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ABSTRACT

Target space duality symmetries, which acts on K�ahler and continuous Wilson

line moduli, of a ZN (N 6= 2) 2-dimensional subspace of the moduli space of orbifold

compacti�cation are modi�ed to include twisted moduli. These spaces described

by the cosets
SU(n;1)

SU(n)�U(1) are special K�ahler, a fact which is exploited in deriving

the extension of tree level duality transformation to include higher orders of the

twisted moduli. Also, restrictions on these higher order terms are derived.
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Heterotic string theories compacti�ed on orbifolds are of phenomenological im-

portance as they give rise to an N = 1 space-time supersymmetric semi-realistic

four dimensional quantum �eld theories [1, 2]. A phenomenologically appealing fea-

ture of string compacti�cations lies in the fact that the physical couplings in the

low-energy e�ective action are dependent on the moduli �elds which parametrize

the shape and size of the orbifold and possible continuous Wilson lines. Also, such

an action has a novel symmetry known as target space duality. This is a discrete

symmetry of the moduli space which leaves the underlying conformal �eld theory

invariant. This symmetry restricts the low energy e�ective action and connects it

to the theory of modular forms [3]. The low-energy action is an N = 1 supergravity

coupled to Yang-Mills and matter �elds. If terms with up to two derivatives in

the bosonic �elds are included, the theory is then de�ned in terms of the K�ahler

potential K which encodes the kinetic terms for the massless �elds, the superpo-

tential W containing the Yukawa couplings and the f�function whose real part,

at the tree level, determines the gauge couplings [13]. In fact the lagrangian of the

theory depends on K and W via the target space duality invariant combination

G = K + logjW j2: (1)

The method of calculating the superpotential of the low-energy e�ective action

directly from the underlying conformal �eld theory was given in [4]. Moreover, the

untwisted moduli dependence of the tree level K�ahler potential has been addressed

in the literature by several methods [5-9].

It is our purpose in this letter to derive the explicit dependence of the K�ahler

potential on the full moduli space, untwisted and twisted, of a 2-dimensional sub-

space of an orbifold with continuous Wilson lines [12]. We will consider the cases

where the moduli space is given by the special K�ahler manifold SU(n;1)
SU(n)
U(1) [10].

This coset is parametrized by one K�ahler modulus and n� 1 complex continuous

Wilson lines of a plane where the twist has a complex eigenvalue
�
[8]. The real part

� this means that the twist is not Z2
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of the Kahler or toroidal modlus describes the size of the 2-dimensional space and

the imaginary part describes a possible internal axion �eld (antisymmetric tensor).

The Wilson lines are homotopically non-trivial at gauge connections.

In the process of deriving the K�ahler potential, the higher order corrections, in

terms of the twisted moduli, to the target space duality symmetry of the underly-

ing conformal �eld theory are derived. Moreover, conditions on these higher order

terms are also determined. For simplicity we will concentrate on the case with

one complex Wilson line, i:e:; the moduli space
SU(2;1)

SU(2)
U(1) , and determine the full

K�ahler potential of the moduli space in the presence of a generic twisted modulus.

Generalization to more than one Wilson line or twisted modulus is straightfor-

ward. The fact that the moduli spaces
SU(n;1)

SU(n)
U(1) are special K�ahler facilitates the

calculation of the higher order duality transformations for the moduli and their as-

sociated K�ahler potential as has been demonstrated in [11] for the special K�ahler

coset
h
SU(1;1)
U(1)

i3
. This can be explained as follows. For special K�ahler manifolds

[10], the K�ahler potential can be expressed in terms of a holomorphic function of

the moduli, if we denote the moduli by �i then

K = �logY ; Y =
X
i

(�i + ��i)(F�i + �F��i)� 2(F + �F ): (2)

In terms of the homogeneous coordinates xI ; I = 0; � � � ; j; where the physical mod-

uli are expressed by the special coordinates, �i = xi

ix0
(with i = 1; � � � j), (2) is

expressed in the form

K = �log
� �FIxI + FI �xI

x0�x0

�
= �log

h �2i
x0�x0

 
xI

1
2iFJ

!y 
0 �LI

��JK 0

! 
xK

1
2iFL

!i
;

(3)

where F(x) = �(x0)2F (�): From (3) it is clear that the K�ahler potential is invari-

ant up to a K�ahler transformation under

xI ! UI
Jx

J +
1

2
iV IJFJ ;

