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1. Introduction

WZNW models [1] and gauged WZNW models [2] have served as building blocks of

various string theories. For the construction of a WZNW model, one needs a Lie group,

and also a metric { a non-degenerate, symmetric bilinear form { on the corresponding Lie

algebra. A Lie algebra that admits such a metric is called self-dual.

At �rst reductive algebras (direct sums of semi-simple and Abelian algebras) were

considered. Such algebras have natural candidates for the invariant metric { the Killing

form for the semi-simple part and an arbitrary metric for the Abelian part. However,

there exist self-dual algebras that are not reductive and these also can be used for the

construction of WZNW models (and their supersymmetric extensions) [3]-[14].

One of the interesting features of an a�ne Sugawara construction based on a non-semi-

simple (and indecomposable { not an orthogonal direst sum) algebra is that the resulting

central charge is integer and equals to the dimension of the algebra [5][15]. This may be a

sign of some interesting phenomena. When the algebra can be obtained through a Wigner

contraction [16] of a semi-simple algebra, as described in [5], this is explained by the fact

that in the contraction process, a semi-classical limit is taken { the levels of the simple

components are taken to in�nity. This suggests that the resulting model has a free-�eld

representation (this was demonstrated for the example of [3] in [4]).

In this paper we consider more examples of non-reductive self-dual algebras and study

the �-model string backgrounds that correspond to them.

Any non-reductive (indecomposable) self-dual algebra can be constructed, starting

from an Abelian algebra, by a sequence of construction steps, each of which is either

an (orthogonal) direct product or a procedure called \double extension" [17]. If such an

algebra can be obtained through a Wigner contraction, it is necessarily a double extension

of an Abelian algebra, i.e. , it is a result of a single-step sequence. All the algebras

used so far to construct WZNW models are double extensions of Abelian algebras and,

therefore, possibly can be obtained through a Wigner contraction (for some of them this

was explicitly shown [5][15]). One might have suspected that all non-reductive, self-dual

algebras can be obtained through a Wigner contraction. If this was true, it would have

a signi�cant implication on the structure of such algebras and the WZNW models based

on them. It turns out, however, that this is not true.

In fact, we present an in�nite family of indecomposable, non-reductive, self-dual alge-

bras fA3mg [18], that (except A3 and A6) are not double extensions of Abelian algebras

and, therefore, cannot be obtained through a Wigner contraction (A6 is also unobtainable

through a Wigner contraction). The algebra

An � spfTig0�i�n

is de�ned by the Lie bracket

[Ti; Tj] =

( d(i� j)Ti+j i+ j � n

0 otherwise:
(1.1)
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where î � i mod 3 is chosen to be in f�1; 0; 1g. When n̂ = 0, the metric

(Ti; Tj) = �i+j�n + b�i�j (1.2)

is an invariant metric on An (for arbitrary b). We construct WZNW and gauged WZNW

models based on the �rst two algebras in this series: A3 and A6.

The paper is organized as follows: in section 2, we describe the family fAng of self-

dual algebras. While constructing the gauged WZNW examples, we encountered some

phenomena which are very common when the algebras are not semi-simple and seldom

(or never) appear otherwise. In section 3, we analyze some of them in a general setting:

the appearance of constraints; singular gauging (when the restriction of the metric to

the gauged subalgebra is singular4) and the gauging of a central subgroup. In section 4,

we construct WZNW and gauged WZNW models based on A3 and A6. In Appendix A,

we collect some parenthetical remarks complementing the main text and, in Appendix

B, we list the geometrical information of all the � models derived in section 4. For all

these models the one-loop beta functions [20] vanish and the central charge is equal to

the dimension of the �-model target manifold.

2. A New Family of Solvable Self-Dual Lie Algebras

In this section we describe the family fAng of self-dual algebras, as obtained in [18].

The main results are described in the introduction and the reader interested in the physical

results may skip directly to section 3. We start, in subsection 2.1 with a review of the

two methods for constructing self-dual Lie algebras { a double extension and a Wigner

contraction. In subsection 2.2 we de�ne the algebras An and prove that (for n̂ = 0) these

are indeed self-dual Lie algebras. In subsection 2.3 we �nd all the ideals of An. This

result is used in the last subsection, where we check which of these algebras is a double

extension of an Abelian algebra or a result of a Wigner contraction.

2.1 The Construction of Self-Dual Lie algebras

A self-dual Lie algebra A is a Lie algebra that admits an invariant metric, i.e. a symmet-

ric non-degenerate bilinear form (�; �) which is invariant under the adjoint action of the

corresponding group:

(gx1g
�1; gx2g

�1) = (x1; x2); 8xi 2 A (2.1)

for any g in the group, or equivalently:

([y; x1]; x2) = �(x1; [y; x2]); 8xi 2 A (2.2)

4For examples of the special case of null gauging, when the metric on the gauged subalgebra vanishes,

see [19] and references therein.
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for any y 2 A. The best known families of self-dual algebras are the semi-simple algebras

(where the (unique) invariant metric is the Killing form) and the Abelian algebras (for

which every metric is trivially invariant). However, these are not the only ones. In this

section we are concerned with the search for self dual algebras that are neither semi-

simple nor Abelian. Given two self dual algebras, their direct sum equipped with the

natural direct sum metric, is also self dual (this construction will be called an orthogonal

direct sum), therefore, in the construction of self dual algebras, the non-trivial task is to

�nd the indecomposable ones, i.e. algebras that are not orthogonal direct sums. It has

been shown [17] that any indecomposable self-dual Lie algebra, which is neither simple

nor one dimensional, is a double extension of a smaller self-dual Lie algebra (see also

[15]), therefore, one may attempt to use the procedure of double extension for actual

construction of new indecomposable self-dual Lie algebras.

The double extension of a self-dual Lie algebra A by another Lie algebra B (not nec-

essarily self-dual) can be seen as a two-step process. The �rst step is to combine them to

a semi-direct sum5

S = B �+A (2.3)

in such a way that the metric in A will be invariant also under the action of B. For this,

one needs, in addition to the algebras A and B, an action (representation) of B in A

y : x! [y; x]; [[y1; y2]; x] = [y1; [y2; x]]� [y2; [y1; x]] (2.4)

that will satisfy the mixed Jacobi identities

[y; [x1; x2]] = [[y; x1]; x2] + [x1; [y; x2]] (2.5)

and the invariance condition (2.2) (here x; xi 2 A, y; ya 2 B). Given bases fxig and fyag

for A and B respectively, the Lie bracket of S is of the form

[�; �] yb xj

ya fab
cyc faj

kxk

xi �fbi
kxk fij

kxk

(2.6)

fij
k and fab

c are the structure constants of A and B respectively and as such satisfy the

Jacobi Identities; fij
k satis�es an additional identity

fij
l
lk + fik

l
lj = 0; (2.7)

expressing the invariance (2.2) of the metric 
ij = (xi; xj) on A; faj
k represent the action

of ya in A and identities (2.4), (2.5) and (2.2) take respectively the form

fab
cfck

l = fam
lfbk

m � fbm
lfak

m; (2.8)

5By this we mean that the vector space S is a direct sum of the vector spaces B and A, B is a

subalgebra of S: [B;B] � B and A is an ideal of S : [S;A] � A.
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fak
lfij

k = fai
kfkj

l + fik
lfaj

k (2.9)

and

faj
l
lk + fak

l
lj = 0: (2.10)

The second step is the extension of S by an Abelian algebra B� with dimB� = dimB.

This step is completely determined by the �rst one (the Lie bracket in S and the metric

on A) and in an appropriate basis fzag for B� the Lie bracket of the resulting algebra,

which will be denoted by D, is

[�; �] yb xj zb

ya fab
cyc faj

kxk �fac
bzc

xi �fbi
kxk fij

kxk + fci
k
kjz

c 0

za fbc
azc 0 0

(2.11)

This algebra has an invariant metric, which in the above basis is

(�; �) =

0
B@ !ab 0 �ba

0 
ij 0

�ab 0 0

1
CA ; (2.12)

where !ab is some invariant symmetric bilinear form on B (possibly degenerate; e.g. the

Killing form or zero).

The theorem proved in [17] states that an indecomposable self-dual Lie algebra, which

is neither simple nor one dimensional, is a double extension of a self-dual algebra (with

smaller dimension) by a simple or one-dimensional algebra. Although this is a very

important and useful result for a general study of these algebras, its straightforward

application to an actual construction is cumbersome, as we now explain. To double-

extend a self-dual Lie algebra A, one needs (a Lie algebra B of) linear transformations in

A satisfying (2.5) and (2.2). One could, of course, take the trivial action: y : x! 0, but

the resulting algebra D is decomposable { the original algebra A factorizes out:

D = A
?
� (B �+B�): (2.13)

Moreover, it was shown in [15] that even if B acts non-trivially but its action is through

inner derivations (i.e. the action of each y 2 B coincides with the adjoint action of an

element ŷ 2 A: y : x ! [ŷ; x]), the result is also decomposable. This means that

for the construction of an indecomposable double extension, one needs knowledge about

the outer (non-inner) derivations in A and such information is not available in general.

In the absence of general results, the suitable transformations must be found by direct

calculation. Given A and (�; �)A, one must �nd solutions faj
k of the (linear) equations

(2.9) and (2.10) and identify among them, by elimination, those that correspond to inner

derivations.
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Another method for constructing new self-dual Lie algebras is by performing aWigner

contraction [16] (this was proposed, in the context of WZNW models, in [5]). The initial

data for this construction consists of a self dual Lie algebra S0 and a sub algebra B0 of

S0 such that the restriction of the metric (�; �) on S0 to B0 is non-degenerate. The last

condition is equivalent to

S0 = B0 � B
?
0 (2.14)

(B?0 is the orthogonal complement of B0 with respect to the metric), therefore, bases fb0ag

for B0 and faig for B
?
0 combine to a basis for S0. In this basis, the Lie bracket in S0 has

the general form6

[ai; aj] = fij
kak + fij

cb0c ; (2.15)

[b0a; aj] = faj
kak ; [b0a; b

0
b ] = fab

cb0c (2.16)

and the metric is

(�; �) =

 

ij 0

0 
ab

!
: (2.17)

One now performs a Wigner contraction [16] of S0�B1 (where B1 is isomorphic to B0

and commutes with S0): de�ne

xi � �ai; ya � b0a + b1a; za � 1

2
�2(b0a � b1a); (2.18)

express the Lie brackets in terms of the new variables and take the limit � ! 0. Since

this is a singular limit, one obtains a new algebra D (not isomorphic to S0�B1) with the

following Lie brackets:

[�; �] yb xj zb

ya fab
cyc faj

kxk fab
czc

xi �fbi
kxk fij

czc 0

za �fba
czc 0 0

(2.19)

To obtain an invariant metric for D one starts with the natural invariant metric on S0�B1,

that in the basis fb0a; ai; b
1
ag is

(�; �)� =

0
B@ �0
ab 0 0

0 �0
ij 0

0 0 �1
ab

1
CA (2.20)

6The structure constants satisfy the Jacobi identities and the identities expressing the invariance of

the metric. In particular, the vanishing of faj
c follows from the existence of a non-singular invariant

metric:

(b0c ; [b
0
a; aj]) = ([b0c; b

0
a]; aj) = 0:
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(with arbitrary �0, �1). In the limit �! 0 one obtains:

(�; �)0 =

0
B@

�0
ab 0 �
ab

0 �
ij 0

�
ab 0 0

1
CA (2.21)

(in the basis fya; ai; zag) where
7

� = lim
�!0

1

2
�2(�0 � �1) ; �0 = lim

�!0
(�0 + �1) (2.22)

and this form is invariant (by continuity) and, for � 6= 0, non-degenerate.

The resemblance of the resulting algebra to the one obtained by double extension

is apparent and indeed, using the metric to raise and lower indexes, one immediately

identi�es it as the double extension of an Abelian algebra A = spfxig by B = spfyag [15]

(where spfxig denotes the linear span of the set fxig). However, this method has a clear

advantage. Unlike double extension, the initial data needed is very simple and generally

available, therefore, the method can be easily used to �nd many new non-trivial self-dual

algebras.

