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Abstract

We show that an Ansatz to resum all leading and next{to{leading logarithms in the

theoretical prediction for the 2{jet rate in e+e� ! hadrons, where jets are de�ned with the

kt{algorithm, is consistent with a full O(�2s) calculation done by Monte Carlo integration.

From the asymptotic behaviour of the full O(�2s) calculation we extract the subleading

coe�cient G21 and the constant C2.
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1 Introduction

The study of global event shape variables in e+e� annihilation is one of the most precise methods
to determine the strong coupling constant �s. Here the very accurate data obtained at LEP
have led to a situation, where the error of �s is dominated by the theoretical uncertainties [1],
related to uncalculated higher order terms in the perturbative expansion or to non-perturbative
hadronization e�ects. For �s{measurements based on the 2{jet rate R2 the theoretical error
comes mainly from the perturbative sector, i.e. any improvement in the perturbative prediction
would lead to a better measurement of �s.

At present, full perturbative calculations for any infrared and collinear safe event shape
variable exist only up to O(�s2) [2]. For some variables also leading and next{to{leading
logarithms have been resummed to all orders in �s [3, 4, 5, 6]. See [7] for a detailed description of
these resummation techniques, which use the coherent branching algorithm to next{to{leading
logarithmic accuracy.

If calculated with the kt{algorithm [8, 9, 6] based on the resolution parameter

yij =
2 min(E2

i ; E
2
j )

E2
cm

(1 � cos�ij); (1)

the perturbative prediction for R2 is known to exponentiate, which allows to resum leading and
next{to{leading logarithms L = � ln(y3), where y3 is the resolution parameter where the event
undergoes the transition from a 3{jet to a 2{jet event. Theoretical calculations [6] are available,
which resum all leading and part of the next{to{leading logarithms. This work describes an
Ansatz for the resummed prediction ofR2, motivated by the exponentiation behaviour of similar
terms for other variables [3, 4, 5], which tries to include the missing next{to{leading logarithmic
contributions.

2 The Theoretical Framework

In order to simplify the expressions describing the theoretical prediction for R2, it is convenient
to introduce the colour factor ratios fA and fT and to rede�ne the strong coupling constant by
absorbing into it a factor of CF=2�. This leads to the de�nitions:

fA =
CA

CF

; fT = Nf

TF

CF

and �s =
�sCF

2�
: (2)

For the following the number of active quark avours is Nf=5. The QCD values for the colour
factors are CF=4/3, CA=3 and TF=1/2.

According to general theorems [10] the perturbative prediction for the cumulative cross
section of any event shape variable y, which vanishes in the limit of perfect 2{jet topologies,
can be expressed in the form,

R(L) =
�(� ln(y) > L)

�tot
=

 
1 +

1X
i=1

Ci�
i
s

!
exp

 
1X
n=1

2nX
m=1

Gnm�
n
s L

m

!
+

1X
k=1

� k
sDk(L); (3)

where for clarity any explicit dependence on the renormalization scale �2 is suppressed. The
Dk(L) are regular functions which vanish in the limit L!1. The terms in the double sum are
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classi�ed as leading logarithms (LL) for m > n, next{to{leading logarithms (NLL) for m = n

and sub{leading for m < n. Exponentiation of the perturbative prediction means Gnm = 0 for
m > n + 1. In this case one can write

1X
n=1

n+1X
m=1

Gnm�
n
s L

m = ln�(�s; L) = Lg1(�sL) + g2(�sL) + � � � : (4)

Thus the function Lg1(�sL) resums all the LL contributions �n
s L

n+1, g2(�sL) contains the NLL
terms �n

s L
n and the remainder the sub{leading corrections.