1

2
iFI ! WIJx

J +
1

2
iZ J

I FJ ;
(4)
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with

S =

 
U V

W Z

!
; Sy�S = �; � =

 
0 1

�1 0

!
(5)

where 1 is the j-dimensional identity. The transformations in (5) act as holomor-

phic �eld rede�nitions provided that

WIJx
J +

1

2
iZ J

I

@F(x)
@xI

=
1

2
i
@ ~F(y)
@yI

;

yI = UI
Jx

J +
1

2
iV IJ @F(x)

@xJ
:

(6)

The integrability is guaranteed if U; V;W and Z are real and satisfy [11]

U tW �W tU = 0 V tZ � ZtV = 0 U tZ �W tV = I: (7)

These transformatons de�ne duality transformations if F = ~F :

The importance of this formalism lies in the fact that the duality transfor-

mations act linearly and are �eld independent. Therefore, the lowest order dual-

ity transformations �x S completely. The second equation in (6) determine the

modi�ed duality transformations of the moduli, and corrections to the tree level

transformations comes from the higher order terms in the holomorphic function

F . Moreover the �rst eq in (6) restricts the higher order terms of the function

F itself. Finally the knowledge of the function F is su�cient to determine the

Yukawa couplings of the theory [11].

We now get back to the study of
SU(2;1)

SU(2)
U(1) moduli space. To lowest order in

the twisted modulus C, the tree level K�ahler potential is given by

K = �log(T+ �T� k

2
A �A �C �C); (8)

where T is the K�ahler complex modulus and A is a complex Wilson line and c is a

model-dependent constant (for Z3 twist k =
p
3). We would like now to generalize
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(8) to include higher orders of the expectation values of the twisted modulus C.

To be concrete we take the twist to be Z3: A duality symmetry of the theory is

given by the subgroup SL(2; Z) which acts on on the moduli as follows

T! aT� ib

icT+ d
; A! A

icT+ d
; C! C

icT+ d
ad� bc = 1: (9)

This acts on (8) by a K�ahler transformation K ! K + ln j(icT+ d)j2: However, it
is more convenient to work with a di�erent basis for the moduli space. Perform a

change of variable as follows:

Tp
3
=

1� t

1 + t
; A =

2A
(1 + t)

; C =

p
2C

(1 + t)
; (10)

then in terms of the new variables t, A and C, the duality transformations (9) takes

the form

t! ~t =
�


=

At+B

Ct+D
; A! ~A =

A

; C ! C


; (11)

where

A = D� =
1

2

�
(a+ d) + i(b0 � c0)

�
; B = C� =

1

2

�
(d� a) + i(b0 + c0)

�
b0 =

bp
3
; c0 =

p
3c:

(12)

The K�ahler potential in terms of the new coordinates can be written in the form

K = �log(1� t�t�A �A� C �C): (13)

The holomorphic function which produces (13) via (2) is given by

F (t;A; C) = �1

4
(1 + t2 +A2 + C2) = � 1

4(x0)
2

�
(x0)2 �

3X
i

(xi)2
�
; (14)

where (t;A; C) = ( x
1

ix0
; x

2

ix0
; x

3

ix0
): The duality transformation (11) acts on the ho-
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mogeneous coordinates as in (4) where the matrices U; V;W and Z are given by

Z =
1

2

0
BBBB@

(a+ d) (b0 + c0) 0 0

(b0 + c0) (a+ d) 0 0

0 0 2 0

0 0 0 2

1
CCCCA ; U =

1

2

0
BBBB@

(a+ d) �(b0 + c0) 0 0

�(b0 + c0) (a+ d) 0 0

0 0 2 0

0 0 0 2

1
CCCCA

W = �1

8

0
BBBB@
(c0 � b0) (a� d) 0 0

(a� d) (c0 � b0) 0 0

0 0 0 0

0 0 0 0

1
CCCCA ; V = 2

0
BBBB@
(c0 � b0) (d� a) 0 0

(d� a) (c0 � b0) 0 0

0 0 0 0

0 0 0 0

1
CCCCA :

(15)

