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Abstract

We discuss the relevance of long wavelength excitations for the low
energy spectrum of QCD, and try to develop an efficient method for solv-
ing the Schrédinger equation, and for extracting the glueball masses and
long wavelength functions of the ground and excited states. Some tech-
nical problems appearing in the calculations of SU(3) gauge theory are
discussed.

QCD in the pure gauge sector possesses a nontrivial vacuum structure and
bound states called glueballs. Solving the Schrodinger equation in the Hamil-
tonian formulation can directly provide not only the glueball masses from the
eigenvalues, but also the profiles, i.e., the wave functions for the ground state
and excited states.

Strictly speaking, the continuum physics should be extracted in the asymp-
totic scaling region predicted by the renormalization group equation. In [, E,
E, E, E], we developed an efficient eigenvalue equation method with some new
truncation schemes which preserve the continuum limit. This is an essential
step towards the scaling.

Our starting point is to obtain the long wavelength wave functions of the
ground and excited states. The philosophy is to keep the correct long wavelength
limit during the truncation. The low energy spectrum originates mainly from
the long wavelength excitations. This is because the size or the Compton length
of a glueball, which is usually of the same order as that of a hadron or the lattice
size, should be much greater than the lattice spacing a. It is worth mentioning
that the confinement of gluons or static quarks is closely related to the long
wavelength structure of the vacuum. For the long wavelength configurations U,
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the ground state in the continuum [f is

|Q) = exp| Ko /dD_lzv trF?

e
iz _
- e_g dP 'z tr(DF)?, (1)

with e being the renormalized coupling, F the field strength tensor and D the
covariant derivative.
Our method is as follows. The ground state

|€2) = exp[R(U)]|0) (2)

with energy en of the Hamiltonian H has to satisfy the Schrodinger equation
H|Q) = eq|Q), which results in
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This equation can be solved by a systematic method , E, E, , ﬂ], in which
R(U) is expanded in order of graphs G, 4, i.e.,

R(U) =3 Bu(U) = Cn,iGni(U), (4)

with n being the order of the graphs defined as the number of plaquettes in-
volved. Then the Nth order truncated eigenvalue equation is

N
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from which the coefficients C), ; are determined. Similar equation for the glueball
mass and its wave function can be derived [H]



Only the second term generates new or higher order graphs (of order ni +
ngy), influencing the choice of independent graphs. The essential feature of our
truncation scheme, which differs sufficiently from the scheme in [E], is in the
treatment of this second term. It has been generally proven [I] that in the long
wavelength limit this term should behave as

[Er, Ry (U)][Ei, Ry (U)] o a® tr(DF0)%. (6)

To preserve this correct limit, when the equation (E) is truncated to the Nth
order all the graphs created by [E}, Ry, (U)][E1, Rn, (U)] for ny+ng < N must be
considered. In this method, no group integration is necessary, and independent
graphs can be obtained systematically [E, E], which can be suitably chosen for
more rapid convergence to the continuum limit.

When the eigenvalue equation is truncated at a finite order, some ambiguity
appears, as mentioned in [E, E] For a non-abelian gauge theory, the unimodular
condition induces the mixing of a graph with not only the same order, but also
different orders. Therefore, the definition of the order of a graph and the choice
of independent graphs are not unique. In the infinite order limit, different pre-
scriptions should give identical results. At low orders, this is not necessarily the
case. Then a question arises: which classification scheme works more efficiently
and converges more rapidly to the continuum limit? (In numerical simulation
on a finite lattice, there is analogously a problem of choosing better operators
or wave functions).

In SU(2) gauge group, TrU, = T?“UPJf and all loops with crossing can be
transformed into loops without crossing. The complication of the SU(3) group,
however, is that not all the disconnected graphs can be transformed to the
connected ones. Any group element A of SU(3) has to satisfy the following
condition

AilleizjzAisjsejljzjé = Ciyigigs (7)

where a summation over the repeated indices is implied. We rewrite this con-
dition as

Q(AT)U‘ = 2(142)1']‘ — 2AijtTA

+[(trA)? — tr(A%)]6;, (8)

251']' = 2(A3)1J - 2(A2)ijt’l”A

+[(trA)? — tr(A%)] A, (9)



from which the relations among different graphs can be established. One sees
that not only graphs of the same order, but also graphs of different orders mix,
so that the classification becomes rather involved.

In [ﬂ, E], the disconnected graphs were taken as independent graphs. We
realize that this is not the most efficient way, because the disconnected graphs
have large overlapping with graphs of lower orders in the weak coupling region.
Indeed, the results in [E] showed that such a choice was not so economical.
Alternatively, the connected graphs represent more coherence and have less
mixing with lower order graphs. The superiority of the connected scheme over
the disconnected one has also been shown in [§] for a (241)-dimensional SU(2)
model. This is why for a more realistic gauge group SU(3), we try our best to
transform [{] the disconnected graphs to the connected ones.