The resummed expression for ln �R2(y3), where R2(y3) is the 2{jet rate as function of the
cut{o� y3 is given in [6] as

ln �R2(y3) = �2
Z s
sy3

dq2

q2
�s(q

2)

 
ln

s

q2
� 3

2

!
: (5)

The explicit dependence on the renormalization scale �2 can be obtained by expanding �s(q2)
in terms of �s(�

2), using the solution of the renormalization group equation given in [11]

�s(q
2) =

�s(�2)

w

 
1� b1

b0

�s(�2)

w
lnw

!
; w = 1� b0�s(�

2) ln
�2

q2
; (6)

with

b0 =
11

6
fA �

2

3
fT and b1 =

17

6
fA

2 �
�
5

3
fA + 1

�
fT : (7)

One of the main ingredients of the coherent branching algorithm is the Altarelli-Parisi (AP)
splitting function Pqq(�s; z) [12], which describes the parton branching q ! qg as function of
the longitudinal momentum fraction z. In the infrared limit it is given by

Pqq(�s; z! 1) =
2

1 � z
(�s + � 2

sK) (8)

where

K = fA

 
67

18
� �2

6

!
� fT

10

9
= fAKA + fTKT : (9)

For the calculation in [6] only the �rst order part of Eq.(8) has been used, which gives rise to
the terms �s(q2) ln(s=q2) under the integral Eq.(5). The term / 3=2 in Eq.(5) comes from the
(+)-regularization [13] of the AP splitting function.

Motivated by the fact that for other event shape variables also the next{to{leading part of
the AP splitting function exponentiates, we assume that the same holds for the 2{jet rate. The
functional form of Eq.(8) suggests the following Ansatz:

ln �R2(y3) = �2
Z s
sy3

dq2

q2

(
�s(q

2)

 
ln

s

q2
� 3

2

!
+ � 2

s (q
2)K ln

s

q2

)
: (10)

Doing the integration and dropping all subleading terms, the result can be expressed as

ln �R2(y3) = Lg1(x) + g2(x) + x2g01(x) ln
�2

s
(11)
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with L = � ln(y3) and x = �s(�2)b0L. The prime in g01(x) stands for derivative with respect to
the given argument. The functions g1(x) and g2(x) are:

g1(x) =
2

b0

 
1 +

ln(1� x)

x

!
(12)

g2(x) = �
3

b0
ln(1 � x)� 2K

b20

�
x

1 � x
+ ln(1� x)

�
+
2b1
b30

 
x+ ln(1� x)

1� x
+
1

2
ln2(1� x)

!
(13)

Expanding the above functions in powers of �s one sees that the terms proportional to K

only contribute to O(� 2
s ). The additional terms are proportional to the colour factors CA and

TF , expressing the fact that we have included missing NLL terms coming from higher order
corrections to the fundamental q ! qg branching. The renormalization scale dependence of
ln �R2(y3) is entirely determined by the LL function g1(x), i.e. it is independent of K. It is
worth noting [14] that the additional NLL terms proportional to K could also be generated in
the original formula [6] by choosing the renormalization scale ln �2=s = K=b0.

3 Comparison with the Full O(�2
s
) Calculation

In the following the renormalization scale will be set to �2 = s. The leading coe�cients Gnm

of the full perturbative prediction Eq.(3) can be read o� by expanding the result for ln �R2(y3)

in powers of x:

ln �R2(y3) =
x

b0
(3� L) +

�
x

b0

�2  3b0
2
�K � 2b0

3
L

!
+O(x3): (14)

From this the leading coe�cients are read o� as G12 = �1, G11 = 3, G23 = �2b0=3 and
G22 = 3b0=2 �K. The coe�cient C1 has been obtained in [9] by computing the 3{jet fraction
R3(L) in lowest order1. There one �nds

C1 = �6 ln 2�
5

2
+
�2

6
: (15)

The exact expressions for D2(L); G21; C2 are not known. The function D1(L) can be extracted
from the integral of the analytical �rst order result given in the appendix.