If one expands F in terms of higher orders of the twisted moduli,

F =
1

4

�
(x0)2 �

3X
i

(xi)2 �
1X
n=0

fn(t;A) (x
3)
n+3

(ix0)
n+1

�
; (16)

then using (3) the K�ahler potential is now given by

K = �ln
h
1 � t�t�A �A� C �C�

1

4

X�
[(t+ �t)

@fn

@t
+ (A+ �A)@fn

@A + (n+ 1)fn]Cn+3 + (n+ 3)fn �CCn+2 + c:c
�i
:

(17)

Moreover, making use of (16) and the second equation in (6), the modi�ed duality

transformations of the moduli can be determined and are given by

t! t0 =
�� 1

4

P�
(d� a)[t

@fn
@t

+A@fn
@A + (n+ 1)fn] + i(c0 � b0)

@fn
@t

�
Cn+3

�
;

A ! A0 =
A
�
; C ! C0 = C

�
;

� =  � 1

4

X�
i(c0 � b0)[t

@fn

@t
+A@fn

@A + (n+ 1)fn]� (d � a)
@fn

@t

�
Cn+3

=  +
X
n

knCn+3:

(18)

Clearly under these transformations the K�ahler potential transforms as K ! K +
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ln � + ln �: Using (16) and the �rst equation (6) we obtain

 � 1

4

X�
(a+ d)[t

@fn

@t
+A@fn

@A + (n+ 1)fn] + i(b0 + c0)
@fn

@t

�
Cn+3

= �
n
1 � 1

2

X�
t0
@f 0n
@t0

+A0 @f
0
n

@A0
+ (n+ 1)f 0n

�
C0n+3

o
;

�� 1

4

X�
i(b0 + c0)[t

@fn

@t
+A@fn

@A + (n+ 1)fn]� (a+ d)
@fn

@t

�
Cn+3

= �
�
t0 +

1

2

X @f 0n
@t0

C0n+3
�
;

A+
1

2

X @fn

@ACn+3 = �
�
A0 +

1

2

X @f 0n
@A0

C0n+3
�
;

C + 1

2

X
(n+ 3)fnCn+2 = �(C0 + 1

2

X
(n + 3)f 0nC0n+2

�
: (19)

Expanding t0 and A0 around ~t and ~A given in equation (11), we get

t0 = ~t+
1

42

nX�
i(c0 � b0)� � (d � a)

��
t
@fn

@t
+A@fn

@A + (n+ 1)fn

�

+
�
(a� d)�� i(c0 � b0)

�@fn
@t

o
Cn+3

m=1X
m=0

� l


�m
= ~t+

X
n

(�t)nCn+3;

A0 = ~A+
Al
2

m=1X
m=0

� l


�m
= ~A+

X
n

(�A)nCn+3:

(20)

where

l =
1

4

X�
i(c0 � b0)[t

@fn

@t
+A@fn

@A + (n + 1)fn] + (a� d)
@fn

@t

�
Cn+3: (21)

Using (19)-(21), one could determine the conditions that the functions fn must
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satisfy and for the �rst �ve terms one gets,

f0(~t; ~A) =f0(t;A);
f1(~t; ~A) =2f1(t;A);
f2(~t; ~A) =3f2(t;A);

f3(~t; ~A) =4f3 � 5

2

@f0

@A (�A0 + CA�t0)� 5

2
�t0Cf0 � 6

2
�t0

@f0

@t
+
3

2
k0f0;

f4(~t; ~A) =5f4 + 3

7
4k1f0 +

8

7
k0

4f1 � 4

7
�t0

�
26Cf1 + 7

@f1

@t
+ 6CA@f1

@A
�

� 4

7
�A0

6@f1

@A � 3

7
�t1

�
6Cf0 + 7

@f0

@t
+ 6CA@f0

@A
�
� 3

7
�A1

6@f0

@A :

(22)

The SL(2; Z) duality symmetry is only a subgroup of the full duality symmetry of

the theory. Next we employ another duality symmetry subgroup of the theory in

order to derive further constraints on the functions fn: A symmetry of the theory

is given by
�

t! t̂ =
Â

B̂
=

t� p
2A� p2

8 (1 + t)

1 +
p
2A+

p2

8 (1 + t)

; A! Â =
Ĉ

B̂
=

A+
p
2(1 + t)

1 +
p
2A+

p2

8 (1 + t)

;

C ! C
B̂
:

(23)

