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Abstract. A quantum theory is developed for a di�erence-di�erence system which

can serve as a toy-model of the quantum Korteveg-de-Vries equation.

Introduction

This Letter presents an example of a completely integrable `discrete-space-time quantum model' whose

Heisenberg equations of motion have the form

� (�; n)� (�; n� 1) + �� (�; n� 1)� (� � 1; n� 1)

= �� (�; n)� (� � 1; n) + � (� � 1; n)� (� � 1; n� 1): (1)

By `discrete...model' we mean

(i) an algebra `of observables' �,

whose generators � n are labeled by integer numbers n which are regarded as a (discrete) spatial

variable; together with

(ii) an automorphism Q,

whose sequential action

x (0) � x 2 �

Q : : : : 7! x (� � 1) 7! x (�) 7! x (� + 1) 7! : : :

is viewed as the (discrete) time evolution. Thus, we intend to produce a pair �&Q such that the

evolution � n(�) of generators, in the natural notation

� (�; n) � � n(�);

obeys the system (1).

Complete integrability is understood as the existence of a commutative subalgebra `of conservation

laws' preserved under time evolution and spanning, in a sense, half of the algebra of observables: it

is commonly believed that a Hamiltonian system may be either `completely' nonintegrable possessing

only a few conservation laws due to its manifest symmetries, or completely integrable enjoying a whole

lot of conservation laws, one per degree of freedom. The commutative subalgebra which we encounter

in this Letter de�nitely contains a lot of conservation laws but the question of how many is left to be

answered elsewhere.

Actually, we deal here not with a single model but rather with a family of them �&Q(�), each model

being related to a certain value of a complex parameter � in (1). Moreover, all their evolution automor-

phisms Q(�) turn out to be mutually commuting and sharing the common subalgebra of conservation

laws.

The order of presentation is as follows. In Section 1 we introduce an algebra of observables which is

basically the same lattice U(1) exchange algebra which appeared already in [FV93, 94]. Naturally, the

behaviour of that algebra depends on the value of a constant q involved in the commutation relations.

For simplicity we shall assume that q is a root of unity.

�On leave of absence from Saint Petersburg Branch of the Steklov Mathematical Institute,

Fontanka 27, Saint Petersburg 191011, Russia

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25184009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


After some preliminaries (Sections 2 and 3) we pick in Section 4 from the algebra of observables a

set of `Fateev-Zamolodchikov R-matrices' R n(�) which satisfy a chain of Yang-Baxter equations

R n�1(�) R n(��) R n�1(�) = R n(�) R n�1(��) R n(�)

amounting to mutual commutativity

Q (�)Q (�) = Q (�)Q (�)

of their properly de�ned `ordered products'. The family Q (�) provides the demanded commuting

(inner) evolution automorphisms

� (�; n) � Q�� � n Q
�

and doubles as their common conservation laws.

In Section 6 we eventually establish that these evolutions do solve the equations (1). Prior to that,

in Section 5, we discover one more face of the family Q (�). As a function of � it proves to satisfy the

Baxter equation [Bax]

q
N`2 Q (�) t (�) = �N (�)Q (q�1�) + �N (�)Q (q�)

which in turn makes Bethe ansatz equations to emerge in a purely algebraic context.

While the quantum system (1) seems to be a recent invention (it has been looked at, albeit from a

somewhat di�erent angle, in [FV92, 94]), its classical counterpart has been around for quite a while. It

was introduced (in a somewhat di�erent form) by Hirota back in 1977 [H] as an integrable di�erence-

di�erence approximation of the sine-Gordon equation but eventually proved far more universal making

perfect sense as a lattice counterpart of numerous integrable equations including that of Korteveg and

de Vries. To conclude the Introduction we shall list various continuous limits and alternative forms of

the (classical) system (1). This should give some idea of where our model �ts into the scheme of things

accepted in Soliton Theory. For more of that and a comprehensive list of relevant references see [NC].

