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By using the well—known relation [2, No. 8.4766.]

f(w)d¤>+f(C)dC = 2n-iY€Sf(<)|C=iz· (4)/ /

pole of inside F1, we obtain by applying the residue theorem

l)Taking into account that Héhas no other singularities, and that { = iz is the only
axis from —R to R and a semicircle CR with radius R and centre zero, where R >
at [ : 0 is logarithmic, the contour I`) can be chosen as a straight line along the real

I)over a closed contour I`) in the upper half—plane Img' > 0. Since the singularity of HS

C_+_ Z
fw Z 2 2 ’

l)1)Hb(¤C) Hb(bC)

the negative real axis, and consider the integral df, withf F1
Proof. In order to show (1), we make use of a complex Q-plane which is cut along

well—known.

(3) is to be understood as a Cauchy principal value. These integrals do not seem to be
of the first kind, and K 0 is the modified Bessel function of the third kind. The integral

l)JQ and K) are the Bessel functions of order zero, Hé= JO + ilf) is the Hankel function

= —§ {JO(<1t)YO(bt) + Y0(a.t) J0(bt)} (a > 0, b > 0, t > 0).

$2 _ t2
dx (3)

J0(ax) J0(bx) — H)(a;1:) }{)(b:1c)

For imaginary z = it, this integral can be written as

(a>0,b>0,t>0).

+t
(2)A J J b — Y Y b 2 0(GSF) 0( g(“x) OL) dx : -EK0(at)K0(bi)

In particular for real z : i

(a>U,b>0,Rez>0).

r

(1)J b —’ b ——-————~—~—°(“””) `]°( J;§(“"l W ””) dw : Hé1)(iaz) H(g1)(ibz)

OCR OutputIt is the purpose of this note to show that



f(¤¤)d¤¤ +f(<)dC = ri{1‘€Sf(C)I4:-¢ + r€Sf(C))¢=¢} (8) OCR OutputL R/R'

by applying the residue theorem, we obtain
have to be avoided by small semicircles on the integration path from ——R to R. Again,
over a closed contour I`2, which differs from I`] in that the two poles of at C = zbi

{ -i
HO _ HS(¤C)HS(6<) ‘ 2 2 ~1)l)

In order to prove (3), we consider the integral df, withf F2

‘)1<0(x) Z gm H,§(zx).

result as stated in For real z = t, formula (2) follows by using [1, No. 9.6.4]
As R —-> oo this expression tends to zero and we obtain, from (4), (6) and (7), the

\>

1

—(¤+t>)Rsind>d < L C ¢‘/HR’—|Z"2 1 W wx/<F>R2-IZIZA

(1)11 · r¢» f(dg' $—————Hf R"*’H bRe dd>R I /
that, up to a factor [1 -}— O(R‘1)],
which is valid in the upper half—plane Img` 2 O, we find using [(2 + zz] 2 |{]2 — [Z

{ -1,, - HMC) = ]CM *’11+O<€ 1)2 /E

asymptotic expansion [3, p. 197]
It remains to show that the integral over CR vanishes as R —> oo. By using the

<r>1l`)r€sf<c>|<:t - —g HS(i¤Z)HS(ibZ)·

For the residue at ( : iz we obtain

$2 + t2
d as.

J0(az) .]0(b;v) — 1{,(ax)1Q)(b:c)

I2 _[,_ t2
dx (6)

R 1)`)""HS(¤¤>)Hf»(l>¢¤) + Hé<-an H$<—¤»¤»>

dm/-3 272 + tz
’* 1)1)HS<<~¤)H$(b¢)

lland the definition of Hégiven above, the integral from —R to R can be written as
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the right—hand side.
here that (3) can also be obtained by setting z = it in (1) and taking the real part of
As R —> co, we obtain from (6), (7) and (9) the result as stated in We may add

{JO(at) }i,(bt) + }{](at) JO(bt)}.

wi“", Z E {Hé<¤w Héww — H$<—¤i> Hé<—w>}1 "
res f(<)|<=-¢ + res f(C)|4:»

and Q = t we obtain by using (5),
the integral over CR tends to zero as R —> oo. For the sum of the residues at ( = —t
The integra] from —R to R can be handled in the same way as in (6), and here also