A natural question is if there are non-semi-simple, indecomposable, self-dual algebras,

that cannot be obtained by a Wigner contraction. Any self-dual Lie algebra obtained

through a Wigner contraction can be obtained from an Abelian algebra by a single double-

extension, therefore, this question is closely related to the problem of �nding (non-semi-

simple, indecomposable, self-dual) algebras that their construction out of simple and one

dimensional algebras involves more than one double extension8, and in this sense, are

called deeper algebras [15]. As explained above, deeper algebras are not easy to �nd. In

fact, among the self dual algebras with dimension at most 5 (enumerated in [12]), none

is deeper than a double extension of an Abelian algebra. In the rest of this section we

introduce and explore a family of deeper algebras.

2.2 The Algebra An

Consider a vector space, equipped with the basis fTigi2ZZ and the following \Lie bracket"

[18]:

[Ti; Tj] =
d(i� j)Ti+j (2.23)

where î � i mod 3 is chosen to be in f�1; 0; 1g. The map i ! î is almost a ring homo-

morphism ZZ ! ZZ: it preserves multiplication

d(ij) = îĵ; (2.24)

7Note that to obtain a non-degenerate metric, �0 and �1 must depend non-trivially on �. In fact they

must diverge in the limit �! 0.
8One might also consider a double extension of a reductive algebra A i.e. an orthogonal direct sum of

Abelian and semi-simple algebras. However, as shown in [15], the semi-simple factor of A factorizes also

in the result D (because a semi-simple algebra does not have outer derivations), therefore, the result in

this case is decomposable.
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and almost preserves addition9:

d(i+ j) =
d

(̂i+ ĵ) ; d(�i) = �î (2.25)

d(i� j) = 0() î = ĵ (2.26)

(but note that 1̂+1̂ 6= d(1 + 1)). These are the properties that will be used in the following.

Particularly useful will be the property

î = ĵ () d(i+ k) = d(j + k); (2.27)

which follows from (2.26).

The bracket is manifestly anti-symmetric so to obtain a Lie algebra, there remains to

verify the Jacobi identity. Since

[[Ti; Tj]; Tk] = ĉijkTi+j+k ; cijk � (i� j)(i+ j � k); (2.28)

the Jacobi identity takes the form

ĉijk + ĉjki + ĉkij = 0: (2.29)

This identity holds without the `hats', therefore, by (2.25),

ĉijk + ĉjki + ĉkij = 0 mod 3; (2.30)

so (2.29) can be false only when

ĉijk = ĉjki = ĉkij = �1: (2.31)

ĉijk = 1 is equivalent to d(i� j) = d(i+ j � k) = �1 and, therefore, also to

i = j � 1 mod 3 ; k = �j mod 3

and this cannot hold simultaneously for all the tree cyclic permutations of fijkg. Replac-

ing i$ j one obtains the same result for ĉijk = �1. Therefore, the Jacobi identity holds

and the above algebra is indeed a Lie algebra (over the integers)10

Let us consider the subalgebra

A1 � spfTigi�0:

9The (= direction of (2.26) follows from (2.25), but for the other direction (2.25) only implies

d(i� j) = 0 =) î � ĵ = 0 mod 3

and the stronger result î� ĵ = 0 follows from the fact that ĵi� ĵj is always at most 2. When d(i � j) 6= 0

this reasoning breaks down and indeed we have e.g. 2̂� 1̂ 6= d(2� 1).
10In Appendix A.1 we comment about possible generalizations of this algebra.
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Dividing by the ideal spfTigi>n (for some positive integer n), one obtains the �nite di-

mensional Lie algebra

An � spfTig0�i�n

with the Lie bracket

[Ti; Tj] =

( d(i� j)Ti+j i+ j � n

0 otherwise:
(2.32)

From now on we restrict our attention to such an algebra. It is a solvable11 algebra,

T0 being the only non-nilpotent generator and it possesses a ZZ-grading: deg(Ti) = i

(inherited from the original in�nite-dimensional algebra.)

We would like to �nd an invariant metric (�; �) on An. Using (1.1), the invariance

condition

([Tk; Ti]; Tj) + (Ti; [Tk; Tj]) = 0

takes the form d(k � i)(Tk+i; Tj) +
d(k � j)(Tk+j; Ti) = 0 (2.33)

(here Ti � 0 for i > 0) and, in particular, for k = 0:

d
( d(�i) + d(�j))(Ti; Tj) = 0; (2.34)

which, by eqs. (2.25,2.26), is equivalent to

d(i+ j)(Ti; Tj) = 0: (2.35)

This means that two out of each three \reversed" (right-up-to-left-down) diagonals vanish.

Let us look for a metric with only one non-vanishing diagonal. To obtain a non-degenerate

form, this must be the central diagonal and according to (2.35), this is possible only for

n̂ = 0. We, therefore, concentrate on this case and consider a metric of the form

(Ti; Tj) = !j�i+j;n ; !n�j = !j 6= 0: (2.36)

For such a metric the invariance condition (2.33) takes the form

d(k � i)!j +
d(k � j)!i = 0; 8i+ j + k = n (2.37)

and using n̂ = 0, one obtains

d(2i+ j)!j +
d(2j + i)!i = 0: (2.38)

First we take ĵ = 0 which gives

î(!i + 2̂!j) = 0: (2.39)

11Solvability of a Lie algebra A is de�ned as follows: One de�nes recursively Ak+1 = [Ak;Ak]; A is

solvable i� for some k, Ak = 0.
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and this implies (since 2̂ 6= 0)

!i =

(
!i = �2̂!0 î 6= 0

!i = !0 î = 0:
(2.40)

Using this result we take î; ĵ 6= 0 in (2.38) and obtain

2̂ � 3̂ d(i+ j)!0 = 0; (2.41)

which is satis�ed, since12 3̂ = 0. �2̂ = 1, therefore, we have !i = !0; 8i. To summarize,

we proved:

Lemma:

A (non-degenerate) invariant metric on An with only one (reversed) diagonal

exists i� n̂ = 0 and it is proportional to

(Ti; Tj) = �i+j�n: (2.42)

Note that one can add to the metric a multiple of the Killing form, obtaining

(Ti; Tj) = �i+j�n + b�i�j (2.43)

(with b arbitrary). The appearance of the second term can also be seen as a result of the

(automorphic) change of basis

T0 ! T0 + 1

2
bTn:

2.3 The Ideals in An

In this subsection we continue to analyze the algebra An, looking for all its ideals and

concluding that the only ideals are of the form

Am;n � spfTig
n
i=m:

This will be important in the next subsection, where we will check if these algebras are

double extensions of Abelian algebras. The grading on An (deg(Ti) = i) will play a central

role in the following and will be called \charge". The adjoint action of Ti increases the

charge by i. Note that there are only positive charges, so that the adjoint action cannot

decrease the charge. This proves that Am;n (for any m) is indeed an ideal.

Let J be an ideal in An. We choose a basis for J such that each element has a

di�erent minimal charge (this can be easily accomplished) and, therefore, can be labeled

by it. We, therefore, have (after an appropriate normalization):

J = spfS�g; S� � T� 2 A�+1;n: (2.44)

12This is where the derivation stops being valid for the Virasoro algebra (mentioned in Appendix A.1,

where possible generalizations of the algebra (2.23) are discussed).
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Isolating in J the maximal ideal of the form Am;n, we obtain:

J = spfS�g�2A
M
Am;n ; m� 1 62 A: (2.45)

Observe that this implies that for any element in J that is not in Am;n, its minimal charge

is in A.

The choice A = ; (the empty set) corresponds to the \trivial" solution J = Am;n. In

the following we look for other solutions, i.e. with A 6= ;. This also implies max(A) <

m� 1. We are going to explore the restrictions on the S�'s implied by the claim that J

is an ideal in An. Since Am;n is an ideal by itself, the only restrictions come from

[Ti; S�] 2 J 8� 2 A ; i = 0; : : : ; n: (2.46)

J contains all terms with charge at least m, therefore, restrictions will arise only in terms

in the commutator with smaller charge. For i � m � � there are no such terms. As the

charge i decreases, there will be more non-trivial terms, therefore, we will start from the

higher charges.

For i = m� � � 1 we have (in the following, \'" means \equality up to an element

of Am;n"):

[Tm���1; S�] ' [Tm���1; T�] =
d(m� 2� � 1)Tm�1 (2.47)

(here and in other similar cases the hat should be applied to the whole expression between

parenthesis). Tm�1 62 J (otherwise Am�1;n � J ), therefore,

d(m� 2� � 1) = 0: (2.48)

Using eqs. (2.25,2.26), this is equivalent to

�̂ = �d(2�) = � d(m� 1) (2.49)

and since this is true for all � 2 A, we also have

�̂1 = �̂2 8�1; �2 2 A: (2.50)

Next, for i = m� � � 2 we have (using eqs. (2.49) and (2.25))

[Tm���2; S�] ' [Tm���2; T� + s�+1� T�+1] = �Tm�2 + s�+1� Tm�1: (2.51)

This implies that m � 2 is a minimal charge of an element of J , therefore, m � 2 2 A.

Substituting � = m� 2 in (2.51) we obtain

[T0; Sm�2] ' �Tm�2 + sm�1m�2Tm�1 ' �Sm�2 + 2sm�1m�2Tm�1 (2.52)

and this implies sm�1m�2 = 0, so with no loss of generality, we can choose

Sm�2 = Tm�2: (2.53)
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Finally, for i = m� �� 3 and m� 2 > � 2 A we have

[Tm���3; S�] ' [Tm���3; T� + s�+1� T�+1 + s�+2� T�+2] = Tm�3 + s�+2� Tm�1 (2.54)

and as before this should imply that m� 3 2 A (being the minimal charge of an element

of J ). However, according to eq. (2.50), this is impossible since m� 2 2 A. Therefore,

A contains no elements other then m� 2 and J is of the form

J = spfTm�2g � Am;n: (2.55)

A straightforward check (or use of eq. (2.49)) shows that this is indeed an ideal i� m̂ = 0.

Is this ideal really non-trivial? It turns out that it is not! To see this, consider the (non-

singular) linear map de�ned by Ti 7! T 0i � �Ti+î. Since m̂ = 0, this map transforms J

to Am�1;n.

[T 0i ; T
0
j] = � d(i� j)Ti+j+(̂i+ĵ) = � d(i� j)T

i+j+d(i+j) = d(i� j)T 0i+j (2.56)

(the second equality follows from the fact that for d(i� j) 6= 0, d(i+ j) = î+ ĵ), therefore,

this map is an automorphism of Lie algebras, which means that J = spfTm�2g �Am;n is

automorphic to Am�1;n.

2.4 An as a Deeper algebra

Now we are ready to check how the self-dual algebras found above �t into the general

picture described in the beginning of this section. We consider here the case n̂ = 0. The

list of the ideals found in the previous subsection implies that none of these algebras is

decomposable (i.e. expressible as an orthogonal direct sum)13. Among the indecomposable

self-dual algebras, we have the following inclusion relations:

f Indecomposable, Self-Dual Algebras g

[

f (Single) Double-Extensions of Abelian Algebras g

[

f Algebras obtainable by a Wigner contraction g

We will show that these are strict inclusions, i.e. , all the three sets are distinct. Ex-

plicitly we will show here that among the algebras An, A3 can be obtained by a Wigner

contraction, A6 is a double extension of an Abelian algebra but cannot be obtained by a

Wigner contraction, and the rest are deeper algebras i.e. they are not double extensions

13This means that they should be expressible as double extensions by the one dimensional algebra, and

this structure can be indeed easily identi�ed:

B = spfT0g ; B� = spfTng ; A = A1;n=B
�: (2.57)
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of Abelian algebras and, therefore, in particular, they cannot be obtained by a Wigner

contraction.

We start by trying to identify in An the structure of a double extension of an Abelian

algebra. The Lie product in an algebra D, with such a structure (table (2.11)) is of the

following form

[�; �] B A B�

B B A B�

A A B� 0

B� B� 0 0

: (2.58)

whereA = spfxig, B = spfyag and B
� = spfzag. In this table we recognize two properties

of D

1. D is a semi direct sum of B and the ideal J = A+ B�: D = B �+J ;

2. [J ;J ] � B�, therefore, dim[J ;J ] � dimB� = dimB.