Pairs of integers (�; n) may naturally be viewed as vertices of a plane lattice. In the shorthand

notation

A=(�;n�1) B=(�;n)

C=(��1;n�1) D=(��1;n)

t t t t t

t t t

t t t

for a quartet of vertices enclosing some elementary cell of that lattice, with subscripts instead of paren-

thesized arguments and without bold letters reserved for the quantum case, the classical equations (1)

read

�
B
�
A
� �

D
�
C
� � (�

B
�
D
� �

A
�
C
) = 0:

� At least one continuous limit is already quite apparent. Let us put the lattice on the coordinate

plane (t; x) in such a way that vertices (�; n) go to points (��1��;�n):

A B

C D

x

t

�

�=�

If now one manages to �nd a family of solutions to (1) depending on the lattice spacing � and tending to

a smooth function v(t; x) as � goes to zero then that function can be easily seen to satisfy the equation

�t � �x = 0:
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This equation hardly needs any comment although at this point the use of a nonlinear di�erence-

di�erence equation to model a linear di�erential one seems di�cult to justify. Once, however, one takes

it as a Minkowsky version of the Cauchy-Riemann equations things start to look like a uni�ed approach

to conformal invariance and integrability.

� Let us now perform a more sophisticated superimposition (�; n) �! (���
3

24
�3�; ��� +�n):

A B

C D

x

t

� ��

��3

�
�
�
�
�
�
��

�
�
�
�
�
�
��

This time we come to the close relative of the KdV equation

�t + �xxx � 3
�xx�x

�
= 0

for any solution of which the potential

u =
�xx

�

solves the KdV equation itself

ut + uxxx � 6 uux = 0:

� To demonstrate a somewhat di�erent scenario let us recall how to turn (1) into the sine-Gordon

equation. Before performing a continuous limit we switch in (1) to the function '(�; n)

�(�; n) = e(�1)
ni'(�;n)

that brings (1) back to its original form

sin 1
2
('

A
� '

B
� '

C
+ '

D
) + � sin 1

2
('

A
+ '

B
+ '

C
+ '

D
) = 0:

Let the lattice cells now look like

A B

C D

�

�

�

�

and rescale the constant in the equation making it dependent on the lattice spacing

� = �
�
m�
2

�2
:

If now for a �xed value of the constant m one �nds a family of solutions ' tending, as � ! 0, to a

smooth function '(�; �) then this function satis�es the sine-Gordon equation

'�� +
m
2

2
sin 2' = 0:

Of course the original function � can not survive under this continuous limit becoming badly oscillating.

� Although the mere ability of (1) to unify KdV and SG equations makes it a reasonable prospect,

one is still left to wonder why the would-be universal lattice equation does not look special enough for
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that. And indeed there exists a far more spectacular version of (1). One can try to guess its form

recollecting that the KdV equation looks best in its Krichever-Novikov reincarnationy

ft + S[f ]fx = 0

where S[f ] stands for the Schwarz derivative

S[f ] =
fxxx

fx
�
3

2

�
fxx

fx

�2
:

Any decent lattice approximation for the f -equation should employ the cross-ratio as a di�erence coun-

terpart of the Schwarz derivative and it is not di�cult to spot the right one:

(f
A
� f

B
)(f

C
� f

D
)

(f
A
� f

C
)(f

B
� f

D
)
= const:

Indeed, this equation does produce, provided const= ��2, in the above `parallelogram' continuous limit

exactly the f -equation being as well a completely integrable di�erence-di�erence model in its own right.

And just as the continuous f - and �-equations are tied up by the Fuchs formula

fx =
1

�2

their lattice counterparts are connected by the map de�ned by

1

�
(fn � fn�1) =

1

�n�1�n

where we omitted the argument � common for all entries and moved the remaining one to the subscript

position.

The cross-ratio version will �nd extensive use in the forthcoming paper addressing higher-order

equations (KdV hierarchy), equations with two �elds (NLS hierarchy) and 2+1-dimensional equations

(KP hierarchy). Unfortunately, despite of its virtues this version has not yet been really useful in the

quantum theory where at present we are only able to handle a free-�eld sort of algebra of observables

associated with the �-equation.

