule are known [31].
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[16] via a measurement of gep;NC
4 (0; Q2) or (g��p4 + g

�p
4 )(0; Q2) � (ge

�p;CC
4 + g

e+p;CC
4 )(0; Q2)

(or their g3-analogues). Using the full Mellin-n-dependent expression for �C4
q (n) from

eqs. (29),(A.4) in eq. (22), we can obtain NLO predictions for the Bj�rken-x dependence

of the latter structure functions:

g
ep;NC
4 (n� 1; Q2)

(ge
�p;CC
4 + g

e+p;CC
4 )(n� 1; Q2)

)
=

 
1 +

�s(Q2)

2�
�C4

q (n)

!(
1
2

�
2
3
�uv +

1
3
�dv

�
(n;Q2)

(�2) (�uv +�dv) (n;Q2) ;

(46)

where, again, the polarized valence quark densities are to be evolved according to eq.

(24) with the correct analytic continuation P+(n) of the 
1NS(n) found in [44, 46, 50].

The results for gep;NC
4 (x;Q2) and (ge

�p;CC
4 + g

e+p;CC
4 )(x;Q2) at Q2 = 1000 GeV2, found

after Mellin-inverting eq. (46), are shown in Fig. 2, where for the polarized input valence

densities �qv(x;Q2
0) at Q

2
0 = 0:34 GeV2 we have used the two sets determined in ref.

[49]. Both sets give a very good description of all existing data on deep-inelastic spin

asymmetries in the valence region x >
� 0:2, but they di�er in the assumptions made about

the role of SU(3)f symmetry breaking e�ects and therefore have di�erent �rst moments

[49], corresponding to the �1, �2 values used in Fig. 1. Thus the variation in the results

shown in Fig. 2 for the di�erent sets of polarized valence input densities re
ects the

present theoretical uncertainty in the predictions. Conversely, Fig. 2 shows that also a

measurement of gep;NC
4 (x;Q2) and (ge

�p;CC
4 + ge

+p;CC
4 )(x;Q2) for x � 0:2 at HERA could

help to shed light on the importance of SU(3)f symmetry breaking.

The di�erent evolution of the polarized valence quark densities and the combination

�A3 beyond the LO induces a dynamical breaking of the SU(2)f symmetry in the proton's

polarized sea9. Eq. (24) and our considerations concerning the analytic continuation of


1NS(n) predict

2
�
��u���d

�
(n;Q2) =

(�s(Q2)� �s(Q2
0))

4�

(P�(n)� P+(n))

2�0

�

 
�s(Q2)

�s(Q2
0)

!
0
NS

(n)=2�0

(�uv ��dv) (n;Q
2
0) ; (47)

where we have again assumed the nonperturbative input at Q2
0 to be SU(2)f -symmetric,

��u(n;Q2
0) = � �d(n;Q2

0). Using again the polarized input valence distributions of ref. [49]

9There is also a dynamical breaking of SU (3)f symmetry in the sea induced by �A8. We do not

pursue this e�ect since it is most probably dominated by the SU (3)f breaking in the nonperturbative

input (see eq. (41)) due to the larger strange mass.
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at Q2
0 = 0:34 GeV2, we obtain a prediction for (��u���d)(x;Q2 = 10GeV2) which is shown

in Fig. 3. Both sets of polarized input valence densities considered in [49] lead to entirely

indistinguishable results, since only the input combination (�uv ��dv)(x;Q2
0) is needed

here whose �rst moment is �xed by the value F +D (eq. (3)) in both cases. It should be

noted that such a dynamical breaking of SU(2)f symmetry in the sea induced by two-loop

evolution was considered in the unpolarized case in ref. [45], where it was found to be very

small. The results in the polarized case di�er in sign (due to the interchange P+ $ P�)

and slightly in magnitude (due to the polarized valence input instead of the unpolarized

one) from the unpolarized results. However, the relative e�ect of SU(2)f breaking is much

larger in the polarized case since the polarized sea densities are probably much smaller

than their unpolarized counterparts. Even so, when taking the �rst moment, one obtains10

2
�
��u���d

�
(1; Q2 = 10GeV2) = �

(�s(Q2)� �s(Q2
0))

4�

P+(1)

2�0
(F +D)

� 0:006 ; (48)

which means that unless the input at Q2
0 strongly breaks SU(2)f symmetry the e�ect

of the breaking is probably small compared to the size of j��u(1; Q2)j, j��d(1; Q2)j which

might well be of the order >
� 0:05 [49]. It is straightforward to introduce parameters �1, �2

in analogy to �1, �2, which would parametrize genuine SU(2) breaking e�ects in the �rst

moment of the polarized sea and in the relation between charged and neutral axial current

�-decay matrix elements. Measurements of the �rst moment of the structure functions in

eqs. (34,37-39) (see also Fig. 1) would then allow to determine these parameters and to

pin down SU(2) breaking e�ects.

