astro-ph/9509029 6 Sep 1995
 $\left(\left(0_{\theta}-\theta\right) \boldsymbol{Z} \operatorname{soc} \frac{9}{\ni}+\boldsymbol{I}\right) \boldsymbol{x}^{\mathrm{do}} \phi=\mathrm{d}_{\phi}$

$\phi_{\text {tot }}=\phi_{\text {cluster }}+\phi_{\text {perturber }}$
part and a circular part.
 Working in the coordinate frame of the perturber, we model the total cluster
2. Analysis of the local weak shear field weak shear field. We present some analytic results below. systematically studied. We propose a new method to study the effect of ture in clusters on such reconstructions of the total mass have not been used to map the distribution of mass at large radii. The effects of substruc-
Weak shear maps of the outer regions of clusters have been successfully Abstract
act

$$
\begin{aligned}
& \text { PRIYAMVADA NATARAJAN } \\
& \text { Institute of Astronomy, University of Cambridge, Cambridge } \\
& \text { U.K. } \\
& \text { AND } \\
& \text { JEAN-PAUL KNEIB } \\
& \text { Institute of Astronomy, University of Cambridge, Cambridge } \\
& \text { U.K. }
\end{aligned}
$$

sum of contributions from these two sources. In order to obtain a quantity that can be compared to observations we define an averaging procedure that involves integration over an annulus of finite radius which gives,

$$
\begin{aligned}
& <\mathrm{g}_{\mathrm{x}}>=\int_{0}^{2 \pi} \int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \mathrm{~g}_{\mathrm{x}}(\mathrm{r}, \theta) \mathrm{rdr} \mathrm{~d} \theta \\
& <\mathrm{g}_{\mathrm{y}}>=\int_{0}^{2 \pi} \int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \mathrm{~g}_{\mathrm{y}}(\mathrm{r}, \theta) \mathrm{rdrd} \theta \\
& <\mathrm{g}_{\mathrm{x}}>_{\mathrm{c}}=-\frac{\phi_{\mathrm{oc}}}{2 \mathrm{r}} ;<\mathrm{g}_{\mathrm{y}}>_{\mathrm{c}}=0 \\
& <\mathrm{g}_{\mathrm{x}}>_{\mathrm{p}}=-\frac{\phi_{\mathrm{op}}}{12\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)} \epsilon \cos 2 \theta_{0} \\
& <\mathrm{g}_{\mathrm{y}}>_{\mathrm{p}}=-\frac{\phi_{\mathrm{op}}}{12\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)} \epsilon \sin 2 \theta_{0}
\end{aligned}
$$

The aim is to extract the parameters of the perturber ($\phi_{o p}$ and ϵ) independently, so we convolve with an appropriate window function $\hat{\mathbf{W}}(\theta)$ that maximizes the signal. An optimum choice is the following window,

$$
\hat{\mathbf{W}}_{\mathbf{x}}(\theta)=\cos 2 \theta ; \hat{\mathbf{W}}_{\mathbf{y}}(\theta)=\sin 2 \theta
$$

Some interesting features which are primarily due to the particular choice of averaging procedure are that for a circular perturber and an elliptical perturber oriented at $\frac{\pi}{4}$ with respect to the cluster center the contribution to the local weak shear field as defined above vanishes.

3. Conclusions

Applications of this formalism provide us with a probe of the structure of cluster galaxies. With high resolution wide field data we can put limits on halo sizes and masses of cluster galaxies, which are relevant for understanding the details of the process by which clusters assemble. We shall also be able to quantify the errors in mass estimates from lensing due to the presence of substructure in clusters.

4. References

Kaiser, N., and Squires, G. (1993) ApJ., 404, 441-450.
Blandford, R., and Narayan, R. (1987), ApJ., 321, 658-675.
Kaiser, N. (1992), Ap.J., 388, 272-286.
Kneib, J. (1993), PhD. thesis.
Kneib, J., Mellier, Y., Fort, B., and Mathez, G.(1993), $A 83$ A, 273,367-377.
Natarajan, P., Kneib, J. P., and Rees, M. (1995), in preparation.