� By the way, at this point one �nds himself well prepared to design a lattice version of the u-

equation. Introducing

un =
2�n

�n�1 + �n+1

so that

un�1un = 4
(fn+1 � fn)(fn�1 � fn�2)

(fn+1 � fn�1)(fn � fn�2)

and

ulat � 1� 1
2
�2ucont

one eventually transforms (1) into

(u
A
� u

D
)(u

B
� u

C
) + 1

4
(��2 � 1)(u

A
u
B
� u

C
u
D
)2 = 0

approximating the KdV equation in its original form.

yAs this is already the third form of the KdV equation we have met, so far, and the arrival of a fourth one, the so-called

modi�ed KdV equation, is imminent, let us recall how all these forms interact

f ft + S[f ]fx = 0
#
� = 1p

fx
�t + �xxx � 3�xx�x

�
= 0

#
p = �x

�
= � 1

2

fxx
fx

pt + pxxx � 6p2px = 0

#
u = p2 + px = �xx

�
= � 1

2
S[f ] ut + uxxx � 6uux = 0

and for some while rename them from their traditional names to f= =p=u-equations correspondingly.
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1 Algebra of observables

All the way through this Letter a constant q will be an odd root of unity

q
2`+1 = 1

and an integer number N(� 3) called the spatial period will be odd. The only algebra of observables

in use will be the `exchange' algebra � with generators � n subject to

(i) commutation relations

�m � n = q
��(m�n) � n �m;

with

�(n) = 1 n = 1; 3; 5; : : : ; N � 2

�(n) = 0 n = 0; 2; 4; : : : ; N � 1

�(n+N) = �(n) + 1;

complemented by conditions

(ii)

� 2`+1
n = 1;

(iii)

��1
n � n+N does not depend on n:

The simplifying condition (ii) is natural if not really essential. In (iii) one easily recognizes a quasiperi-

odic boundary condition leaving in the algebra of observables only N+1 independent generatorsz, for

instance, � 0; � 1; : : : ; �N .

That algebra contains a useful `current' subalgebra W with generators

w n =
� n+1

� n�1

that are easily seen to obey

(i) commutation relations

w n�1 w n = q
2 w n w n�1

wm w n = w n wm jm� nj 6= 1 (mod N);

and conditions

(ii)

w 2`+1
n = 1;

(iii)

w n+N = w n:

Of course, (iii) is just the periodic boundary condition. The whole algebra � is, in a sense, one degree of

freedom larger than that current subalgebra which has N independent generators and a central element

c = q (��1
n � n+N )

2 = q w 1 w 3 : : : wN w 2 w 4 : : : w N�1:

A remark is in order here. The algebra of observables was designed with the `second' periodic KdV

bracket (aka the Virasoro algebra)

1

fu(x); u(y)g= 2(u(x) + u(y))�0(x� y)� �000(x� y)

zN+1 is even, all right.
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in mind. Indeed, that bracket corresponds to the sign-function-bracket (the exchange algebra)x

1

f�(x); �(y)g= �1

2
sign(x� y)�(x)�(y)

in the �-language and the delta-prime-function-bracket (the current algebra)

1

fp(x); p(y)g= �0(x� y)

in the p-language (see Introduction). Both are easily seen to be classical (q = ei�h ; �h! 0) continuous

(�lat � �cont; wlat � 1 + 2�pcont) limits of the above commutation relations. A natural question

arises whether the Virasoro algebra itself has a reasonable lattice counterpart. The answer seems to be

a�rmative [FT, V, B, Fe] but this is another story.