Consider the �rst property. The candidates for the ideal J were found in the previous

subsection. It was shown that J = Am;n (possibly after an automorphic change of basis

fTig). Following the same approach, we choose a basis fRig
m�1
i=0 for B such that i is the

minimal charge of Ri. [Tm�1; Tm�2] = T2m�3 and 2m � 3 < n (since dimAn � 2dimB),

therefore, [Rm�1; Rm�2] 6= 0 and its minimal charge is 2m � 3. B is closed under the Lie

bracket and B \ J = f0g, therefore, [Rm�1; Rm�2] 62 J , which implies that 2m� 3 < m.

This leaves us with14 m = 1 or 2.

As for the second property, we have

dim[J ;J ] � dimB = m: (2.59)

One can easily verify that

[Am;n;Am;n] = A2m+1;n; (2.60)

therefore, eq. (2.59) implies n � 3m. On the other hand n + 1 � 2m (since dimAn �

2 dimB). Recalling that n̂ = 0, We obtain three possibilities:

(m;n) = (1; 3); (2; 3); (2; 6) (2.61)

and a direct check con�rms that each of them indeed corresponds to a double extension

of an Abelian algebra (in the second possibility this is the zero-dimensional algebra).

Observe that there are more than one way to represent an algebra as a double extension.

Moreover, A6 can be obtained both by extending an Abelian algebra (with m = 2) and

14The value m = 0 is also a possibility but it is not interesting. It corresponds to dimB = 0. As a

double extension it means not to do anything { remaining with the (Abelian) algebra A one started with.

As a Wigner contraction it means that, starting with some self-dual Lie algebra S0, all we did is to set

its Lie bracket to 0, so that we end up with the Abelian Lie algebra of the same dimension, which is

trivially self dual. In the present context, this corresponds to the one dimensional algebra:D = A0

12



by extending a non-Abelian algebra (with m = 1), so the number of double extensions

leading to a given Lie algebra is not unique15.

Turning to the search of the structure of a Wigner contraction, the only candidates

are those enumerated in (2.61). A3 is the Heisenberg algebra, and it is indeed a Wigner

contraction of so(2; 1) � so(2) (which leads to the �rst possibility in (2.61)). The other

candidate is A6, which corresponds to the last possibility in (2.61). To examine this case,

we use the further requirement that in a Wigner contraction, B must be self dual16. For

m = 2, B is the two-dimensional, non-Abelian Lie algebra

[R0; R1] = R1:

This algebra is not self-dual, therefore, even ifA6 can be obtained by a Wigner contraction,

this procedure will not lead to an invariant metric on A6.

3. Some General Issues Arrising in Gauged WZNW Models
Based on Non-Semi-Simple Groups

Having a family of self-dual algebras, the natural thing to do is to construct the WZNW

models based on them. This will be done (for A3 and A6) in the next section. However, as

in any non-compact Lie-algebra, the invariant metric is not positive de�nite. In fact, for

all the algebras described in section 2, the metric has more than one negative eigenvalue,

therefore the �-model obtained from a WZNW model based on them has an unphysical

metric { more than one time-like direction { and to correct this we have to gauge out the

extra time-like directions. In the proccess of exploring the various possibilities of gauging,

we encountered some phenomena that are very common when the algebras involved are

not semi-simple. Therefore, before we turn to the consideration of speci�c models, we

describe in this section some of these phenomena and analyse them in a general setting.

We start, is subsection 3.1, with a review of the construction of WZNW and gauged

WZNW models. In subsection 3.2 we consider situations in which the integration of the

gauge �elds leads to constraints on the coordinates parametrizing the group manifold. In

subsection 3.3 we discuss \singular" gauging, where the restriction of the metric to the

gauged subgroup is degenerate. Finaly, in subsection 3.4 we analyze the gauging of a

central subgroup.

15The notion of \depth" of a self-dual Lie algebra, suggested in [15], is still well de�ned, if one allows

only extensions by either a simple or a one-dimensional algebra. Alternatively, the depth can be de�ned

as the minimal number of double extensions.
16Actually, the metric is not involved at all in the construction of an algebra by a Wigner contraction

(unlike double extension), and all that is needed is a Lie bracket of the form (2.15{2.16). However, we

are interested in an algebra with an invariant metric and if we want that this procedure will provide us

also with the metric (through (2.21)), B must be self-dual.
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3.1 The General Setup

To de�ne a WZNW model [1], one needs a Lie group G and an invariant metric (�; �) on

its Lie algebra dG. The action of the model is17 18

S[g] =
�h

8�

�Z
�
d2�

q
jhjh��(JL

� ; J
L
� )�

1

3

Z
B
d3����(JL

� ; [J
L
� ; J

L
 ])

�
; (3.1)

where the �eld g is a map from a two dimensional manifold � to G, h�� is a metric on

�, and JL = g�1dg is the left invariant form on G taking values in dG. In the second

term, B is an arbitrary three-dimensional manifold such that � is its boundary and g is

extended arbitrarily from � to B. Choosing a parametrization x� for g and substituting

it in (3.1) one obtains (at least locally) a �-model action (with vanishing dilaton)19

S[x] =
�h

8�

Z
�
d2�(

q
jhjh��G�� (x) + ���B��(x))@�x

�@�x
� (3.2)

=
�h

8�

Z
�
d2�(

q
jhjh�� + ���)E��(x)@�x

�@�x
� ; E�� � G�� +B��

The WZNW action (3.1) is invariant under the group GL 
GR, acting in G by

g ! hLgh
�1
R ; hL; hR 2 G: (3.3)

Given a subgroup H of GL 
 GR, one might attempt to gauge it, i.e. to introduce a

dH-valued gauge �eld A and to construct an extension Ŝ of (3.1) that will be invariant

under local H transformations

g(�)! hL(�)g(�)hR(�)
�1 ; (hL(�); hR(�)) 2 H: (3.4)

Such an extension exists i� H is anomaly free. This criterion can be stated as follows.

Let HL;R be the images of H under the natural homomorphisms GL
GR ! GL;R. These

homomorphisms de�ne corresponding homomorphisms on the algebras:

dH ! dHL;R ; A 7! AL;R: (3.5)

The criterion for gauge invariance is that for any A1; A2 2 dH

(AL
1 ; A

L
2 ) = (AR

1 ; A
R
2 ): (3.6)

17The coupling k is contained here in the metric.
18The invariance of the metric is needed to obtain a representation of the a�ne Lie algebra. It is less

apparent why the metric should be invertible. When the group is simple this question does not arise, since

an invariant (non-zero) metric on a simple algebra is always invertible, but this is not true in general.

In Appendix A.2 we show that by relaxing the condition of invertibility one does not obtain any new

models, therefore, with no loss of generality, we consider only non-degenerate forms.
19The conventional coupling constant �0 is contained here in the background �elds G and B.
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Equivalently one can say that the two metrics induced on dH by (the pullbacks of) (3.5)

are the same. Assuming H is indeed anomaly free, the gauge invariant action is [2]

Ŝ[g;A] = S[g]+
�h

4�

Z
�
d2�(

q
jhjh��+���)[(AL

�; J
R
� )� (JL

� ; A
R
� )+(A�; A�)� (AL

�; gA
R
� g

�1)]

(3.7)

where JR = dgg�1 is the right invariant form on G and (A�; A�) should be understood

as (AL
�; A

L
�) = (AR

� ; A
R
� ). If h�� is conformally at, we can choose light-cone coordinates

��, for which the line element on � is

ds2 = 2e2'(�)d�+d�� (3.8)

which means that q
jhjh�� =

 
0 1

1 0

!
: (3.9)

In such coordinates (and with �+� = 1) the action (3.7) takes the simple form

Ŝ[g;A] = S[g] +
�h

2�

Z
�
d2�[(AL

+; J
R
� )� (JL

+; A
R
�) + (A+; A�)� (AL

+; gA
R
�g

�1)] (3.10)

To obtain a �-model description [21], one integrates out the gauge �elds and �xes the

gauge. The action is at most quadratic in the gauge �elds, therefore, the integration can

be performed explicitly. The resulting e�ective action for g is

Ŝe�[g] = Ŝ[g;A]jA=Acl
+ (dilaton term); (3.11)

where Acl is the solution of the classical equations for A: �Ŝ=�A = 0, and the dilaton term

originates from the functional determinant which arises in the process of integration [22].

Another possible contribution to the e�ective action is the trace anomaly [23]. When dH

is self dual (e.g. Abelian), the adjoint representation of dH is traceless, and there is no

trace anomaly. However, when the adjoint representation of dH is not traceless, such a

contribution exists and usually leads to a non-local action. When the e�ective action is

local (see also below), it is a �-model action

Ŝe�[x] =
�h

8�

Z
�
d2�[(

q
jhjh��G�� (x) + ���B��(x))@�x

�@�x
� (3.12)

+
q
jhjR(2)�(x)]

(where x� is an appropriate parametrization for g) and in light-cone coordinates (whereq
jhjR(2) = �8@+@�'), it simpli�es to

Ŝ[x] =
�h

4�

Z
�
d2�[E��(x)@+x

�@�x
� � 4�(x)@+@�']: (3.13)

The models presented above are expected to be conformally invariant. When the

action is of the �-model type, we can verify this to one loop order, by the vanishing of

the beta function equations [20]. All the models derived in section 4 passed this check

successfully.
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3.2 The Appearance of Constraints

To obtain a more explicit expression for Ŝe� in (3.11), let us express A� as linear combi-

nations of two distinct bases fT+
a g and fT

�
a g for dH: A� = Aa

�T
�
a . Substituting this into

(3.10), we obtain

Ŝ[g;A] = S[g] +
�h

2�

Z
�
d2�[Aa

+J
�
a � J+

b A
b
� +Aa

+MabA
b
�] (3.14)

where

J�a = (TL+
a ; JR

� ) ; J+
b = (JL

+; T
R�
b ); (3.15)

Mab = (TL+
a ; TL�

b � gTR�
b g�1) = (TR+

a � g�1TL+
a g; TR�

b ) (3.16)

and fTL�
a g and fTR�

a g are the images of fT�a g in dHL and dHR respectively20. The

classical equations for A are

MabA
b
� + J�a = 0 ; Aa

+Mab � J+
b = 0: (3.17)

The matrix M is not invertible in general (more about this later). However, it de�nes

a bilinear form on dH (a rank-2 covariant tensor under a change of basis in dH) and,

therefore, there exists a pair of bases, for which it is diagonal, and in particular assumes

the general form21

Mab =

 
M̂

âb̂
0

0 0

!
; (3.18)

where M̂âb̂ is a square and invertible matrix (for a generic choice of g) and we divided

the set fag of indices into two sets fâg and f�ag. In these bases the equations (3.17) are

equivalent to

Ab̂
� = �N̂ b̂âJ�â ; Aâ

+ = J+

b̂
N̂ b̂â: (3.19)

(where N̂ = M̂�1: M̂âb̂N̂
b̂ĉ = �ĉâ) and

J��a = 0 ; J+
�b
= 0: (3.20)

20Note that although these sets span dHL;R, they are linearly independent only if the homomorphisms

dH ! dHL;R are injective and we do not assume that it is necessarily so.
21M is not symmetric in general, therefore, the diagonalization cannot always be performed with a

single basis. However, in some important cases it can. There always exists a (single) basis for which M

takes the form

Mab =

�
M̂âb̂ 0
�M
�ab̂

0

�

with M̂
âb̂

as above. Therefore, in situations where Mab = 0 8g implies Mba = 0 8g, we will obtain the

form (3.18). This is what happens in \vector" and \axial" gauging: according to (3.16) we have (for any

gauge)

Mab = (TR
b ; T

R
a � g�1TL

a g)

and for TL
a = �TR

a this implies

Mab(g) = Mba(g
�1):
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Substituting this into (3.14), we obtain

Ŝ[g;A]jA=Acl
= fS[g] +

�h

2�

Z
�
d2�[J+

b̂
N̂ b̂âJ�â ]gJ�

�a
=J+

�b
=0: (3.21)

Note that A�a
+ and A

�b
� remain undetermined but disappear from the action.