5 Summary and conclusions

We have performed a detailed study of spin-dependent non-singlet structure functions

in the framework of a complete and consistent NLO QCD calculation. Our analysis is

based on a careful discussion of the calculation of the O(�s) corrections to the structure

functions, in which we have examined the regularization scheme dependence of the NS

coe�cient function �C1
q for g1 with respect to the constraints imposed by axial current

10This number depends quite crucially on the value chosen for the input scale Q0. Taking, e.g., Q
2
0 = 1

GeV2 the result in eq. (48) is reduced by a factor 3.
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conservation. We have also shown how to correctly take into account the two-loop evo-

lution of polarized NS quark combinations. A further ingredient of our study is the full

inclusion of the charm mass e�ects in the charged current s! c contributions to polarized

electroweak structure functions.

Our numerical analysis has revealed that conceivable measurements of spin-dependent

NS structure functions at HERA or in
(�)
� scattering experiments o� polarized nucleon

targets would serve to improve our understanding of the relations between the �rst mo-

ment of NS combinations of polarized quark densities and the F , D values extracted from

hyperon-�-decays, and would also shed light on SU(2)f , SU(3)f breaking in the nucleon's

polarized sea. Finally, we have also shown that the latter symmetries are dynamically

broken by NLO evolution in the NS sector.
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Appendix

In this Appendix we list the results for the polarized coe�cient function �C1
q (n) using

various regulators in its calculation from the process ~
�~q ! q(g). In all cases we have

chosen to just subtract the collinear pole contribution, which is then factorized into the

(bare) quark distributions. The singular terms are of the forms 
0NS(n) ln(Q
2=jm2j) (if

some mass or o�-shellness
q
jm2j is used as the regulator) or 
0NS(n)(�1=�̂) (in dimensional

regularization in the MS-scheme). Since the �rst moment of 
0NS(n) vanishes [9, 19], the

pole contribution drops out from the more important �rst moment anyway. The results

in Mellin-n space below can be easily transformed into Bj�rken-x space with the help of

the Appendix of ref. [34].
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O�-shell massless quarks, on-shell gluons: This calculation corresponds to the one

of ref. [20], but our results slightly di�er by a term CF (�1 + 2=(n + 1)) (which

vanishes for n = 1) due to the speci�c operator normalization chosen in [20] (see

the Appendix A.2 of ref. [20] for details). For the result in the unpolarized case (F2)

see [33].

�C1
q (n) = CF

2
4� 3

2n
+

2

n+ 1
+

2

n2
�

2

(n+ 1)2
+
3

2

nX
j=1

1

j
� 4

nX
j=1

1

j2

3
5 : (A.1)

On-shell massless quarks, o�-shell gluons: The �C1
q (n) for this calculation can be

obtained from [22]. For the unpolarized case see [35].

�C1
q (n) = CF

"
�
9

4
�

3

2n
+

3

n + 1
+

2

n2
�

1

(n+ 1)2

+

 
3

2
�

1

n(n + 1)

!
nX
j=1

1

j
� 4

nX
j=1

1

j2
+ 2

nX
j=1

1

j

jX
k=1

1

k

3
5 : (A.2)

On-shell massive quarks, o�-shell gluons: In this regularization we obtain:

�C1
q (n) = CF

"
�
5

2
�

5

2n
+

2

n + 1
+

1

n2
�

2

(n+ 1)2

+

 
7

2
+

1

n(n+ 1)

!
nX
j=1

1

j
� 2

nX
j=1

1

j2
� 2

nX
j=1

1

j

jX
k=1

1

k

3
5 : (A.3)

Note that �C1
q (1) = �7CF=2 in this scheme. See refs. [36, 20] for the corresponding

unpolarized result.

Dimensional regularization: Using the 
5-prescription of [23] (or its more systematic

and consistent generalization [27]) one obtains in the MS-scheme [24, 26]:

�C1
q (n) = CF

�
�
9

2
+

1

2n
+

1

n+ 1
+

1

n2

+

 
3

2
�

1

n(n + 1)

!
nX
j=1

1

j
� 2

nX
j=1

1

j2
+ 2

nX
j=1

1

j

jX
k=1

1

k

3
5 : (A.4)

The same result in dimensional regularization was found earlier in [21] without

specifying the 
5-prescription. However, using the original scheme of 't Hooft and

Veltman [28] and Breitenlohner and Maison [29] (or the equivalent one of refs.