2 Fateev-Zamolodchikov R-matrix

Let two operators u and v satisfy the condition

u 2`+1 = v 2`+1 = 1

and obey Weyl's commutation relation

u v = q
2 v u :

Then, as was found in [FZ], the pair of functions of complex variable taking values in the algebra

generated by u and v

R1(�) = r(�; u ) R2(�) = r(�; v );

where

r(�; z) =
X̀
k=�`

�k(�)z
k

�k(�) = ��k(�) = q
k2

kY
j=1

(1� �q�2(j�1))
Ỳ

j=k+1

(1� �q 2j) 0 � k � `

and
Q0
1 : : :=

Q`
`+1 : : := 1,

satis�es the `braid' Yang-Baxter equation

R1(�)R2(��)R1(�) = R2(�)R1(��)R2(�) :

Before going on let us compile a list of some useful properties of the function r(�; z). We shall often

use them in remaining sections, sometimes not mentioning it explicitly. In what follows the second

argument of r is always assumed to satisfy the condition

z2`+1 = 1:

(i) r(�; z) is, up to a constant factor, the only polynomial in � of degree ` satisfying the functional

equation

(�+ z) r(�; q z) = (1 + �z) r(�; q�1z):

(ii) r(�; z) satis�es the functional equation

(1 + �)(1 + �q ) r(q�; z) = (1 + �z)(1+ �z�1) r(q�1�; z):

(iii)

r(�; z) = r(�; z�1)

xStrictly speaking, �(�) means here the 2�-periodic �-function while sign(�) is a function coinciding with the usual sign

function in the interval [��; �] and extending quasiperiodically elsewhere: sign(x+ 2�) = sign(x) + 2.
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(iv) the product of r(�; z) and r(� 1; z) does not depend on z:

r(�; z) r(��1; z) = %(�) = const � ��`
Ỳ
k=�`
k 6=0

(1 + �q k):

(v) At the point � = 0 the function r(�; z) turns into a `truncated' theta-function

r(0; z) = �(z) =
X̀
k=�`

q
k2zk

satisfying the functional equation

z �(q z) = �(q�1z):

The operators

�1 � �( u ) �2 � �( v )

obey Artin's commutation relation

�1�2�1 = �2�1�2

thus providing a `free-�eld' model of the braid group B2.

(vi)

r(1; z) = const

Some of these statements are quite transparent, some are less so. We will present their proofs in a more

detailed paper.

3 Cyclic product

Let Ŵ be a free algebra{ with generators ŵ n. Denote

(i) by & the homomorphism projecting Ŵ to W

& ( ŵ n) = w n

& ( x̂ ŷ ) = & ( x̂ ) & ( ŷ );

(ii) by +N the shift-by-period automorphism of the algebra Ŵ

( ŵ n)+N = ŵ n+N

( x̂ ŷ )+N = x̂+N ŷ+N :

Assign to monomials of Ŵ `overlap' numbers

�
�
ŵ k1

n1
ŵ k2

n2
: : : ŵ kL

nL

�
=

+1X
p=�1

LX
i;j=1

p kikj � nj�ni ; pN�1

and utilize them in the coboundary which de�nes another multiplication ? in Ŵ : for basis elements it

reads

f̂ ? ĝ = q
2(�( f̂ ĝ )��( f̂ )��( ĝ )) f̂ ĝ

and extends bilinearly elsewhere. Then for any two elements x̂ ; ŷ of Ŵ

& ( x̂ ? ŷ ) = & ( ŷ ? x̂+N ):

We omit the proof for it is a straightforward computation.

The purpose of this & (?) construction must be clear for those familiar with the Quantum Inverse

Scattering Method: once we decide to do without an `auxiliary space' and go for a purely algebraic

version of the R-matrix approach we need some direct method of computing what used to be auxiliary

space traces.