Using an appropriate parametrization x� for g, one obtains an action of the form

Ŝe�[x] =
�h

4�

Z
�
d2�[E��(x)@+x

�@�x
� � 4�(x)@+@�']J�

�a
=J+

�b
=0: (3.22)

where the dilaton background �eld is

�(x) = � 1

2
log jdet M̂ j+ const. (3.23)

+(contributions from the delta functions �(J��a ); �(J
+
�b
)): (3.24)

This looks almost as a �-model action, but one must still �x the gauge and implement

the constraints. When there are no constraints, this indeed leads to a �-model action,

but, since the constraints are not algebraic, their implementation may lead to a more

complicated (e.g. non local) action22.

3.3 Singular Gauging and Extended Gauge Invariance

By \singular gauging" we mean gauging a subgroup H such that the metric induced on

its algebra dH is degenerate. This includes the extreme case of \null gauging", for which

the metric vanishes completely. Consider �rst this last case. The term (A+; A�) vanishes

identically, therefore, AL
� and AR

+ do not appear in the action (3.10). This means that the

action is determined only by HL and HR and there is no trace of the particular choice23

of a subgroup H of HL
HR. In particular, the action coincides with the action obtained

by gauging the whole HL 
HR group. This has the following important implications:

1. The gauge symmetry group of the resulting model is HL
HR and is typically larger

than the group H we intended to gauge (the group for which we introduced gauge

�elds). To obtain a �-model, one has to �x this whole extended gauge freedom.

This explains why null gauging usually reduces the dimension of the �-model target

manifold more then by dimH (for HL and HR isomorphic to H it reduces by 2dimH

{ this was observed already in [19] in a speci�c example).

22In this context it is interesting to know when the constraints appear. In Appendix A.3 we show that

when an appropriate single \diagonalizing" basis T+
a = T�a for dH exists (and in particular for axial and

vector gauging), constraints can appear only if G is not semi-simple or the gauging is singular (i.e. the

metric (�; �)dH induced on dH is degenerate).
23The gauge �eld has the following general form

A
L;R
� = Aa

�T
L;R
a

andH is determined by the relation between TL
a and TR

a , which manifest itself by the dependence between

AL
+ and AR

+ and similarly between AL
� and AR

�.
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2. The vanishing of the metric on dH, guaranties that the anomaly condition (3.6)

is satis�ed for each choice of a subgroup H of Ĥ = HL 
 HR and, therefore, one

might expect that in this case the variety of possible models is considerably larger.

Contrary to this expectation, we found that all these potential models coincide24 25.

Returning to the general case, we de�ne

J � fR 2 dHj(R;T ) = 0; 8T 2 dHg: (3.25)

The invariance of the metric implies that J is an ideal in dH, therefore, it corresponds

to a normal subgroup N of H: J = dN . Taking for an element of H a parametrization

of the form h(x; y) = n(x)k(y), where n 2 N and k parametrizes elements of the quotient

group, K � H=N , the action of H in G is

g ! [nL(x)kL(y)]g[k
�1
R (y)n�1R (x)]; (3.26)

however, similar arguments to those presented above imply that the action is actually

invariant also under local NL
NR, i.e. N acts independently from the left and from the

right, so the action of the full gauge group is:

g ! [nL(xL)kL(y)]g[k
�1
R (y)n�1R (xR)] (3.27)

(observe that this is indeed a group, i.e. closed under composition, because N is a normal

subgroup of H).

3.4 Gauging a Central Subgroup

Gauging a central subgroup (i.e. taking HL and HR that commute with all elements

of G) is expected to be a relatively simple choice of gauging. However, in many cases

such a choice does not lead to a new �-model backgrounds. In particular, we show here

that when HL = HR, the resulting model is an (ungauged) WZNW model26. Denoting27

�H = HL = HR, the model is based on the group K= �H0, where K is the subgroup of G

generated by all the generators of G that are orthogonal to d �H, and �H0 is the subgroup

of �H generated by all the \null" generators: d �H0 = d �H \ dK.

First we show that those generators of G that are in d �H but not in d �H0 do not

contribute to the �nal gauged action. The restriction of the metric on dG to d �H , being a

symmetric bilinear form on d �H , can be diagonalized, therefore, if it does not vanish, we

24For HL = HR Abelian, this is a trivial realization of axial-vector duality [24].
25Note that this result holds also when H is central (i.e. commutes with all elements of G), in spite

of the fact that the diagonal (\vector") subgroup of CL 
 CR, for C central, acts trivially in G and,

therefore, cannot be gauged in the usual sense. This point is explained in Appendix A.4.
26In Appendix A.5 we analyze the HL 6= HR case for one dimensional H. We also comment on the

HL 6= HR case of null H in a footnote after eq. (3.37). These cases also do not lead to new �-model

backgrounds.
27We note the distinction between �H � G and H � HL 
HR � GL 
 GR.
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have a decomposition d �H = d �H0 � d �H1, such that (d �H; d �H0) = 0 and the restriction of

the metric to d �H1 is non-degenerate. Using the invariance of the metric on dG, we have

([dG; dG]; d �H1) = (dG; [dG; d �H1]) = 0 (3.28)

(since �H is central), which implies that [dG; dG] is contained in d �H?
1 and, in particular,

that d �H?
1 is a subalgebra of dG (in fact it is an ideal, since it commutes with d �H1).

Let G0 be the corresponding subgroup of G: (d �H1)
? = dG0. The metric on d �H1 is

non-degenerate, therefore,

dG0 \ d �H1 = f0g; (3.29)

so dG is a direct sum of orthogonal ideals

dG = dG0 � d �H1 ; (dG0; d �H1) = 0: (3.30)

The action of a WZNWmodel based on a direct product of groups G = G0
G1, where the

algebras of the groups are orthogonal to each other, decomposes to a sum of independent

terms, a term for each factor. When the gauged group is also a direct product of the form

H = H0 
H1 ; Hi � (Gi)L 
 (Gi)R ; (i = 0; 1) (3.31)

the decomposition of the action holds also in the gauged model. However, since �H0 is null,

(3.31) always holds. To show this, let us construct an appropriate basis for dH. Since

dH � dHL�dHR, a basis element is represented by a pair ((TL
i )0+(TL

i )1; (T
R
i )0+(TR

i )1).

According to the general discussion of null gauging, dH0 = d(H0)L � d(H0)R, so we can

choose a basis (for dH) that includes a basis for d(H0)L (i.e. (T
L
i )1 = (TR

i )0 = (TR
i )1) = 0)

and a basis for d(H0)R. With such a basis we can set (TL
i )0 = (TR

i )0 = 0 whenever either

(TL
i )1 6= 0 or (TR

i )1 6= 0 and the resulting set will remain a basis. This means that we

indeed have the direct product structure (3.31)28, with G1 = �H1 and we can analyze

each factor separately. The G1 part corresponds to G Abelian, HL = HR = G, and its

contribution to the action vanishes (more about this in Appendix A.4). This enables us

(up to topological issues) to restrict our attension to the G0 part of G and the H0 part of

H, i.e. , to consider null H.

According to (3.28),

[dG; dG] � d �H?; (3.32)

where d �H? is the orthogonal complement of d �H . This implies that d �H? is a subalgebra.

We will denote byK the corresponding subgroup of G. Note that �H � K, since d �H is null.

To construct a parametrization of G we chose a subspace B of dG such that dG = B�dK

(direct sum of vector spaces) and a basis fSag
m
a=1 for B (m = dimB = dim �H). We use

(3.32) again, to deduce that dG has the following structure29

dG = IRS1 �+(IRS2 �+(: : : �+(IRSm �+dK) : : :)) (3.33)

28This result depends on the assumption HL = HR. See Appendix A.5 for a counter-example in the

general case.
29 Recall that we denote by B �+J a semi-direct sum of algebras B and J , in which J is an ideal.

Similarly, H ��N denotes a semi-direct product of groups H and N , in which N is a normal subgroup.
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(where IRSa � spIRfSag) and, therefore
30, [25]

G = eIRS1 ��(eIRS2 ��(: : : ��(eIRSm ��K) : : :)) (3.34)

(where exp(IRSa) denotes the one-parameter-group generated by Sa). This suggest a

parametrization for g 2 G of the form

g(x; y; z) = ey
mSm : : : ey

1S1k(x)ez
aTa; (3.35)

where fTag
m
a=1 is a basis for �H and k(x) is some parametrization of the quotient group

K= �H . In these coordinates, the invariant form JL takes the form (using (4.6))

JL � g�1dg = Tadz
a + k�1dk + k�1[S1dy

1 + e�y
1ad(S1)(S2dy

2 + (3.36)

+e�y
2ad(S2)(: : : (Sm�1dy

m�1 + e�y
m�1ad(Sm�1)Smdy

m) : : :))]k

= Tadz
a + Sady

a + JL
?(x; y) ; JL

? 2 dK

(the last equality follows from eSTe�S � T 2 [dG; dG] � dK), so the gauged WZNW

action is of the form

Ŝ[g;A] = S[g] +
�h

2�

Z
�
d2�[(AL

+; Sa)@�y
a � (AR

�; Sa)@+y
a]: (3.37)

The integration over A yields the constraints

@�y
a = 0 for components coupled to dHL;

@+y
a = 0 for components coupled to dHR.

which means, since we assume31 HL = HR, that dy
a = 0 8a. JL simpli�es to

JL = Tadz
a + g�10 dg0 2 dG0; (3.39)

the z dependence disappear from the action (because Ta is central and orthogonal to dG0)

and the resulting e�ective action coincides with the WZNW action for the group K= �H

(with the target space variables xi)32.

30For some Abelian subalgebra of dG contained in B, the corresponding subgroup ofGmay be compact.

In this case the lefthand side of (3.34) should be divided by a discrete group. This is irrelevant to the

subsequent discussion and, therefore, will be ignored.
31For dHL 6= dHR we may de�ne

�H = HLHR � fhLhRjhL;R 2 HL;Rg (3.38)

which is also a central subgroup. If �H is null, the whole derivation up to this point is valid. AL
+ and AR

�

in eq. (3.37) are components of two di�erent gauge �elds, corresponding to left and right translations,

respectively. Since dHL 6= dHR, some components of y will be constrained to depend on one of the

light-cone coordinates and it is not clear if the resulting e�ective action can be brought to the form of a

�-model.
32Note that all the non-invariant �elds disappear from the action so no gauge �xing is needed.
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To summarize, when HL = HR is central, there is always an (orthogonal) direct

product decomposition

G = G0 
G1 ; dG0 ? dG1; (3.40)

H = H0 
H1 ; (H0)L = (H0)R � G0 ; (H1)L = (H1)R = G1 (3.41)

such that G1 is central and H0 is null. Denoting �H0 � (H0)L = (H0)R and dK = (d �H0)
?

we have

G0 � K � �H0 (3.42)

and the resulting action is the action of a WZNW model for the group K= �H0.

4. WZNW and gauged WZNW models based on An

In this section we will present some (gauged and ungauged) WZNW models based

on the algebras A3 and A6. The corresponding �-model background �elds, and some

related tensors, are listed in Appendix B. For all the �-models obtained, the one-loop

beta functions [20] vanish and the central charge is equal to the dimension of the �-model

target manifold.

For the construction of a WZNW model, one needs a convenient parametrization of

the corresponding group. For a compact group G one often chooses the parametrization

g = exp(xaTa), where fTag is some basis for dG. However, in general the exponential

map exp: dG ! G is not onto, even if G is connected33 and when it is not, a di�erent

parametrization is needed. For solvable Lie algebras (as the algebras An), one can exploit

the fact [25] that any such algebra is a repeated semi-direct sum of one-dimensional

Lie algebras and consequently [25] the corresponding (connected and simply connected

covering) group is a semi-direct product of one-dimensional groups. This is the approach

we use. The grading on An implies that

An = IRT0 �+(IRT1 �+(: : : �+(IRTn�1 �+IRTn) : : :)) (4.1)

so the simply connected covering group of An is

Gn = eIRT0 ��(eIRT1 ��(: : : ��(eIRTn�1 ��eIRTn) : : :)): (4.2)

This means that the map

(x0; : : : ; xn)! g = exnTn : : : ex0T0 (4.3)

33For example, it can be shown that an SL(2; IR) matrix of the form�
�1 �

0 �1

�
; � 6= 0

is not in the range of the exponential map.
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is a homeomorphism from IRn+1 onto Gn. This is, therefore, a suitable parametrization.

