CERN / Computing and Networks Division
CN/95/10
August 1995

KERN LIBRARIES, GENEVA

CERN-CN-95-10

An Infinite Integral of Bessel Functions

K.S. Kölbig

Abstract. An infinite integral of Bessel functions J_{0} and Y_{0} containing three parameters is evaluated in closed form in terms of Bessel functions.

It is the purpose of this note to show that

$$
\begin{align*}
\int_{0}^{\infty} \frac{J_{0}(a x) J_{0}(b x)-Y_{0}(a x) Y_{0}(b x)}{x^{2}+z^{2}} d x=\frac{\pi}{2 z} & H_{0}^{(1)}(i a z) H_{0}^{(1)}(i b z) \tag{1}\\
& (a>0, b>0, \operatorname{Re} z>0) .
\end{align*}
$$

In particular for real $z=t$

$$
\begin{array}{r}
\int_{0}^{\infty} \frac{J_{0}(a x) J_{0}(b x)-Y_{0}(a x) Y_{0}(b x)}{x^{2}+t^{2}} d x=-\frac{2}{\pi t} K_{0}(a t) K_{0}(b t) \tag{2}\\
\quad(a>0, b>0, t>0) .
\end{array}
$$

For imaginary $z=i t$, this integral can be written as

$$
\begin{align*}
& \int_{0}^{\infty} \frac{J_{0}(a x) J_{0}(b x)-Y_{0}(a x) Y_{0}(b x)}{x^{2}-t^{2}} d x \tag{3}\\
& \quad=-\frac{\pi}{2 t}\left\{J_{0}(a t) Y_{0}(b t)+Y_{0}(a t) J_{0}(b t)\right\} \quad(a>0, b>0, t>0) .
\end{align*}
$$

J_{0} and Y_{0} are the Bessel functions of order zero, $H_{0}^{(1)}=J_{0}+i Y_{0}$ is the Hankel function of the first kind, and K_{0} is the modified Bessel function of the third kind. The integral (3) is to be understood as a Cauchy principal value. These integrals do not seem to be well-known.

Proof. In order to show (1), we make use of a complex ζ-plane which is cut along the negative real axis, and consider the integral $\oint_{\Gamma_{1}} f(\zeta) d \zeta$, with

$$
f(\zeta)=\frac{H_{0}^{(1)}(a \zeta) H_{0}^{(1)}(b \zeta)}{\zeta^{2}+z^{2}}
$$

over a closed contour Γ_{1} in the upper half-plane $\operatorname{lm} \zeta>0$. Since the singularity of $H_{0}^{(1)}$ at $\zeta=0$ is logarithmic, the contour Γ_{1} can be chosen as a straight line along the real axis from $-R$ to R and a semicircle C_{R} with radius R and centre zero, where $R>|z|$. Taking into account that $H_{0}^{(1)}$ has no other singularities, and that $\zeta=i z$ is the only pole of $f(\zeta)$ inside Γ_{1}, we obtain by applying the residue theorem

$$
\begin{equation*}
\int_{-R}^{R} f(x) d x+\int_{C_{R}} f(\zeta) d \zeta=\left.2 \pi i \operatorname{res} f(\zeta)\right|_{\zeta=i z} \tag{4}
\end{equation*}
$$

By using the well-known relation [2, No. 8.4766.]

$$
\begin{equation*}
H_{0}^{(1)}(-x)=H_{0}^{(1)}(x)-2 J_{0}(x) \quad(x \in \mathbb{R}) \tag{5}
\end{equation*}
$$

and the definition of $H_{0}^{(1)}$ given above, the integral from $-R$ to R can be written as

$$
\begin{align*}
& \int_{-R}^{R} \frac{H_{0}^{(1)}(a x) H_{0}^{(1)}(b x)}{x^{2}+t^{2}} d x \\
& \quad=\int_{0}^{R} \frac{H_{0}^{(1)}(a x) H_{0}^{(1)}(b x)+H_{0}^{(1)}(-a x) H_{0}^{(1)}(-b x)}{x^{2}+t^{2}} d x \tag{6}\\
& \quad=2 \int_{0}^{R} \frac{J_{0}(a x) J_{0}(b x)-Y_{0}(a x) Y_{0}(b x)}{x^{2}+t^{2}} d x .
\end{align*}
$$