{It is essential that the algebra Ŵ , as opposed to the algebra W of Section 1, is devoid of the periodic boundary

condition. It is not really necessary to get rid of other relations de�ning W .
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4 Conservation laws

We are going to prove that `cyclic ordered products'

U (�) � &
�
R̂ 1(�) ? R̂ 2(�) ? : : : ? R̂N(�)

�

=
X̀

j;k=�`

q
2jk (�j(�)w

j
1) R 2(�) R 3(�) : : : RN�1(�) (�k(�)w

k
N )

of FZ R-matrices

R n(�) � r(�; w n) R̂ n(�) � r(�; ŵ n)

commute with each other:

U (�)U (�) = U (�) U (�):

Indeed, the commutation relations of w 's translate into N copies of the Yang-Baxter equation

R n�1(�) R n(��) R n�1(�) = R n(�) R n�1(��) R n(�)

R n+N (�) = R n(�)

that is believed to ensure the commutativity of ordered products of those R-matrices. It is not however

evident how to make this idea work in the periodic case where a naive ordered product, say, R 1R 2 : : :RN ,

makes little sense. The & (?) `product' has better chance to deliver, since, as we know from the preceding

section, it does not at least depend on the starting point:

: : : = &
�
R̂ 0 ? R̂ 1 ? : : : ? R̂N�1

�
= &

�
R̂ 1 ? R̂ 2 ? : : : ? R̂N

�
= : : : :

And once we get the ordered product right the commutativity check becomes a matter of familiar

R-matrix machinery complemented by the rules of & (?) `multiplication' (and also by the de�nition
^R�1
n (�) � R̂ n(�

�1)=%(�) ensuring that &
�

^R�1
n (�) R̂ n(�)

�
= 1):

U (�)U (�) = &
�
R̂ 1(�) ? R̂ 2(�) ? : : : ? R̂N(�)

�
&
�
R̂ 0(�) ? R̂ 1(�) ? : : : ? R̂N�1(�)

�
= &

�
R̂ 1(�) ? R̂ 0(�) ? R̂ 2(�) ? R̂ 1(�) ? : : : ? R̂N (�) ? R̂N�1(�)

�
= &

�
^R�1
0 (�

�
) ? R̂ 0(

�
�
) ? R̂ 1(�) ? R̂ 0(�) ? R̂ 2(�) ? R̂ 1(�) ? : : : ? R̂N (�) ? R̂N�1(�)

�
= &

�
R̂ 0(

�
�
) ? R̂ 1(�) ? R̂ 0(�) ? R̂ 2(�) ? R̂ 1(�) ? : : : ? R̂N (�) ? R̂N�1(�) ?

^R�1
N (�

�
)

�

= &

�
R̂ 1(�) ? R̂ 0(�) ? R̂ 1(

�
�
) ? R̂ 2(�) ? R̂ 1(�) ? : : : ? R̂N(�) ? R̂N�1(�) ?

^R�1
N (�

�
)

�

= &

�
R̂ 1(�) ? R̂ 0(�) ? R̂ 2(�) ? R̂ 1(�) ? R̂ 2(

�
�
)? : : : ? R̂N (�) ? R̂N�1(�) ?

^R�1
N (�

�
)

�

...

= &

�
R̂ 1(�) ? R̂ 0(�) ? R̂ 2(�) ? R̂ 1(�) ? : : : ? R̂N�1(

�
�
) ? R̂N (�) ? R̂N�1(�) ?

^R�1
N (�

�
)

�
= &

�
R̂ 1(�) ? R̂ 0(�) ? R̂ 2(�) ? R̂ 1(�) ? : : : ? R̂N(�) ? R̂N�1(�) ? R̂N(

�
�
) ? ^

R�1
N (�

�
)
�

= &
�
R̂ 1(�) ? R̂ 0(�) ? R̂ 2(�) ? R̂ 1(�) ? : : : ? R̂N(�) ? R̂N�1(�)

�
= &

�
R̂ 1(�) ? R̂ 2(�) ? : : : ? R̂N (�)

�
&
�
R̂ 0(�) ? R̂ 1(�) ? : : : ? R̂N�1(�)

�
= U (�) U (�):

We conclude the Section with two remarks. First, to make formulas easier on the eyes we shall adopt

the notation
Yi6

: : : for `cyclic ordered products' like the ones above, for instance,

U (�) =
Yi6

R n(�)

U (�)U (�) =
Yi6

R n(�) R n�1(�):
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Second, for a reason that will become apparent in Section 6 the family U (�) should be properly

`normalized'

Q (�) =
U (�)

U (0)

that, of course, does not spoil its commutativity

Q (�)Q (�) = Q (�)Q (�)

and polynomiality in �.