Next we derive expressions for the invariant forms on Gn. Denoting by ad(S) the

adjoint action of S 2 dG:

ad(S) : T ! [S; T ] ; S; T 2 dG (4.4)

and

exad(S) �
1X
k=0

xk

k!
ad(S)k; (4.5)

we have

eSTe�S = ead(S)(T ): (4.6)

Using this formula we obtain:

JL � g�1dg (4.7)

= T0dx0 + e�x0ad(T0)(T1dx1 + e�x1ad(T1)(: : : (Tn�1dxn�1 + e�xn�1ad(Tn�1)Tndxn) : : :));

JR � dgg�1 (4.8)

= Tndxn + exnad(Tn)(Tn�1dxn�1 + exn�1ad(Tn�1)(: : : (T1dx1 + ex1ad(T1)T0dx0) : : :)):

T0 acts by multiplication:

ex0ad(T0) : Ti ! e�îx0Ti (4.9)

and all other generators are nilpotent, which means that the sum in (4.5) is �nite, there-

fore, formulas (4.7) and (4.8) provide a well de�ned algorithm for the computation of the

invariant forms.

4.1 Models based on A3

4.1.1 The ungauged model

Using the parametrization (4.3) and the formulas (4.7) and (4.8) with n = 3 we obtain

JL = T0dx0 + ex0T1dx1 + e�x0T2dx2 + T3(x1dx2 + dx3) (4.10)

JR = T0dx0 + T1(dx1 + x1dx0) + T2(dx2 � x2dx0) (4.11)

+T3(dx3 + x2dx1 + x2x1dx0)

Substituting these expressions in the WZNW action (3.1), together with the Lie bracket

(1.1) and the invariant metric34 35

(Ti; Tj) = �i+j�3 + b�i�j; (4.12)

34This metric is obtained from the diagonal one (with b = 0) by the (automorphic) change of basis

T0 ! T0 + 1

2
bT3, therefore, keeping b arbitrary will provide us with a convenient way of performing a

family of gaugings.
35We could take a constant multiple of (4.12). This is equivalent to changing the �-model coupling

constant �0, i.e. rescaling the background �elds (G�� and B�� but not �).
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one obtains the following �-model action:

S =
�h

4�

Z
�
d2�[@+x0(2@�x3 + b@�x0) + 2@+x2(@�x1 + x1@�x0)]: (4.13)

This is an analytic continuation of the model in [3].

4.1.2 Gauging T0

Next we gauge the symmetry

g ! hLgh
�1
R ; hL;R = e�L;RT0 (4.14)

which, in the coordinates (4.3) takes the form

x0 ! x0 + �L � �R (4.15)

x1 ! e��Lx1

x2 ! e�Lx2

x3 ! x3:

Since (T0; T0) = b, for b 6= 0 the anomaly condition is �L = ��R (\vector/axial" gauging),

while for b = 0 the gauging is null, therefore, anomaly-free and, by the general discussion

in section 3.3, independent of the relation between �L and �R. Hence we can restrict

attention to the cases �L = ��R. Using the general notation introduced in section 3.2, we

have

M � (T0; T0 � gT0g
�1) = b(1� 1)� x1x2 (4.16)

(since gT0g
�1 = T0 + x1T1 � x2T2 + x1x2T3),

J+ = (JL
+;�T0) = �(b@+x0 + x1@+x2 + @+x3) (4.17)

and

J� = (T0; J
R
� ) = (b+ x1x2)@�x0 + x2@�x1 + @�x3: (4.18)

M does not vanish identically (not even for b = 0), so the e�ect of the gauging is to add

to the Lagrangian the contribution

�h

2�

�
1

M
J+J� + (logM)@+@�'

�
:

To proceed, we need a gauge choice. In the case of axial gauging �L = ��R, we can

�x x0 = 0 and obtain

Ŝe�(x1; x2; x3) =
�h

4�

Z
�
d2�[2@+x1@�x2 � 2p(x1@+x2 + @+x3)(x2@�x1 + @�x3)

+2 log jx1x2 + 2bj@+@�'] (4.19)
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with

p =
1

x1x2 + 2b
: (4.20)

For vector gauging �L = �R, x0 is invariant and the symmetry acts only on x1 and x2.

This action does not alter the sign so strictly speaking one cannot �x a coordinate to a

constant. However, at x1x2 = 0 there is a singularity, so non-singular �eld con�gurations

will have coordinates with a homogeneous sign and the �eld con�guration space is divided

to sectors. Moreover, the action is invariant36 under xi ! �xi, i = 1; 2 so we can restrict

ourselves to the x1 > 0 sector. Therefore, we can choose the gauge x1 = 1 and the result

is

Ŝe�(x0; x2; x3) =
�h

4�

Z
�
d2�[@+x0@�(bx0 + 2x2 + 2x3) � (4.21)

�
2

x2
@+(bx0 + x2 + x3)((b+ x2)@�x0 + @�x3) + 2 log jx2j@+@�']:

For b = 0 the two models in eqs. (4.19) and (4.21) are apparently di�erent, although

they should be the same according to the general discussion in section 3.3. But this is

the result of a di�erent gauge choice. In fact the gauge choice x1 = 1 is equally valid

for the axial gauging when b = 0 and it leads to identical models. The metric in eqs.

(4.19) and (4.21) with b = 0 is degenerate (see Appendix B). This is expected, since b = 0

corresponds to a null gauging, and the degeneracy is the result of the extended gauge

symmetry, as discussed in section 3.3. Indeed, the independence of �L and �R allows the

�xing of both x0 and x1. The action obtained is

Ŝe�(x2; x3) =
�h

4�

Z
�
d2�[�

2

x2
@+(x2 + x3)@�x3 + 2 log jx2j@+@�']; (4.22)

and the corresponding metric is non-degenerate.

4.2 Models based on A6

4.2.1 The ungauged model

Using the parametrization (4.3) and the formulas (4.7) and (4.8) with n = 6 we obtain

JL = T0dx0 + T1e
x0dx1 + T2e

�x0dx2 + T3(dx3 + x1dx2) (4.23)

+T4e
x0(dx4 � x1dx3 � 1

2
x21dx2) + T5e

�x0(dx5 + x2dx3)

+T6(dx6 + x1dx5 � x2dx4 + x1x2dx3)

and

JR = T0dx0 + T1(dx1 + x1dx0) + T2(dx2 � x2dx0) (4.24)

+T3(dx3 + x2(dx1 + x1dx0)) + T4(dx4 � x3dx1 + (x4 � x3x1)dx0)

+T5(dx5 + x3dx2 � 1

2
x22dx1 � (x5 + x3x2 + 1

2
x22x1)dx0)

+T6(dx6 � x4dx2 + x5dx1 + (x5x1 + x4x2)dx0):

36This invariance originates from the fact that the map Ti !�Ti, i = 1; 2, is an isometric automorphism

in A3, i.e. it conserves the metric and the Lie bracket.
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Substituting these expressions in the WZNW action (3.1), together with the Lie bracket

(1.1) and the metric

(Ti; Tj) = �i+j�6 + b�i�j; (4.25)

one obtains the following �-model action:

S =
�h

4�

Z
�
d2�[

6X
i=0

@+xi@�x6�i + b@+x0@�x0 + (4.26)

+x1(@+x2@�x3 � @+x3@�x2 + 2@+x5@�x0)

+x2(@+x1@�x3 + @+x3@�x1 � 2@+x4@�x0) + 2x1x2@+x3@�x0]

4.2.2 Gauging the Center

The simplest way to obtain a model with a reduced dimension is to gauge the center

of37 G6, which is the one-parameter group generated by T6. This will also serve as an

illustration of the general discussion in section 3.4. More precisely, we gauge the two-

dimensional subgroup H of GL 
GR whose action in G is38

g ! hLgh
�1
R ; hL;R = e�L;RT6 (4.27)

(in the parametrization (4.3), this is x6 ! x6 + �L � �R). This gauging is anomaly-free

for independent �L and �R because T6 is null in the metric (4.25). The resulting action is

Ŝ[g;A] = S[g] +
�h

2�

Z
�
d2�(A+@� �A�@+)x0: (4.28)

Integrating out the gauge �elds results with the constraint x0 =const. . Imposing the con-

straint in the action Ŝ eliminates the x0 and x6 dependence and we obtain a 5-dimensional

(gauge-invariant) �-model action:

Ŝe�(x1; x2; x3; x4; x5) = Sjdx0=0 (4.29)

=
�h

4�

Z
�
d2�[

5X
i=1

@+xi@�x6�i + x1(@+x2@�x3 � @+x3@�x2)

+x2(@+x1@�x3 + @+x3@�x1)]:

which is the WZNW action for the group whose algebra is39

A = spfT1; : : : ; T6g=spfT6g: (4.30)

37Recall that G6 is the simply connected covering group of A6, as de�ned in eq. (4.2).
38As explained in the general discussion, this is equivalent to vector/axial gauging of a one dimensional

subgroup, which in our notation corresponds to �L = ��R.
39This is the unique 5-dimensional self-dual Lie algebra, appearing in the list of [12].
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4.2.3 Towards a Four Dimensional Model

To get down to 4 dimensions, we must add another generator to H. We want to explore

as many options as possible, so we take the action of H in G to be

g ! hLgh
�1
R ; hL;R = e�L;RT6+'L;RTm (4.31)

with Tm = a2T2 + a4T4, where a2;4 are parameters which determine the choice of the

additional generator. Since

(Tm; T6) = 0 ; (Tm; Tm) = 2a2a4; (4.32)

for a2a4 6= 0 the anomaly condition is 'L = �'R (\vector/axial" gauging), while for

a2a4 = 0 (Tm proportional to T2 or T4) the gauging is null and, therefore, anomaly-free

for any 'L;R. To �t to the general notation introduced in section (3.1), we choose a

(single) basis for dH with40

fTL
a g = f�LTm; T6g ; fTR

a g = f�RTm; T6g: (4.33)

gTmg
�1 = a2e

x0(T2 � x1T3 + (x1x2 + x3)T5) (4.34)

+(a4e
�x0 � 1

2
a2e

x0x21)T4 + [a4x2e
�x0 � a2e

x0(x4 + 1

2
x21x2)]T6;

therefore,

Mab � (TL
a ; T

L
b � gTR

b g
�1) =

 
M 0

0 0

!
(4.35)

with

M = 1

2
a22�L�Re

x0x21 + 2a2a4(�
2 � �L�R cosh x0) (4.36)

(recall that when a2a4 6= 0, �2
L = �2

R � �2). From the T6 gauging we obtain, as before,

the constraints dx0 = 0. As to the other generator, the corresponding current components

are (for dx0 = 0)

J+
m = (JL

+; �RTm) = �R[(a4e
�x0 � 1

2
a2e

x0x21)@+x2 (4.37)

+a2e
x0(�x1@+x3 + @+x4)]

J�m = (�LTm; J
R
� ) = �L[�a2x3@�x1 + a4@�x2 + a2@�x4] (4.38)

and we have several di�erent situations:

40More precisely, the basis that corresponds to the action (4.31) is

fTL
a g = fTm; T6; 0; 0g ; fTR

a g = f0; 0; Tm; T6g;

where the �rst two generators generate the left action and the other two generate the right action. The

choice (4.33) corresponds to vectorial gauging of the central element: �L = �R and to some left-right

correlated gauging of Tm: 'L;R = �L;R'. The last restriction is actually necessary when Tm is not null,

while for null generators (T0 and possibly also Tm) we have seen that the resulting action is una�ected

by these restrictions. Therefore, there is no loss of generality in the choice (4.33).
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1. a2 = 0:

This implies M = 0, which leads to the constraints J+
m = J�m = 0. For �L�R 6= 0

this is equivalent to dx2 = 0. Imposing these constraints in the action Ŝ eliminates

the x4 dependence and we obtain a 3-dimensional �-model action:

Ŝe�(x1; x3; x5) = Sjdx0=dx2=0 = (4.39)

=
�h

4�

Z
�
d2�[2@+x5@�x1 + @+x3@�x3 + 2x2@+x3@�x1]

which corresponds to a constant (at) background:

E�� =

0
B@ 0 x2 1

x2 1 0

1 0 0

1
CA : (4.40)

2. �L�R = 0:

This requires a2a4 = 0 (Tm null) and, therefore, also in this case M vanishes. But

in the present case either TL
m or TR

m vanish, therefore, we obtain only one constraint:

a2 = 0 : �L@�x2 = �R@+x2 = 0 (4.41)

a4 = 0 : �L(@�x4 � x3@�x1) = (4.42)

= �R(@+x4 � x1@+x3 � 1

2
x21@+x2) = 0

which eliminates roughly \half" a degree of freedom, therefore, it seems that the

resulting model is not of a �-model type.