For the residue at $\zeta=i z$ we obtain

$$
\begin{equation*}
\left.\operatorname{res} f(\zeta)\right|_{\zeta=i z}=-\frac{i}{2 z} H_{0}^{(1)}(i a z) H_{0}^{(1)}(i b z) \tag{7}
\end{equation*}
$$

It remains to show that the integral over C_{R} vanishes as $R \rightarrow \infty$. By using the asymptotic expansion [3, p. 197]

$$
H_{0}^{(1)}(\zeta)=\sqrt{\frac{2}{\pi \zeta}} e^{i\left(\zeta-\frac{1}{4} \pi\right)}\left[1+O\left(\zeta^{-1}\right)\right]
$$

which is valid in the upper half-plane $\operatorname{Im} \zeta \geq 0$, we find using $\left|\zeta^{2}+z^{2}\right| \geq|\zeta|^{2}-|z|^{2}$ that, up to a factor $\left[1+O\left(R^{-1}\right)\right]$,

$$
\begin{aligned}
\left|\int_{C_{R}} f(\zeta) d \zeta\right| & \leq \frac{R}{R^{2}-|z|^{2}} \int_{0}^{\pi}\left|H_{0}^{(1)}\left(a R e^{i \phi}\right) H_{0}^{(1)}\left(b R e^{i \phi}\right)\right| d \phi \\
& \leq \frac{2}{\pi \sqrt{a b}} \frac{1}{R^{2}-|z|^{2}} \int_{0}^{\pi} e^{-(a+b) R \sin \phi} d \phi \leq \frac{2}{\sqrt{a b}} \frac{1}{R^{2}-|z|^{2}}
\end{aligned}
$$

As $R \rightarrow \infty$ this expression tends to zero and we obtain, from (4), (6) and (7), the result as stated in (1). For real $z=t$, formula (2) follows by using [1, No. 9.6.4]

$$
K_{0}(x)=\frac{1}{2} \pi i H_{0}^{(1)}(i x) .
$$

In order to prove (3), we consider the integral $\oint_{\Gamma_{2}} f(\zeta) d \zeta$, with

$$
f(\zeta)=\frac{H_{0}^{(1)}(a \zeta) H_{0}^{(1)}(b \zeta)}{\zeta^{2}-t^{2}},
$$

over a closed contour Γ_{2}, which differs from Γ_{1} in that the two poles of $f(\zeta)$ at $\zeta= \pm t$ have to be avoided by small semicircles on the integration path from $-R$ to R. Again, by applying the residue theorem, we obtain

$$
\begin{equation*}
\int_{-R}^{R} f(x) d x+\int_{C_{R}} f(\zeta) d \zeta=\pi i\left\{\left.\operatorname{res} f(\zeta)\right|_{\zeta=-t}+\left.\operatorname{res} f(\zeta)\right|_{\zeta=t}\right\} . \tag{8}
\end{equation*}
$$

The integral from $-R$ to R can be handled in the same way as in (6), and here also the integral over C_{R} tends to zero as $R \rightarrow \infty$. For the sum of the residues at $\zeta=-t$ and $\zeta=t$ we obtain by using (5),

$$
\begin{align*}
\operatorname{res} & \left.f(\zeta)\right|_{\zeta=-t}+\left.\operatorname{res} f(\zeta)\right|_{\zeta=t} \\
& =\frac{1}{2 t}\left\{H_{0}^{(1)}(a t) H_{0}^{(1)}(b t)-H_{0}^{(1)}(-a t) H_{0}^{(1)}(-b t)\right\} \tag{9}\\
& =\frac{i}{t}\left\{J_{0}(a t) Y_{0}(b t)+Y_{0}(a t) J_{0}(b t)\right\} .
\end{align*}
$$

As $R \rightarrow \infty$, we obtain from (6), (7) and (9) the result as stated in (3). We may add here that (3) can also be obtained by setting $z=i t$ in (1) and taking the real part of the right-hand side.

References

[1] M. Abramowitz and I.A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing with corrections (Dover, New York, 1972).
[2] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 5th edition, A. Jeffrey, ed., (Academic Press, New York, 1994).
[3] G.N. Watson, A Treatise on the Theory of Bessel Functions (University Press, Cambridge, 1966).