For the comparison with the Monte Carlo integration of the second order matrix element it
is more convenient to use the di�erential cross section

1

�0

d�

dL
= � �had

�0

dR2

dL
: (16)

Here �0 is the Born cross section for e+e� ! qq, which is related to the full hadronic cross
section �had by

�had

�0
= 1 +

3

2
�s + O(� 2

s ) : (17)

1Note that formula (8) in reference [9] can not be correct because the 3{jet fraction does not vanish at the
phase space boundary y3 = 1=3. However, it has been checked numerically that the asymptotic behaviour
L!1 and thus the constant C1 is reproduced correctly.
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By inserting the values for the coe�cients Gnm and separating the individual colour factor
contributions one �nally gets:

1

�0

d�

dL
= �s [ 2L � 3 + S1(L) ]

+ � 2
s

�
�2L3 + 9L2 � ( 6 � 2C1 )L�G21;F + SF (L)� 3C1 � 9

2
+
3

2
S1(L)

�

+ � 2
s fA

�
11

3
L2 � (

11

2
� 2KA)L �G21;A + SA(L)

�

+ � 2
s fT

�
� 4

3
L2 + ( 2 + 2KT )L�G21;T + ST (L)

�
+ O(� 3

s ) (18)

The colour factor decomposition of K is given in Eq.(9). Similarly one has G21 = G21;F +
fAG21;A+fTG21;T . The functions S�(L), � = F;A; T , are de�ned by derivatives of the functions
D1 andD2 introduced in Eq.(3) as �D0

1(L) = S1(L) and �D0

2(L) = SF (L)+fASA(L)+fTST (L).

3.1 The Numerical Calculation

The di�erential cross section can be written in the form

1

�0

d�

dL
= �sa(L) + � 2

s [bF (L) + fAbA(L) + fT bT (L)] : (19)

We have used a modi�ed version of the Monte Carlo program EVENT [15] to integrate the
second order QCD ERT matrix elements [16] in order to calculate the a and b coe�cients. The
program has been changed with respect to the user interface, the random number generator
and to allow to get the coe�cients of each colour factor separately. In total we have generated
33:6214 � 109 events and stored the functions a; b in bins of width �L = 0:2. The results for
the E{scheme are tabulated in Tab. 2 for the L range over which the calculations are stable.
The integration was done also for the E0, P and P0{schemes [17]. Tabulated coe�cients for
these schemes can be obtained from the authors. The �rst order prediction a(L) is scheme
independent. Figure 1 shows how the second order coe�cients for the di�erent schemes
approach each other at large L. With exception of bF for the P0{scheme all curves come
together at large L, indicating that up to O(� 2

s ) also the subleading coe�cients G21;A and
G21;T are independent of the recombination scheme. The following is based only on the results
obtained for the E{scheme.

The functions a; b contain all LL, NLL and subleading terms correctly up to O(� 2
s ). Thus

a comparison of the numerical calculation with the expansion Eq.(18) at high L allows to test
the Ansatz Eq.(10). In this region the two calculations should only di�er by a constant plus a
contribution which vanishes asymptotically.

The function a was compared with the full analytical calculation given in the appendix.
The calculations agree with each other over the whole L range (Fig. 2a), giving con�dence in
the precision of the numerical integration. The functions b� follow the expected behaviour at
large L as can be seen from Figs. 2b, 2c and 2d. At low L the inuence of subleading terms is
clearly visible. In the case of the coe�cients bA(L) and bT (L) also the e�ect of setting K = 0 is
shown, demonstrating the need of the additional term in the Ansatz Eq.(10) and the sensitivity
to this NLL contribution.