3. a2; �L�R 6= 0:

(note that this includes the null case a4 = 0)

In this case M does not vanish identically and the e�ect of the gauging (after

integrating out the gauge �eld) is to add to the WZNW Lagrangian the contribution

�h

2�

�
1

M
J+
mJ

�
m + (logM)@+@�'

�
:

4.2.4 A Four Dimensional Model

We continue with the last case. To choose an appropriate gauge �xing condition, we need

the explicit action of H in G. Using repeatedly a generalization of eq. (4.6):

eSf(T )e�S = f
�
ead(S)(T )

�
(4.43)

(valid for any function f expressible as a convergent power series) and the Campbell-

Baker-Hausdor� formula [25], which for [S; T ] that commutes with S and T takes the

form

eSeT = sS+T+
1

2
[S;T ]; (4.44)
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we obtain

x0 ! x0

x1 ! x1

x2 ! x2 + a2('L � ex0'R)

x3 ! x3 + a2e
x0x1'R (4.45)

x4 ! x4 + a4('L � e�x0'R) + 1

2
a2e

x0x21'R

x5 ! x5 � a2(x3'L + ex0x1x2'R) + a22e
x0x1( 12e

x0'R � 'L)'R

x6 ! x6 + (�L � �R) + a2x4'L + ( 1
2
a2e

x0x21 � a4e
�x0)x2'R

+ 1

2
a22e

x0x21('L � 1

2
ex0'R)'R + a2a4('

2 � e�x0'L'R):

Since we chose a2 6= 0, one may �x x2 as a gauge condition, unless ex0 = �L=�R. At

this stage we should observe that x0 is not a �xed parameter of the theory but rather an

integration variable { it is the remnant of the [dx0] functional integration (in the partition

function), which was not �xed by the constraint dx0 = 0. A single isolated value of x0 has

measure zero and does not have any inuence on the integral. Therefore, we may restrict

ourselves to the generic case

ex0 6= �L=�R: (4.46)

We choose the gauge x2 =const., impose the constraint x0 =const., and obtain the �-

model action

Ŝe�(x1; x3; x4; x5) =
�h

4�

Z
�
d2�[2@+x5@�x1 + @+x3@�x3 + 2x2@+x3@�x1 (4.47)

+4p(x1@+x3 � @+x4)(x3@�x1 � @�x4) + 2 log(x21 + a)@+@�']

with

p =
�L�Ra

2
2

2M
ex0 =

1

x21 + a
(4.48)

a = 4
a4

a2
e�x0

�
�L

�R
� cosh x0

�
= �2

a4

a2

�
�L

�R
� e�x0

�2

(4.49)

(we used the fact that when a4 6= 0, the anomaly condition imposes the constraint

�L=�R = �1). Note that all the parameters that determine the Tm-gauge are concen-

trated in one parameter a. Its sign is equal to the sign of �(Tm; Tm) (since the other

factors are strictly positive by assumption). We now show that the magnitude of a carries

no physical information, therefore, only its sign is important. Indeed, the action (4.47) is

invariant under the transformation41

xi ! �îxi; a! �2a � 6= 0 (4.50)

41This transformation corresponds to a change of basis Ti ! ��îTi in An. For � > 0 this is the

adjoint action of �T0 2 Gn in An, which is always an ( inner) isometric automorphism (i.e. conserves the

metric and the Lie bracket). For � = �1 a simple check shows that it is also an isometric automorphism

(although outer). This explains the invariance of the action (although it can be also easily veri�ed

directly).
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(where î � i mod 3 2 f�1; 0; 1g), therefore, a change in the magnitude of a is equivalent

to a coordinate transformation. Furthermore, for positive � the coordinate transformation

(this time keeping a unchanged!) is a result of the adjoint action of ��T0 in Gn

g ! �T0g��T0 : (4.51)

The functional measure [dg] is invariant under such a transformation, therefore, the par-

tition function is independent of the magnitude of a. This has several important implica-

tions:

1. The action is essentially (as an integrand) independent of the value of x0 and the

dx0 integration in the partition function is trivial42. Therefore, we can view x0 as a

�xed parameter in the action (void of any physical content) and not as an integration

variable and the resulting e�ective action is indeed of the �-model type.

2. The model is independent of the choice of �L and �R (as long as they don't vanish).

In other words, we again have trivial vectorial/axial duality (and its generalization

in the null case).

3. The model is almost independent of the choice of a2 and a4, which determine the

direction of Tm in the (T2; T4) plane. Only the sign of �a2a4 (which is the signature

of Tm) is signi�cant.

The fact that x0 can be treated as a parameter implies that the model (4.47) coincides

with the WZNW model based on the 5-dimensional algebra (4.30) gauged by spfTmg.

This model was derived in [12], using a di�erent basis for the algebra and a di�erent

parametrization of the group manifold. The action obtained using those choices belongs

to a family of exactly conformal �-model actions of the form

S[u; v; yi] =
�h

4�

Z
�
d2�fk[2@+v@�u+ Uij(u)@+yi@�yj]� 4�(u)@+@�'g; (4.52)

considered in [26]. Moreover, the action corresponding to the axial gauging was obtained

in [26] as a special limit of the [Ec
2 
 U(1)]=U(1) (vectorially) gauged WZNW model. It

was also shown in [12] that the actions obtained are related to 4-dimensional at actions

by duality [24].

Incidentally, observe that in the limit a2=a4 ! 0, p ! 0 and we obtain the action

(4.39) of the a2 = 0 case. In both cases we have x2 =const., however, for a2 6= 0 this

is a gauge choice and the model is explicitly independent of the value chosen for x2. On

the other hand, for a2 = 0, x2 is constrained to be a constant and one still must apriori

integrate over its value. However, the fact that the a2 = 0 model can be obtained as a

limit of the a2 6= 0 model implies that the a2 = 0 model is also independent of x2 and

the integration is unnecessary. In the present model this is trivially seen directly, but in

42We did not consider the value ex0 = �L=�R but, as explained already, this is a single point in the

dx0 integral and, therefore, can not have any inuence.
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more complicated models, where the independence may not be obvious, this may be a

convenient way to prove it.

For a = 0 (a4 = 0) the metric of the model (4.47) is degenerate, but as in the A3

models, this is because in this case Tm is null (proportional to T2), and we have an

extended gauge symmetry ('L; 'R independent in (4.31)). According to (4.45) (with

a4 = 0), for x1 6= 0 one can choose the gauge x2 = x3 = 0 and the resulting action is

Ŝe�(x1; x4; x5) =
�h

4�

Z
�
d2�[2@+x5@�x1 +

4

x21
@+x4@�x4 + 4 log(x1)@+@�']: (4.53)

4.2.5 Non-Abelian gauging

In the search for a �-model with a physical signature, one may consider also non-Abelian

subalgebras. However, since An is solvable, its two and three dimensional subalgebras

are not self-dual and, therefore, one expects a contribution from the trace anomaly [23].

We considered two examples, dH = spfT0; T2g and dH = spfT0; T5g. Both of them are

of the type [T; S] = S. The trace of (the adjoint representation of) T is non-trivial, so

the trace anomaly contributes and the �-model background �elds calculated according to

the formulas in section 3 are expected not to satisfy the beta function equations. This

is indeed what happens for the �rst model (dH = spfT0; T2g). The second model leads

to a constant (at) E�� and a linear dilaton. The one-loop beta functions for such a

background vanish with a shift in the central charge (relative to the dimension of the �-

model target manifold). We expect the trace anomaly contribution to cancel the dilaton,

leading to a at background.

5. Summary and Remarks

In this work we investigated WZNW and gauged WZNW models based on non-reductive

algebras. We introduced a family fA3mg of such algebras that are not double extensions

of Abelian algebras and, therefore, cannot be obtained through a Wigner contraction.

This may provide one with a new family of conformal �eld theories.

We constructed WZNW and gauged WZNW models based on the �rst two algebras in

this series: A3 and A6. The purpose was to �nd models that can serve as string vacua, and

also to gain general knowledge about the use of non-reductive algebras (and the family

An in particular) in this context. This indeed provided some general observations, which

lead to the derivation of some general results concerning singular and central gauging.

Here we describe some of the features and problems of the use of non-reductive algebras

for the construction of WZNW and gauged WZNW models:

� The �-model obtained from a WZNW model based on a non-reductive algebra is

never positive de�nite. Moreover, in the process of constructing a non-reductive

self-dual algebra, starting from an Abelian one, each double extension adds at least

one timelike direction. This implies that (indecomposable) non-reductive algebras,
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that are not double extensions of Abelian algebras, always lead to an unphysical

signature, with more than one time-like direction, so to obtain a useful model using

these algebras, one must gauge out the extra time-like directions (see, for example

[7]).

� Many of the possibilities of gauging a non-reductive WZNW model are singular.

That singular subalgebras are quite common can be seen in the An algebras and is

also suggested by the structure of a double extension. In fact, lower dimensional self

dual subalgebras are quite rare, as can be seen in the list of [12]: two dimensional

non-Abelian sub-algebras are never self-dual and if the (total) algebra is solvable

(and, therefore, does not contain simple subalgebras), this is true also for three

dimensional subalgebras.

� When the gauging is singular the gauge symmetry group of the model is typically

larger then the subgroup initially chosen to be gauged and as a result such a gauging

reduces the dimension of the �-model target manifold by more than the dimension

of that subgroup. For example, when HL and HR are one dimensional and null, The

dimension is reduced by two.

� The signature of a �-model obtained from a gauged WZNW seems to be related to

the one obtained from the ungauged model in a simple way:

{ when the gauging is non-singular (i.e. , the metric induced on the algebra of

the gauged subgroup is non-degenerate), the signature of the gauged model is

obtained from the ungauged one by \subtracting" the signature of the gauged

subalgebra;

{ when the gauging is null (and leads to a �-model) the dimension of the target

manifold reduces in pairs, consisting of one positive and one negative direction.

Therefore, the choice of a gauged subgroup is restricted to subgroups with the

signature dictated by the desired �nal signature. In particular, this limits the use

of null directions. In the An algebras, for example, the di�erence between the

number of positive and negative eigenvalues of the metric is 0 or 1, and to get

a 4-dimensional (or larger) Minkowskian-signature background, one must gauge a

non-null sub-algebra.

� Singular gauging leads frequently (although not always) to the appearance of con-

straints which, in many cases, lead to a model that is not of a �-model type. All

possible situations were demonstrated in the A6 models described in section 4:

{ dHL = spfT4g, dHR = 0 (or vise versa) leads to constraints that lead to a

non-�-model system;

{ dHL = dHR = spfT4g leads also to constraints but these do lead to a �-model;

{ dHL = dHR = spfT2g does not lead to constraints.
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Another complication is that in singular gaugings, the gauged subgroup is not nec-

essarily self-dual and when it is not, there may be a non-trivial contribution from

the trace anomaly [23] (as demonstrated at the end of section 4). However, there are

singularly gauged WZNW models that do lead to a good �-model, so this possibility

does not have to be completely avoided.

� Gauging a central subgroup does not lead to new �-models, at least for HL = HR.