The coefficients o and sy in () should be constants in the weak coupling
limit ¢ — 0 or 8 = 6/g®> — oo as required by the renormalizability of the the-
ory. Figure [Il shows the third order results for QCD3 from the strong coupling
expansion and the truncated eigenvalue equation. They are consistent in the
strong coupling region. For larger 3, it is not surprising that the strong cou-
pling expansion method no longer works. It is usually hoped that beyond the
strong coupling region, there is a scaling region for extracting continuum in-
formation when the physical quantities become approximately constants. From
the intermediate coupling till the weak coupling, the data from the the trun-
cated eigenvalue equation method show nice scaling behavior, thus suggesting
the correct long wavelength continuum limit ([) of the vacuum wave function
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Figure 1: Coefficients in the vacuum wave function of QCDj. Triangles: strong
coupling expansion; Crosses: the third order calculation described in the text;
The dot lines: mean values in the scaling region.

In [ﬂ], we present a possibly more efficient, named “inverse scheme”. Define
the linear operations of derivation Dev and inverse Inv as

Dev|[G] = Z[Eh [E1, G,
1



Inv[Dev[G]] = G. (10)

Let us take some of the graphs in [[f, fJ] as examples,

16
DGU[GI] = ?GI,

3
I””[GI] = EGL

40
Dev|Gaa] = G + 8G1. (11)
Using ([L0) and ([L1)), we have
3 3
I’rL’U[Gg)l] = 4—0(G271 - §GI) (12)

In the inverse scheme, we choose the inverse of graphs G, ;

G,Im- x Inv[Gy ;] (13)

as independent graphs of order n. In general, GL . is a linear combination of

n,s

G, ; and lower order graphs. Up to the third order, the inverse of connected
overlapping (c.0.) graphs G, ;(c.0.) in [}, fi] are

3
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1
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We observe that in the inverse scheme, the independent operators Gfm- are
given by G, ; with subtraction of lower order graphs. (Actually there is al-
ternation in sign in the lower order graphs in ()7 but the dominant ones are
subtractions). Such a subtraction may further reduce the overlapping of higher
order graphs with lower order ones in the weak coupling region. Therefore, we
expect that the inverse scheme may be superior over the other schemes.



Whereas our goal is to apply this method to QCD in 4 dimensions (in
progress), we would like to demonstrate how the inverse scheme works in an
interesting and relevant but less complicated theory: QCDs, the 3D SU(3)
gauge model. This reduces a theory to a super-renormalizable one, since the
renormalization requirements amounts to dimensional analysis. In the weak
coupling region (for large 3 = 6/g?), because the renormalized charge e and the
bare coupling are related by g? = e2a, dimensional analysis tells us that the
dimensionless masses aM jrc should scale as

CLMJPC MJPC
—

5 5— A const., (15)
g e

from which the physical glueball masses M jrc are obtained.

Figure 2: Glueball masses in QCD; indicated by crosses. The dot lines: mean
values in the scaling region; Dash lines: strong coupling expansion; Triangles:
results from a connected scheme.

The third order results for aMy++/g* and aMy-- /g2 are shown in Fig. P
by crosses. For comparison, the results @] using the old classification scheme
(triangles) truncated up to the same order and those from the strong coupling
expansion (dash lines) are also included in the figure. One sees clearly the
advantage of the inverse scheme. While the mean values from different schemes
are consistent, the scaling window for aMgy++/g? from the old scheme is § €
[5,8), and that from the inverse scheme is greatly widen and extended to much
weaker coupling 3 = 12. The mean values for the masses extracted in the scaling
region are

M,
22** ~ 2.0923 + 0.0334,

Mo_—
0"~ ~ 3.7077 % 0.0280. (16)
(&



In this paper, we discuss only the results for QCD3. The results of 3D —U(1),
and SU(2) gauge theories and 2D — ¢ model have been presented in , E, H]
and summarized in [EI] Even at low orders, clear scaling windows for the
physical quantities in all cases have been established, where the results are in
perfect agreement with the Monte Carlo data [ﬂ E] (they have data only for 3D
SU(2)). Extension to 3+1 dimensional nonabelian guage theories is in progress.

To ensure that the results occur at their correct values, efforts have to be
made in doing higher order calculations. In the applications to 3D — U(1) and
2D — o models [E, @], the convergence has been confirmed. In conclusion,
the method is hopeful to be developed into an efficient systematic approach to
extracting the continuum physics.
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