4



3.2 Study of the Leading-Order non-Logarithmic Terms

In the limit of large L the result given in the appendix for the di�erential 2-jet rate can be
expanded to yield

1

�0

d�1st

dL
= �s

�
2L � 3 +Ae�L=2 +Be�L + � � �

�
(20)

with
A = 4

p
2 + ln(3� 2

p
2) and B = 18 ln 2 � 1 � 4L : (21)

The LL and NLL terms are the same as those in Eq.(18), and one �nds the non-logarithmic
terms S1(L) to behave like

S1(L) =
1

�0

d�1st

dL
� �s (2L� 3) = �s

�
Ae�L=2 +Be�L + � � �

�
: (22)

The inset in Fig. 2 shows the relative contribution of S1(L) with respect to the full �rst order
prediction as function of L. It can be seen that this contribution falls below the 1% level only
at L � 8, which corresponds to y3 � 3:35 � 10�4.

3.3 Determination of the Coe�cients G21 and C2

Having subtracted all the known terms as given in Eq.(18) from the numerically obtained
coe�cients b�, the resulting di�erences �b� are plotted in Fig. 3. Assuming the asymptotic
behaviour of all subleading functions S�(L) to be the same as for S1(L), we have �tted functions

a0 + a1e
�L=2 + a2e

�L (23)

separately to each �b� in the asymptotic region. This allows to extract the subleading
coe�cients G21;� for each colour factor. The results are listed in Tab. 1.

� G21;� � stat � syst Fit Range in L

F �16:081 � 0:277 � 1:304 5:6! 10:0
A �4:551 � 0:081 � 0:296 5:6! 10:0
T 0:900 � 0:018 � 0:087 7:4! 12:0

Table 1: Fitted values for the subleading coe�cients G21;�.

The determination of the coe�cients G21;� was done as follows: Fixing the upper limit of
the �t range and decreasing the lower limit as long as the �2=Ndf is near to one, we �rst �t only
the parameter a0. The other two are set to zero. The result for G21;� obtained with the largest
�t range is retained. Then the procedure is repeated with a1 as additional free parameter and
�nally with all three varying freely. As central value the result G21;� is chosen, which was
obtained with the a0 and a1 allowed to vary and a2 set to zero. The statistical error reects the
�nite Monte Carlo statistics, the systematic error is the larger of the di�erences to the other
variants. Combining the coe�cients for the individual di�erent colour factors yields for QCD

G21 = �24:633 � 1:509 :

5



Using the �tted value of G21, the procedure described above is applied to the di�erence
between the numerically obtained 2{jet rate R2(L) and the second order expansion of Eq.(3).
Taking the correlations between the bins of the R2{distribution into account we obtain the
following result for the QCD coe�cient C2:

C2 = 99:12 � 2:75 + 4:30(G21 �Gvar
21 ) :

The third term parametrizes the change in C2 when the central value G21 is varied to Gvar
21 .

Figure 4 illustrates the e�ect of adding G21 and C2 to the LL plus NLL prediction of the 2{
jet rate. The above results are consistent with another recent calculation [18], however, the
errors given there are rather large and the possible e�ect of non-logarithmic contribution was
neglected.

4 A Fit for �s(M
2

Z
)

The e�ect of the improved prediction on a measurement of the strong coupling constant was
studied by applying the same procedure used in [11] to the y3 distribution generated with the
JETSET [19] Monte Carlo model. It turns out, that a measurement based on the improved
theory lowers the central value of �s by 60% of the theoretical uncertainty. The relative
theoretical error, determined according to the prescription given in [11], remains constant at
��s=�s = 0:038.

Knowing the subleading term G21 and the constant C2 it is now also possible to apply the
\intermediate" matching scheme as described in [11] to the case of the y3 distribution. The
results are very similar to the results obtained for the lnR scheme. The same observation was
made in [11] for the event shape variables Thrust and Heavy Jet Mass.