It either leads to an ungauged WZNW model or does not lead to a clearly de�ned

�eld theory at all. For example, gauging the T6 direction of A6 lead to the WZNW

model for A = spfT1; : : : ; T6g=spfT6g. We also gauged a subalgebra of A6 that

contained the central element T6, and the result coincided with a gauged WZNW

model based on A. This seems as a general result. Therefore, to obtain genuine

new models, it seems that one should avoid subgroups containing central elements.

If this is true, it limits considerably the useful choices of gauging.

In spite of the problems and limitations encountered, gauged WZNW models based

on the algebras fAng and on non-reductive self-dual algebras in general, may lead to new

and interesting string backgrounds (as was already demonstrated) and therefore deserve

further study. In particular, one may try to derive string backgrounds using the next

algebras of the family An. These are not double extensions of Abelian algebras and it

would be interesting to see if this property is reected in some way in the WZNW models

(or in other models based on non-reductive self-dual algebras [13]).

Finally, we should remark that an open direction for research is the construction of the

conformal �eld theory that corresponds to the gauged WZNW model. For non-singular

vectorial gauging this is the coset construction (for a non-reductive self-dual algebra,

this was shown in [14]), but for the other gauging possibilities the corresponding CFT

is not known. In particular it is not clear what is the resulting central charge. For

non-singular vectorial gauging it is equal to the di�erence between the central charges of

WZNW models based on the group G and on the subgroup H respectively. When G is

solvable, this implies that the central charge is equal to the dimension of the �-model

target manifold. All the �-models derived in section 4 obeyed this rule. It remains to be

seen if this is true in general.
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Appendix A. Comments and Supplements

A.1 Generalizations of the algebras An

Here we comment about possible generalizations of the algebras de�ned in section 2.2,

obtained by using the de�ning relations (2.23) with a di�erent choice of the map \^". If

one takes \^" to be some homomorphism from ZZ to some commutative ring IF with unity,

(2.24-2.26) hold, as well as (2.29) and one obtains a Lie algebra over IF . For example,

one can take IF = ZZp (p a positive integer) with \^" being the natural homomorphism.

This example, however, is irrelevant for WZNW models, since one needs there an algebra

over IR and for this IF must be some subring of IR. A more relevant example will be

obtained by taking IF = ZZ and \^" the identity map. The result is the Virasoro algebra

(with zero central charge). Another natural candidate for \^" would be î = i mod p (p

a positive integer). Taking p = 2 and ^ : ZZ ! f0; 1g, an analysis similar to the p = 3

case leads to the choice (i; j; k) = (1; 0; 0), for which the right-hand-side of (2.29) does not

vanish (ĉijk = ĉkij = 1, ĉjki = 0). There seems to be no other choice of p and range of the

map \^" such that the multiplication is preserved. In the main text we concentrate on

the speci�c choice î = i mod 3 2 f�1; 0; 1g, but we rarely use more then the properties

(2.24-2.26) and the Jacobi identity (2.29), so most of the analysis applies to possible future

generalizations.

A.2 A WZNW model with a degenerate metric

Here we analyze the WZNW model (section 3.1) obtained when one uses a degenerate

metric. Let us de�ne

J � fR 2 dGj(R;T ) = 0; 8T 2 dGg:

The invariance of the metric implies that this is an ideal, therefore, it corresponds to a

normal subgroup N of G: J = dN ; and the metric (�; �) is an invertible metric on the alge-

bra dG0 of the quotient group G0 � G=N . Taking for an element in G a parametrization

of the form g = ng0, where n 2 N and g0 parametrizes elements of the quotient group,

it is straightforward to show that the action is independent of n, therefore, it actually

corresponds to the group G0 (for which the metric is non-degenerate). Therefore, relaxing

the requirement of non-degeneracy gives us nothing new.

A.3 Conditions for the appearance of constraints

Here we show that for a wide class of gauged WZNW models, constraints do not appear

and, therefore, the resulting model is a non linear �-model. We �nd that when an ap-

propriate single \diagonalizing" basis T+
a = T�a for dH exists (and in particular for axial

and vector gauging), constraints can appear only if G is not semi-simple or the gauging is

singular (i.e. the metric (�; �)dH induced on dH is degenerate). As we saw in section 3.2,
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the appearance of constraints is equivalent to the degeneracy of the matrix Mab, which

means that there exist T��a 2 dH for which

TL�
�a � gTR�

�a g�1 ? dHL ; TR+
�a � g�1TL+

�a g ? dHR: (A.1)

Assuming T+
�a = T��a , this implies

TL
�a � TR

�a ? dHL + dHR (A.2)

and when (�; �)dH is non-degenerate, this implies TL
�a = TR

�a . Putting this in (A.1), we

obtain

gT�ag
�1 � T�a ? dHL + dHR; (A.3)

which means that the space

J � spfgT�ag
�1 � T�agg2G (A.4)

is orthogonal to dHL + dHR. Using relations (4.5) and (4.6), we obtain, for any S 2 dG

[S; gT�ag
�1 � T�a] = lim

t!0

1

t

���
etSg

�
T�a

�
etSg

��1
� T�a

�
�
h
etST�ae

�tS � T�a

i
�
h
gT�ag

�1 � T�a

i�
(A.5)

which means that J is an ideal in dG. If G is semi-simple, T�a is not central, therefore, J

is not empty (since it contains [dG; T�a]), so J is a semi-simple factor:

dG = J � J 0 ; J ? J 0 (A.6)

and dHL + dHR is contained in the other factor J 0. This implies that T�a is in J 0 and,

therefore, so is gT�ag
�1 (since J is an ideal). This would imply that J is contained in

J 0, in contradiction to (A.6) and the non-triviality of J . Thus in this case T�a as above

cannot exist.

A.4 Vectorial gauging of a central group

When the center Z of G

Z = fc 2 Gjcg = gc 8g 2 Gg (A.7)

is non-trivial, then Z, embedded diagonally in GL 
GR, acts trivially in G:

hgh�1 = g 8h 2 Z ; g 2 G (A.8)

and the faithfully acting symmetry group of the action (3.1) is GL
GR=Z. Therefore, it

seems meaningless to \vectorially gauge" the center (or a subgroup of it) since the original

action is already (trivially) gauge invariant. In spite of this, the gauged action (3.7) is

di�erent from the ungauged one43:

Ŝ[g;A] = S[g] +
�h

2�

Z
�
d2����(A�; J

L
� ): (A.9)

43The di�erence should be separately gauge invariant, and indeed it is - as can be directly veri�ed.
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Moreover, we showed in section 3.3 that when the gauged group is null, \vectorial" gauging

is identical to \axial" gauging, where the g and S are not gauge invariant. The question

that arises is, therefore, what does it mean, in this context, to gauge vectorially a central

group.

The situation becomes more clear when we recall that the purpose of the introduction

of the gauge �elds in a WZNW model is not to obtain a gauge invariant theory but rather

to obtain a model with a reduced dimension. The simplest example is that of \axial",

non-singular gauging of a central group C. We have shown in section 3.4 that in such

a situation dG is an orthogonal direct sum of ideals dG0 � dC and, therefore, G has a

parametrization g = g0(x)e
ziTi where g0(x) is some parametrization of G0 and fTig is a

basis for dC. The symmetry gauged is

g ! e2�
iTig(= hhg = hgh) (A.10)

which is equivalent to zi ! zi+2�i. After �xing the gauge (and integrating out the gauge

�elds) we are left with a WZNW model for G0.

In the vectorial case the situation is quite di�erent but the �nal result is identical:

keeping in mind the real purpose of the gauging procedure, we add the additional terms to

the (already gauge-invariant) ungauged action. Since g is gauge-invariant, the dimension

can not be reduced by gauge �xing. Instead, the elimination of physical degrees of freedom

occurs here because of the appearance of constraints, introduced by the additional terms.

Indeed, we have

Ŝ[g;A] = S[g] +
�h

2�

Z
�
(A;Ti) ^ dzi; (A.11)

therefore, the integration of the gauge �elds leads to the constraints dzi = 0, which

results, again, with a WZNWmodel for G0. To summarize, we have shown that \vectorial

gauging" of a central group has a well de�ned meaning in the present context, although the

name \gauging" is misleading. We also saw that in all cases of central gauging (singular

or not), vector/axial duality is not only valid, but also trivial.

A.5 Gauging a one dimensional central group with HL 6= HR

In section 3.4 we analyzed central gauging when HL = HR. To get an idea what new

behavior can be expected, when HL and HR are di�erent, we examine here the one

dimensional case.

We de�ne (as in (3.38)) the group

�H = HLHR � fhLhRjhL;R 2 HL;Rg; (A.12)

(which is also a central subgroup of G) and analyze di�erent situations according to the

rank of the metric on

d �H = spfTL; TRg: (A.13)
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� �H is null ((�; �)d �H=0)

This case was analyzed (for arbitrary dim �H) in a footnote after eq. (3.37). It

contains the case of \one sided gauging" (when one of the groupsHL orHR vanishes).

The e�ect of the gauging is that some of the coordinates will be constrained to

depend on one of the light-cone coordinates and it is not clear if the resulting action

can be brought to the form of a �-model.

� (�; �)d �H is non-degenerate

This implies that

dG = dG0 � d �H ; dG0 ? d �H; (A.14)

which is of the form (3.31) and the result is:

{ when H is null: a WZNW model for G0.

{ when H is not null:

a WZNW model for G0, tensored with a one dimensional free model.

� rank(�; �)d �H=1

This is the only case essentially di�erent from the HL = HR ones. We choose a

diagonalizing basis for d �H

d �H = spfT0; T1g ; (Ti; Tj) = i�ij (A.15)

(note that because of the anomaly condition, �H is necessarily two dimensional in

this case) and obtain the structure (3.30) with Hi = spfTig. The anomaly condition

implies

TL = �T1 + �LT0 ; TR = �(�T1 + �RT0) (A.16)

and HL 6= HR implies �L 6= �R and � 6= 0. We observe that T?0 (the subspace

of dG0 orthogonal to T0) is a subalgebra containing T0, therefore, corresponds to a

subgroup of G0, which we denote by K. Next we choose some element S of dG0

obeying (S; T0) = 1 and obtain the structure

dG0 = spfSg �+dK (A.17)

which suggests the following parametrization for g 2 G

g(x; y; z0; z1) = k(x)eyS+ZiTi; (A.18)

where k(x) is some parametrization of the quotient group K=spfT0g. In this para-

metrization, the invariant form JL is

JL = Tidzi + Sdy + JL
? ; JL

?(x; y) = e�ySk�1dkeyS 2 dK (A.19)

and this leads, in the notation of section 3.2 to

M = �2(1� 1) ; J+ = �@+(�z1 + �Ly) ; J� = @�(�z1 + �Ry): (A.20)
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The coordinate transformation representing the action of H

g ! e�TLge��TR (A.21)

is

�z0 = �(�L � �R) ; �z1 = ��(1� 1): (A.22)

For the vector-like gauging (the upper sign), M = 0 and one obtains (gauge-

invariant) constraints J+ = J� = 0 that seem not to lead to a �-model. For

the axial-like gauging (the lower sign), M 6= 0 and the e�ective action is

Ŝe� = S[g] +
�h

2�

Z
�
d2�

J+J�

M
: (A.23)

With the gauge choice z1 = 0, S[g] becomes the WZNW action for G0 and the e�ect

of the second term is to change the �-model metric

ds2 ! ds2 �
�L�R

�2
dy2; (A.24)

which is equivalent to a change in the value of the norm (S,S). This value can be

changed by the automorphic rede�nition S ! S + T0, therefore, the change does

not e�ect the invariance and non-degeneracy of the metric. We conclude that the

resulting model is a WZNW model for G0 with a modi�ed invariant metric.

To summarize, we found that in all the cases of one dimensional central gauging, one

either encounters constraints that seem not to lead to a �-model, or obtains an ungauged

WZNW model.