This symmetry acts on the homogeneous coordinates as given in (4) where the

matrices U; V;W and Z are given by

U = Z =

0
BBBB@
1 +

p2

8 0 0 0

0 1 � p2

8 �p
2 0

0
p
2 1 0

0 0 0 1

1
CCCCA ; V = 16W =

0
BBBB@

0
p2

2 2p 0

�p2

2 0 0 0

2p 0 0 0

0 0 0 0

1
CCCCA :

(24)

Using (24) and the second eq in (6), the modi�cation of the duality transformations

� In terms of the old basis T and A, this is given by A! A+ p, T ! T +
p
3

2
pA +

p
3

4
p
2,

where p is a multiple of
p
2.
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(23) can be calculated. These modi�ed transformations are given by

t! t0 =
t� p

2A� p2

8 (1 + t) +
p2

16

P�
t
@fn
@t

+A@fn
@A + (n+ 1)fn

�
Cn+3

�
;

A ! A0 =
A+

p
2(1 + t)� p

4

P�
t
@fn
@t

+A@fn
@A + (n+ 1)fn

�
Cn+3

�
;

C ! C0 = C
�
;

� = 1 +
p

2
A+

p2

8
(1 + t) +

X�p2
16

@fn

@t
+
p

4

@fn

@A
�
Cn+3:

(25)

Expanding t0 and A0 as given in (25) around t̂ and Â we obtain

t0 =
Â+X1

�
=

Â+X1

B̂ �X2

= t̂+
1

B̂2
(ÂX2 + B̂X1)

1X
m=0

(
X2

B̂
)m = t̂+

X
n

(�t)nCn+3;

A0 =
Ĉ +X3

B̂ �X2

= Â+
1

B̂2
(ĈX2 + B̂X3)

1X
m=0

(
X2

B̂
)m = Â+

X
n

(�A)nCn+3;

C0 = C
B̂
� C

B̂2

X
n

snCn+3;

� =B̂ +
X
n

snCn+3:

(26)

Using the �rst eq in (6) and (26) the following conditions on the �rst �ve of the

functions fn are obtained
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f0(t;A) = Bf0(t;A);
f1(t̂; Â) = B2f1(t;A);
f2(t̂; Â) = B3f2(t;A);

f3(t̂; Â) = B4f3 � B6

2
�A0

h
(
p

2
f0 +B

@f0

@A )(1 +
p

2
A) + (

p2

8
f0 +B

@f0

@t
)
p

2
(1 + t)

i
� B6

2
�t0

h
(
p

2
f0 +B

@f0

@A )(�p

2
� p2

8
A) + (

p2

8
f0 +B

@f0

@t
)(1 � p2

8
(1 + t))

i
+
B3

2
s0f0;

f4(t̂; Â) = B5f4 +
3

7
B4s1f0 +

8

7
s0B

4f1

� 3

7
B7�A1

h
(
p

2
f0 +B

@f0

@A )(1 +
p

2
A) + (

p2

8
f0 +B

@f0

@t
)
p

2
(1 + t)

i
� 3

7
B7�t1

h
(
p

2
f0 +B

@f0

@A )(�p

2
� p2

8
A) + (

p2

8
f0 +B

@f0

@t
)(1� p2

8
(1 + t))

i
� 4

7
B7�t0

h
(pf1 +B

@f1

@A )(�p

2
� p2

8
A) + (

p2

4
f1 +B

@f1

@t
)(1� p2

8
(1 + t))

i
� 4

7
B7�A0

h
(pf1 +B

@f1

@A )(1 +
p

2
A) + (

p2

4
f1 +B

@f1

@t
)
p

2
(1 + t)

i
:

(27)

In conclusion, by employing the methods of special geometry, duality sym-

metries of the coset space
SU(2;1)

SU(2)
U(1) , parametrized by the complex K�ahler mod-

uli T and one complex Wilson moduli A of a Z3 two-dimensional plane of an

orbifold compactifaction, are realized as symplectic transformations on the vec-

tor whose components are the homogeneous coordinates xI and 1
2i

@F
@xI ; where F

is the holomorphic function describing the special K�ahler geometry. Using the

fact that such tansformations are exact to all orders in the expansion of F in

the twisted moduli, constraints are derived on the moduli dependent coe�cient

of the expansion. The choice of these functions depends on the model under

consideration. It should be mentioned that only a subspace of the duality sym-

metry of the theory have been implemented in deriving such constraints and it

would be interesting to derive a set of constraints which are obtainable from the

full duality symmetry group. We hope to report on this in a future publication.