5 Summary

We have shown that a new Ansatz for the resummed prediction for the 2{jet rate, based on
the assumption that the infrared singular part of the next{to{leading AP splitting function
Pqq exponentiates, is consistent with a full O(�s2) calculation obtained from a high statistics
Monte Carlo integration of the ERT matrix elements. Using this Ansatz we are able to extract
the subleading coe�cients by �tting the asymptotic tail of the numerical calculation. The
results for the E{scheme are G21 = �24:633 � 1:509 and C2 = 99:12 � 2:75, where C2 is a
function of G21. The numerical values apply for a perturbative expansion in �s = �sCF=2�.
An �s-measurement based on the new theoretical prediction and the same procedure as used
in [11] lowers the central value of �s by 60% of the theoretical error. The relative size of the
theoretical uncertainty remains constant.
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Appendix: The Di�erential 2{Jet Rate in Leading Order

The di�erential 2{jet rate in �rst order is obtained by calculating the integral

d�1st

dy3
=
Z
dxqdxq

d2�

dxqdxq
�(y3 � ŷ3(xq; xq)) (24)

over the appropriate phase space, where the matrix element for e+e� ! qqg is [20]

1

�0

d2�

dxqdxq
= �s

x2q + x2q

(1 � xq)(1 � xq)
: (25)

Here xq and xq are the scaled energies of the quark and the anti{quark respectively, de�ned as
x = 2E=ECM . For energy ordered con�gurations x1 > x2 > x3 the variable ŷ3 determined by
the kt-algorithm is given by

ŷ3 = (1� x1)
x3

x2
: (26)

One obtains:
1

�0

d�1st

dy3
= �sf3(y3) (27)

with

f3(y3) = �7 + 12b � 3

y3
+ 16y3 �

(1� y3)(12y3 � 12by3 � 5y23)

(2 � 2b� y3)2
+
6 � 8y3 + 2y23
1 � b+ y3

+
b2 + 2by3 + 4y23

1� y3
� 4

p
y3

1 � y3
ln

 
1 +

p
y3

1 �py3

!
� 1p

y3

1 + y3

1 � y3
ln

 
2 � 2b �py3
2 � 2b+

p
y3

!

+
2p
y3

ln

 p
y3 � 1 + bp
y3 + 1� b

!
+ 2

1 + y3

1� y3
ln
�
1� y3

2

�
+
2 + y3

y3
ln
�
2
1� y3

2 � b

�

+
6� 10y3 + 8y23

1� y3
ln

 
2
2 � 2b� y3

1 � y3

!
� 4

y3(1 � y3)
ln
�

y3

1� b

�

� 1 + y3

1� y3
ln(2by3 � y3) + (8 � 4y3) ln

 
2y3

1� b+ y3

!
(28)