5 Baxter equation

In the Quantum Inverse Scattering Method language the family Q (�) would be called the fundamental

transfer-matrix [TTF] as opposed to the usual nonfundamental one which on this occasion has the form

[G, V]

t (�) = tr
Yi6

(W nL(�))

where the matrices W n and L(�) are

W n =

0
@ w

1

2

n

w
� 1

2

n

1
A with w

1

2

n � w �`
n

L(�) =

 
� 1

1 �

!
;

tr denotes the matrix trace and ? (hidden in the product symbol) combines what it used to be with the

standard matrix multiplication. In the decyphered form it reads

t (�) = �
N
2

X
k1;k2;:::;kN=� 1

2

q
2k1kN �2(k1k2+k2k3+:::+kN�1kN+kN k1) w k1

1 w k2
2 : : : w kN

N

with

q
1

2 � q
�`:

In other words, we have another polynomial in �, this time of degree Nk , which, as we know from past

experience,

(i) commutes with itself

t (�) t (�) = t (�) t (�);

(ii) commutes with Q (�)

t (�)Q (�) = Q (�) t (�)

and, as we are going to see,

(iii) satis�es together with Q (�) the Baxter equation [Bax]

q
N`2 Q (�) t (�) = �N (�)Q (q�1�) + �N (�)Q (q�)

with

�(�) = �� 1

�(�) = q�+ 1:

The �rst two items of this list are actually superseded by the much stronger third one the proof of which

may go as follows��:

kTo be precise, only odd degrees are present.
��The �rst proof of (iii) for the model in question was obtained by R. Kashaev [K] while the very idea that the fundamental

transfer-matrix Q (�) can serve as a Baxter's Q-operator probably belongs to E. Sklyanin [S]. See also [PG] addressing

similar matters.
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U (�) t (�) = tr
Yi6

( R n(�)W n�1L(�)) = tr
Yi6

C n(�)

with

C n(�) = B�1 W�1
n�1 R n(�)W n�1L(�)W nB;

B =

 
1 1

0 1

!
:

Using the obvious relation

w
1

2

n�1 r(�; w n) w
� 1

2

n�1 = r(�; q w n)

one gets

C n(�) = C(�; w n)

with

C(�; z) =

0
B@ z

1

2 (� r(�; q�1z)� r(�; q z)) (�z
1

2 + z�
1

2 ) r(�; q�1z)� (z
1

2 + �z�
1

2 ) r(�; q z)

z
1

2 r(�; q z) (z
1

2 + �z�
1

2 ) r(�; q z)

1
CA :

The �rst property of the function r(�; z) (see Section 2) says that the upper o�-diagonal

element of this matrix vanishes (provided z2`+1 = 1 and z
1

2 � z�`). This yields immediately

U (�) t (�) =
Yi6

a(�; w n) +
Yi6

d(�; w n)

where a and d denote the diagonal elements of the matrix C:

C(�; z) =

 
a(�; z) 0

� d(�; z)

!
:

It remains to verify that

a(�; z) = q
�`2(�� 1) r(q�1�; z)

d(�; z) = q
�`2(q�+ 1) r(q�; z):

We omit this part of the proof for it is neither di�cult nor instructive.