9



ACKNOWLEDGEMENT

W. S would like to thank M. Cveti�c for many useful discussions and D. L�ust, A.

Van Proeyen and S. Stieberger for comments. The work of W. S is supported by

P.P.A.R.C, S. T by the Royal Society and N. Vanegas by Colciencias and Univer-

sidad de Antioquia (Colombia) studentship.

10



REFERENCES

1. L. Dixon, J. A. Harvey, C. Vafa and E. Witten, Nucl. Phys. B261 (1985)

678; B274 (1986) 285.

2. A. Font, L. E. Ib�a~nez, F. Quevedo and A. Sierra, Nucl. Phys. B331 (1991)

421.

3. S. Ferrara, D. L�ust, and S. Theisen, Phys. Lett. B233 (1989) 147; S. Ferrara,

D. L�ust, A. Shapere, and S. Theisen,Phys. Lett. B225 (1989) 363 ; M.

Cveti�c, A. Font, L. E. Ib�a~nez, D. L�ust and F. Quevedo, Nucl. Phys. B361

(1991) 194; S. Ferrara, C. Kounnas, D. Lust and F. Zwirner, Nucl. Phys.

B365 (1991) 431.

4. L. Dixon, D. Friedan, E. Martinec and S. H. Shenker, Nucl. Phys. B282

(1987) 13; S. Hamidi and C. Vafa, Nucl. Phys. B279 (1987) 465.

5. L. Dixon, V. Kaplunovsky and J. Louis, Nucl. Phys. B329 (1990) 27.

6. M. Cveti�c, J. Louis and B. Ovrut, Phys. Lett. B206 (1988) 229; M. Cveti�c,

J. Molera and B. Ovrut, Phys. Rev.D40 (1989) 1140.

7. S. Cecotti, S. Ferrara and L. Girardello, Nucl. Phys. B308 (1989) 436; Phys.

Lett. B213 (1988) 443.

8. G. L. Cardoso, D. L�ust and T. Mohaupt, Nucl. Phys. B432 (1994) 68; M.

Cveti�c, B. Ovrut and W. A. Sabra, Phys. Lett. B351 (1995) 173; P. Mayr

and S. Stieberger, hep-th 9412196.

9. E. Witten, Phys. Lett. B155 (1985) 151; S. Ferrara, C. Kounnas and M.

Porrati, Phys. Lett. B181 (1986) 263; S. Ferrara, L. Girardello, C. Kounnas

and M. Porrati, Phys. Lett. B192 (1987) 368; Phys. Lett. B194 (1987) 358;

H. P. Nilles. Phys. Lett. B180 (1986) 240; C. P. Burgess, A. Font and F.

Quevedo, Nucl. Phys. B272 (1986) 661; U. Ellwanger and M. G. Shmidt,

Nucl. Phys. B294 (1987) 445; J. Ellis, C. Gomez and D. V. Nanopoulos,

Phys. Lett. B171 (1986) 203.

11



10. E. Cremmer and A. Van Proeyen, Class. and Quantum Grav. 2 (1985) 445;

E. Cremmer, C. Kounnas, A. Van Proeyen, J. P. Derendinger, S. Ferrara, B.

de Wit and L. Girardello, Nucl. Phys. B250 (1985) 385; B. de Wit and A.

Van Proeyen, Nucl. Phys. B245 (1984) 89; A. Strominger, Commun. Math.

Phys. 133(1990) 163; L. Castellani, R. D'Auria and S. Ferrara, Phys. Lett.

B241 (1990) 57 and Class. and Quantum Grav. 1(1990) 1767; R. D'Auria,

S. Ferrara and P. Fr�e, Nucl. Phys. B359 (1991) 705.

11. S. Ferrara, D. L�ust and S. Theisen, Phys. Lett. B242, 39 (1990).

12. L. E. Ib�a~nez, H. P. Nilles and F. Quevedo, Phys. Lett. B192 (1987) 332; L.

E. Ib�a~nez, J. Mas, H. P. Nilles and F. Quevedo, Nucl. Phys. B301 (1988)

157.

13. E. Cremmer, S. Ferrara, L. Giraradello and A. Van Proeyen, Nucl. Phys.

B212 (1983) 413.

12