and b = 1 + y3=4 �
q
y3=2 + y23=16.
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L a � stat bF � stat bA � stat bT � stat
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4:8 � 5:0 7:05892� 0:00033 �76:8683 � 0:0440 86:2544� 0:0189 �34:33061 � 0:00241
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5:6 � 5:8 8:58279� 0:00051 �147:3051� 0:0940 116:3804� 0:0357 �45:81359 � 0:00393
5:8 � 6:0 8:96735� 0:00057 �169:9489� 0:1139 124:6019� 0:0418 �48:94595 � 0:00444
6:0 � 6:2 9:35345� 0:00063 �194:3185� 0:1394 133:1162� 0:0492 �52:18043 � 0:00502
6:2 � 6:4 9:73840� 0:00069 �220:7647� 0:1712 141:9239� 0:0578 �55:51927 � 0:00565
6:4 � 6:6 10:12738� 0:00077 �249:7792� 0:2091 151:0865� 0:0677 �58:96573 � 0:00638
6:6 � 6:8 10:51659� 0:00085 �281:1153� 0:2561 160:3162� 0:0802 �62:52332 � 0:00736
6:8 � 7:0 10:90541� 0:00094 �315:0544� 0:3112 170:1481� 0:0941 �66:16998 � 0:00829
7:0 � 7:2 11:29740� 0:00104 �352:3613� 0:3820 180:2278� 0:1102 �69:93934 � 0:00915
7:2 � 7:4 11:68581� 0:00115 �390:4128� 0:4679 189:9568� 0:1295 �73:79687 � 0:01033
7:4 � 7:6 12:08266� 0:00128 �432:7892� 0:5839 200:9453� 0:1531 �77:80139 � 0:01165
7:6 � 7:8 12:47254� 0:00141 �478:4916� 0:7052 211:5939� 0:1792 �81:87225 � 0:01313
7:8 � 8:0 12:86991� 0:00156 �524:9324� 0:9245 223:0187� 0:2138 �86:09206 � 0:01483
8:0 � 8:2 13:26321� 0:00172 �577:0701� 1:0982 234:3402� 0:2533 �90:38641 � 0:01671
8:2 � 8:4 13:65319� 0:00190 �628:5931� 1:4289 245:7515� 0:3025 �94:76859 � 0:01887
8:4 � 8:6 14:05098� 0:00211 �686:1360� 1:7585 257:7179� 0:3484 �99:29108 � 0:02128
8:6 � 8:8 14:44353� 0:00232 �750:9577� 1:8829 270:1815� 0:4105 �103:89006 � 0:02399
8:8 � 9:0 14:83704� 0:00257 �815:3002� 2:3285 283:1744� 0:4893 �108:57330 � 0:02705
9:0 � 9:2 15:23688� 0:00283 �877:7905� 3:2236 296:2676� 0:6484 �113:44241 � 0:03055
9:2 � 9:4 15:63060� 0:00313 �954:9899� 3:8191 308:4226� 0:7593 �118:36857 � 0:03441
9:4 � 9:6 16:03193� 0:00346 �1030:7033� 4:4742 322:0296� 0:8728 �123:46222 � 0:03884
9:6 � 9:8 16:42336� 0:00383 �1108:4613� 4:8676 336:9731� 0:9487 �128:52130 � 0:04392
9:8 � 10:0 16:82386� 0:00423 �1188:7666� 8:4394 350:7993� 1:3343 �133:89305 � 0:04955
10:0 � 10:2 17:22008� 0:00467 �139:24776 � 0:05602
10:2 � 10:4 17:61896� 0:00517 �144:67924 � 0:06332
10:4 � 10:6 18:01720� 0:00571 �150:24974 � 0:07139
10:6 � 10:8 18:41918� 0:00631 �156:05150 � 0:08068
10:8 � 11:0 18:81383� 0:00695 �161:75693 � 0:09050
11:0 � 11:2 19:22148� 0:00771 �167:73174 � 0:10267
11:2 � 11:4 19:60535� 0:00848 �173:55084 � 0:11589
11:4 � 11:6 20:00483� 0:00939 �179:76825 � 0:13097
11:6 � 11:8 20:40568� 0:01040 �185:96573 � 0:14723
11:8 � 12:0 20:82530� 0:01146 �192:55302 � 0:16694

Table 2: Monte Carlo results for coe�cients a, bF , bA and bT .
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Figure 1: Absolute di�erences between the coe�cients b�(L) obtained from a Monte Carlo
integration for the various recombination schemes.
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Figure 2: a) First order coe�cient a(L) obtained by Monte Carlo compared to the analytical
result. The inset shows the relative contribution of the non-logarithmic terms to the full �rst
order prediction. b{d) Second order coe�cients b�(L). Plotted are the Monte Carlo result, the
predictions obtained from all known LL and NLL terms, the (LL,NLL) predictions improved by
the addition of the �tted subleading coe�cients G21;� and the incomplete (LL,NLL) predictions
(K = 0).
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Figure 3: Di�erences between the Monte Carlo integration and all known LL and NLL terms
for the second order coe�cients b�(L). The lines show the �tted functions a0 + a1 e

�L=2 over
the range used in the �t.
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Figure 4: The second order coe�cient of the cumulative 2{jet rate. Plotted are the Monte
Carlo result and variations of the (LL,NLL) calculation, taking into account also the known
subleading coe�cient C1. The inset shows the di�erence between the Monte Carlo integration
and all known LL,NLL and subleading terms, as well as a �t of its asymptotic tail.
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