[30, 31]), one �nds [25, 32] an additional term

�C1
q (n)

HVBM = �C1
q (n)

(A:4) � 4CF

�
1

n
�

1

n+ 1

�
; (A.5)

which leads to �C1
q (1) = �7CF=2. For the unpolarized case see [34, 37].
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We �nally present our results for the coe�cient functions � ~C i
q for g1, g3, g4=2x for

the transition s ! c, fully taking into account the e�ects due to the charm quark mass.

The calculation was performed in MS dimensional regularization in the 
5-scheme of ref.

[27], choosing the axial vertex as the reading point. Our Bj�rken-x space results for � ~C1
q ,

� ~C3
q , � ~C4

q fully agree with those of ref. [39] for the unpolarized h3;q h1;q, h2;q (for F3,

F1, F2=2x), respectively, after eliminating an error in the coe�cient A2 in that paper

which should read KA instead of KA=2. The di�erences � ~C4
q �� ~C1

q , � ~C4
q �� ~C3

q which

are regularization scheme independent, are in agreement with the results of [40] for the

corresponding di�erences in the unpolarized case. We note that the results of ref. [42]

seem in slight disagreement with both [39] (even after correction of the above mentioned

error) and [40] and also with our calculation in this respect. Here we present the Mellin-n

moments of our results. For this purpose it is convenient to present the moments for the

di�erences � ~C i
q(n; �) � �C i

q(n), where the �C i
q(n) are the (usual) massless coe�cient

functions given in eqs. (29), (A.4), and � = Q2=(Q2 +m2
c). De�ning the sum

S�(n; �) � ���n

2
4ln(1� �) +

nX
j=1

��j

j

3
5 ;

and [39]

KA(�) �
1� �

�
ln(1 � �) ;

we �nd:

� ~C1
q (n; �)��C1

q (n) = CF

"
�KA(�) + 2

nX
i=1

1

i
(S0(i; �)� S1(i; �))

+
(n � 1)(n + 2)

2n(n+ 1)
(S0(n; �) � S1(n; �)) �

n(n� 1)

2(n+ 1)

1 � �

�
S1(n; �)

�

0
@3
2
+

1

n+ 1
� 2

nX
j=1

1

j

1
A ln �

3
5 (A.6)

�
� ~C3

q �� ~C1
q

�
(n; �)�

�
�C3

q ��C1
q

�
(n) = CF

"
1 � �

�

1

n+ 1
+
(1� �)2

�2
S1(n; �)

#
(A.7)

�
� ~C4

q �� ~C3
q

�
(n; �)�

�
�C4

q ��C3
q

�
(n) = CF

"
KA(�) �

(1� �2)(1� 2�)

�2
S1(n; �)

�(1 � �)

 
2

n
+

1

�(n + 1)

!#
: (A.8)

The last term in eq. (A.6) which contains the LO 
0NS(n) [9, 19] is introduced if one

chooses the scale Q2 as the factorization scale [39]. It should be noted that, like in the LO

18



(see eqs. (11-14)), an additional factor of �n (�n�1) is needed to calculate the contribution

to the structure functions g1(n;Q2), g3(n;Q2) (g4(n� 1; Q2)=2).
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Figure Captions

Fig. 1 Predictions for the Q2-evolution of the �rst moments of the various NS combina-

tions of polarized structure functions as given in eqs. (34)-(42) for two conceivable

choices of SU(3)f breaking parameters �1, �2 in eqs. (43),(44). The input scale for

the evolution, Q2
0 = 0:34 GeV2, was chosen according to ref. [49], and �s(Q2) was

calculated from eq. (23) with �MS from [49].

Fig. 2 Predictions for the NC and CC non-singlet structure functions (cf. eq. (46))

g
ep;NC
4 (x;Q2) and g

ep;CC
4 (x;Q2) �

�
g
e�p;CC
4 + g

e+p;CC
4

�
(x;Q2), respectively, as mea-

surable in a future polarized e�p=e+p collider mode of HERA [16]. For the predic-

tions we have used the two sets of polarized input valence densities suggested in [49]

which correspond to the SU(3)f breaking parameters introduced in Fig. 1.

Fig. 3 Prediction for the dynamical SU(2)f breaking of the proton's polarized sea�
��u���d

�
(x;Q2) at Q2 = 10 GeV2 according to eq. (47). The nonperturba-

tive valence input (�uv ��dv) (x;Q2
0) at Q2

0 = 0:34 GeV2 was taken from the

analysis in ref. [49]. For comparison the dashed line shows the averaged sea den-

sity ���q(x;Q2) � �
�
��u(x;Q2) + � �d(x;Q2)

�
=2 determined within the 'standard

scenario' of ref. [49].
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