Appendix B. The � model backgrounds obtained

In section 4 we derived several models of the �-model type:

S[x] =
�h

8�

Z
�
d2�[(

q
jhjh��G�� + ���B��(x))@�x

�@�x
� +

q
jhjR(2)�(x)]

=
�h

4�

Z
�
d2�[E��(x)@+x

�@�x
� � 4�(x)@+@�']; (B.1)

E�� = G�� +B�� :

In this Appendix we list, for each model, the corresponding background �elds: the met-

ric G�� , the anti-symmetric tensor B�� and the dilaton �, and some related quantities

(indexes are lowered by G�� and raised by the inverse metric G��):

� the connection

���
� = 1

2
G��(@�G�� + @�G�� � @�G��);
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� the Riemann tensor

R���
� = 2(��[�

���]�
� � @[���]�

�);

� the Ricci tensor R�� = R���
� and the Ricci scalar R = R��G

�� ;

� the torsion of the anti-symmetric tensor

H = 3dB = 3@[�B��]dx
� ^ dx� ^ dx� ;

� contractions of the squared torsion

H2
�� = H���H�

�� ; H2 = H2
��G

�� :

These quantities are needed, among other things, to verify the one-loop beta function

equations [20]

0 =
16�2

�0
�� =

c� d

3�0
+ 4(r�)2 � 4r2� �R +

1

12
H2 +O(�0) (B.2)

0 = �G�� = R�� �
1

4
H2

�� + 2r�r�� +O(�0) (B.3)

0 = �B�� = r�H��� � 2(r��)H��� +O(�
0): (B.4)

These equations were indeed found to be satis�ed for all the models presented, with the

central charge c equal to the dimension d of the target manifold.

B.1 A3 ungauged

(eq. (4.13))

The coordinates of the target manifold are

fx0; x1; x2; x3g;

the background �elds are:

G�� =

0
BBB@

b 0 x1 1

0 0 1 0

x1 1 0 0

1 0 0 0

1
CCCA ; B�� =

0
BBB@

0 0 �x1 0

0 0 0 0

x1 0 0 0

0 0 0 0

1
CCCA ; (B.5)

� = 0

(B = 2x1dx2 ^ dx0; the metric with signature (+;+;�;�), as the metric on A3);

the inverse metric is

G�� =

0
BBB@

0 0 0 1

0 0 1 �x1
0 1 0 0

1 �x1 0 �b

1
CCCA ; (B.6)
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the only non-vanishing component of the Riemann tensor is (up to symmetry) R0120 =
1
4
,

the only non-vanishing component of the Ricci tensor is R00 = � 1

2
and the Ricci scalar

vanishes.

The torsion of the anti-symmetric tensor is

H = 6dx0 ^ dx1 ^ dx2 (B.7)

(which means H012 = 1) and it is covariantly constant;

the only non-vanishing component of H2
�� is H2

00 = �2 and H2 vanishes.

B.2 A3 gauged axially by spfT0g

(eq. (4.19))

The coordinates of the target manifold are

fx1; x2; x3g;

the background �elds are:

G�� = p

0
B@

0 2b �x2
2b 0 �x1
�x2 �x1 �2

1
CA ; B�� = p

0
B@

0 x1x2 x2
�x1x2 0 �x1
�x2 x1 0

1
CA (B.8)

� = � 1

2
log jx1x2 + 2bj+ const.

where

p =
1

x1x2 + 2b
; (B.9)

the metric has determinant detG�� = 4bp2 and signature44 (+;�sign(b);�), so the signa-

ture of the gauged model is obtained (when the gauging is non-singular) by \subtracting"

the signature of dH from that of dG; all background �elds are singular at x1x2 = �2b.

The inverse metric is

G�� = p

0
BB@

�
x2
1

4b
1 + x1x2

4b
� 1

2
x1

1 + x1x2
4b

�
x2
2

4b
� 1

2
x2

� 1

2
x1 � 1

2
x2 �b

1
CCA ; (B.10)

44The signature can be determined as follows. It can change only where the determinant vanishes or

depends non-continuously on the coordinates. This happens only for x1x2 = �2b, so it is enough to check

the signature for x1 = x2 = 0 and for x1x2=b ! 1. The �rst case is trivial. For the second case, we

move to coordinates (x; y; z) = (x3; x1x2; x1=x2). The metric in these coordinates is

p

y

0
@ �2y �y 0

�y b 0

0 0 �b
�
y

z

�2
1
A ;

so it has an eigenvalue with sign opposite to b. This rules out the signature sign(b)(+ ++), which is the

only other possibility compatible with the sign of the determinant.
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the Ricci tensor is

R�� = p3

0
B@

0 8b2 x2(x1x2 � 2b)

8b2 0 x1(x1x2 � 2b)

x2(x1x2 � 2b) x1(x1x2 � 2b) 2(x1x2 � 2b)

1
CA (B.11)

and the Ricci scalar is

R = 2p2(5b� x1x2): (B.12)

The torsion of the anti-symmetric tensor is H123 = �4bp2;

H2
�� = p3

0
B@ 0 16b2 �8bx2

16b2 0 �8bx1
�8bx2 �8bx1 �16b

1
CA (B.13)

and H2 = 24bp2.

B.3 A3 gauged vectorially by spfT0g

(eq. (4.21))

The coordinates of the target manifold are

fx0; x2; x3g;

the background �elds are

G�� =
1

x2

0
B@
�b(x2 + 2b) �b �2b

�b 0 �1

�2b �1 �2

1
CA ; B�� =

1

x2

0
B@

0 b x2
�b 0 �1

�x2 1 0

1
CA (B.14)

� = � 1

2
log jx2j+ const.;

the metric has determinant detG�� = 4b=x22 and signature45 (+;�sign(b);�), as in the

axial gauging;

the inverse metric is

G�� =

0
B@ �1

b
0 1

0 2x2 �x2
1 �x2 �b

1
CA ; (B.15)

the non-vanishing components of the Riemann tensor are (up to symmetry)

R0202 =
b2

x32
; R0232 =

b

x32
; R3232 =

1

x32
; (B.16)

45The other possibility sign(b)(+;+;+) is ruled out because, as in the axial case, the signature does

not depend on jx2j and the sum of the eigenvalues is trG�� = �b+O(1=x2), which for jx2j large enough

has a sign opposite to b.
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the Ricci tensor is

R�� =
1

x22

0
B@

2b2 b 2b

b 0 1

2b 1 2

1
CA (B.17)

and the Ricci scalar is R = � 2
x2
.

The torsion of the anti-symmetric tensor vanishes.

B.4 A3 gauged by null spfT0g

(eq. (4.22))

The coordinates of the target manifold are

fx2; x3g;

the background �elds are:

G�� = �
1

x2

 
0 1

1 2

!
; B�� =

1

x2

 
0 �1

1 0

!
; (B.18)

� = � 1

2
log jx2j+ const.;

the metric has signature (+;�), which means that this gauging eliminated one positive

and one negative eigenvalue.

The inverse metric is

G�� = x2

 
2 �1

�1 0

!
; (B.19)

the Riemann tensor is R2323 =
1
x3
2

; the Ricci tensor is

R�� =
1

x22

 
0 1

1 2

!
(B.20)

and the Ricci scalar is R = � 2
x2
.

The torsion of the anti-symmetric tensor vanishes.

B.5 A6 ungauged

(eq. (4.26))

The coordinates of the target manifold are

fx0; x1; x2; x3; x4; x5; x6g;
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the background �elds are

G�� =

0
BBBBBBBBBBB@

b 0 0 x1x2 �x2 x1 1

0 0 0 x2 0 1

0 0 0 0 1

x1x2 x2 0 1

�x2 0 1

x1 1

1

1
CCCCCCCCCCCA0

: (B.21)

B�� =

0
BBBBBBBBBBB@

0 0 0 �x1x2 x2 �x1 0

0 0 0 0 0 0

0 0 0 x1 0

x1x2 0 �x1 0

�x2 0 0

x1 0

0

1
CCCCCCCCCCCA0

; (B.22)

� = 0; (B.23)

the inverse metric is

G�� =

0
BBBBBBBBBBB@

1

1 �x1
1 0 x2

1 0 �x2 0

1 0 0 0 0

1 0 �x2 0 x22 0

1 �x1 x2 0 0 0 �b

1
CCCCCCCCCCCA

0
; (B.24)

the non-vanishing components of the Riemann tensor are (up to symmetry)

R0103 = �
x2

4
; R0202 =

x21
4
;

R0203 = R0212 =
x1

4
; (B.25)

R0150 = R0123 = R0240 = R0213 = R1212 =
1

4
;

the only non-vanishing component of the Ricci tensor is R00 = �1 and the Ricci scalar

vanishes.

The non-vanishing components of the torsion are (up to symmetry)

H013 = x2 ; H023 = x1; (B.26)

H015 = H042 = H123 = 1

and it is covariantly constant; the only non-vanishing component of H2
�� is H

2
00 = �4 and

H2 vanishes.
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B.6 A6 gauged by spfT6g

(eq. (4.29))

The coordinates of the target manifold are

fx1; x2; x3; x4; x5g;

the background �elds are

G�� =

0
BBBBBB@

0 0 x2 0 1

0 0 0 1

x2 0 1

0 1

1

1
CCCCCCA0

; (B.27)

B�� =

0
BBBBBB@

0 0 0 0 0

0 0 x1 0

0 �x1 0

0 0

0

1
CCCCCCA0

; (B.28)

� = 0; (B.29)

the inverse metric is

G�� =

0
BBBBBB@

1

1 0

1 0 �x2
1 0 0 0

1 0 �x2 0 x22

1
CCCCCCA

0
: (B.30)

the only non-vanishing component of the Riemann tensor is (up to symmetry) R1212 =
1
4
,

and the Ricci tensor vanishes.

The torsion of the anti-symmetric tensor is

H = 6dx1 ^ x2 ^ x3 (B.31)

(which means H123 = 1) and it is covariantly constant.

H2
�� vanishes.

B.7 A6 gauged by spfT6; Tmg

(eq. (4.47))

The coordinates of the target manifold are

fx1; x3; x4; x5g;

The background �elds are:

G�� =

0
BBB@

0 2px1x3 + x2 �2px3 1

2px1x3 + x2 1 �2px1 0

�2px3 �2px1 4p 0

1 0 0 0

1
CCCA ; (B.32)
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B�� = 2p

0
BBB@

0 �x1x3 x3 0

x1x3 0 �x1 0

�x3 x1 0 0

0 0 0 0

1
CCCA ; (B.33)

� = � 1

2
log(x21 + a) + const. (B.34)

where

p =
1

x21 + a
;

the metric has determinant detG�� = �4ap2 and signature (+;+; sign(a);�), so again

the signature of the gauged model is obtained (when the gauging is non-singular) by

\subtracting" the signature of dH from that of dG.

The inverse metric is

G�� =
1

a

0
BBB@

0 0 0 a

0 q+ 1

2
q+x1 �(x1x3 + q+x2)

0 1

2
q+x1

1
4
q2+ � 1

2
(q�x3 + q+x1x2)

a �(x1x3 + q+x2) � 1

2
(q�x3 + q+x1x2) (x23 + 2x1x2x3 + q+x

2
2)

1
CCCA (B.35)

with q� = x21 � a;

the non-vanishing components of the Riemann tensor are (up to symmetry)

R1313 = �p2(2x21 � 3a)

R1314 = 2p3x1(2x
2
1 � a) (B.36)

R1414 = �4p3(2x21 � a);

the only non-vanishing component of the Ricci tensor is

R11 = �2p2(x21 � 2a) (B.37)

and the Ricci scalar vanishes. The torsion of the anti-symmetric tensor is

H = �24ap2dx1 ^ dx3 ^ dx4 (B.38)

which means H134 = �4ap2; The only non-vanishing component of H2
�� is H

2
11 = 8ap2 and

H2 vanishes.

B.8 A6 gauged by spfT6; T2g

(eq. (4.53))

The coordinates of the target manifold are

fx1; x4; x5g;
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the background �elds are

G�� =

0
B@

0 0 1

0 4
x2
1

0

1 0 0

1
CA ; (B.39)

B�� = 0 ; � = � log(x1) + const.;

the inverse metric is

G�� =

0
B@

0 0 1

0
x2
1

4
0

1 0 0

1
CA ; (B.40)

the only non-vanishing component of the Riemann tensor is (up to symmetry) R1441 =
8
x4
1

,

the only non-vanishing component of the Ricci tensor is R11 = � 2
x2
1

and the Ricci scalar

vanishes.
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