To conclude, let us recall what use might be made of the Baxter equation. The function Q (�) is a

polynomial in � with coe�cients coming from the subalgebra of conservation laws. This allows, probably

at the expense of considering a proper completion of the algebra of observables, the introduction of

commuting `roots' of Q (�)

Q (�) =
Y
k

�
1�

�

r k

�

r j r k = r k r j :

The Baxter equation says, in particular, that

�N (�)Q (q�1�) + �N (�)Q (q�)
���
�= r k

= 0:

This is just the famous system of the Bethe ansatz equations which look more familiar in the form

�
�( r k)

�( r k)

�N

= �
Y
j

r j � q r k

r j � q�1 r k
:
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6 Equations of motion

We are going to see that the generators of the algebra of observables evolve

� (� j �; n) � Q�� (�)� n Q
�(�)

according to the equations (1) which in ultimately accurate form read

� (� j �; n)� (� j �; n� 1) + �� (� j �; n� 1)� (� j � � 1; n� 1)

= �� (� j �; n)� (� j � � 1; n) + � (� j � � 1; n)� (� j � � 1; n� 1):

We shall cover the distance in four short steps.

(i) Commutation relations between � 's and w 's have the form

� n w n = q
2 w n � n

�m w n = w n �m m 6= n (mod N):

This prompts us to read the �rst property of the function r from Section 2 as

(� n+1 � n + �� n � n�1) R n(�) = R n(�) (�� n+1 � n + � n � n�1) :

(ii) Viewing this equation as a fragment of the `big' one

X̀
j;k=�`

q
2jk (�j w

j
m+1) Rm+2 : : : R n�1 (� n+1 � n + �� n � n�1) R n R n+1 : : : Rm+N�1 (�kw

k
m+N )

=
X̀

j;k=�`

q
2jk (�jw

j
m+1) Rm+2 : : :R n�1R n (�� n+1 � n + � n � n�1)R n+1 : : :Rm+N�1 (�kw

k
m+N )

and pulling � 's to the outside(s) we get

� n+1 � n U (�) + �� n U (�)� n�1 = �� n+1 U (�)� n + U (�)� n � n�1:

(iii) At the point � = 0 it turns into

� n+1 � n U (0) = U (0)� n � n�1

suggesting more subtle

� n U (0) = U (0)� n�1:

As a matter of fact, the latter does hold. We omit the proof for it is too case-speci�c.

(iv) (ii) and (iii) combined yield

� n � n�1 Q (�) + �� n�1 Q (�)� n�1 = �� n Q (�)� n + Q (�)� n � n�1

which is nothing but (1) with cut away common factors Q�� (�) : : : Q ��1(�).

So, we have met the last objective of the Letter. We conclude it with two remarks.

� A consistent approach to the subject should probably distinguish between observables and their

automorphisms rather than mix them up as we did in this Letter. It would be only natural to deal not

with the R-matrices but directly with automorphisms they represent:

Rn(�) :
� n 7! 1+� q w n

�+q w n
� n

�m 7! �m m 6= n (mod N)
:

Indeed, it would follow straight from the above de�nition that

� n+1 � n + �� n � n�1
Rn(�)
7�! �� n+1 � n + � n � n�1
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and

Rn�1(�) � Rn(��) � Rn�1(�) = Rn(�) �Rn�1(��) � Rn(�):

These two relations are `weaker' (but just su�cient!) substitutes for the two cornerstones of the whole

scheme, which are item (i) of this Section and the Yang-Baxter equations of Section 4. Why then care

whether those `R-automorphisms' are inner or not? They happen to be inner in our particular case

but even there some other important automorphisms are outer anyway [FV93]. In other cases one pays

a dear price for `inclusion' of R-matrices in the algebra of observables [BR, F, FV95]. Unfortunately,

some di�culties of the `automorphism' approach made the author to choose for this Letter the more

familiar `inner' route.

� It would be useful to know whether the equations of motion (1) provide the exhaustive information

about the model. In other words, is � (�; n) the only solution to the Cauchy problem

� (�; n)j�=0 = � n

for the system (1)? Not quite, and it is easy to see why. First, in our solution the `quasimomentum' c

(see Section 1) does not evolve but the equations (1) do not know about that. Also, they do not feel

whether we multiply R n(�)'s `from left to right' or R n(��)'s in the opposite order. As a matter of fact,

there are no other sources of nonuniqueness. So, the local structure of (1) is good and all one needs to

achieve the ultimate uniqueness is a couple of extra global conditions. This point will be described in

more detail elsewhere.
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