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Properties of the Z(3) Interface in (2+1)-D SU (3) Gauge Theory

S.T. West� and J.F. Wheatera

aTheoretical Physics, University of Oxford, 1, Keble Road, Oxford OX1 3NP, England, U.K.

A study is made of some properties of this interface in the SU(3) pure gauge theory in 2+1 dimensions. At high

temperatures, the interface tension is measured and shows agreement with the perturbative prediction. Near the

critical temperature, the behaviour of the interface is examined, and its uctuations compared to a scalar �eld
theory model.

1. Preliminaries

The pure glue sector of QCD, SU (3) gauge
theory, possesses several phases at �nite tem-
peratures (T ). At low T , it exists in a single
disordered phase where the vacuum is symmet-
ric under the centre of the group, Z(3), and
the colour charge is con�ned; at high T , there
are three distinct ordered, colour-non-con�ning,
Z(3)-breaking phases, each degenerate vacuum
corresponding to an element of Z(3). At some
critical temperature, Tc, there is a phase transi-
tion between the two regimes. Thus, two types of
phase interface can occur in the theory: one be-
tween ordered and disordered phases, stable only
at Tc, and one between two ordered phases, sta-
ble for T > Tc. The latter is often referred to as
an \order-order" or \Z(3)" interface.
In the Euclidean formalism, the \time" dimen-

sion runs from 0 to 1=T , and an order parameter
for the phases is the Polyakov line, a time-ordered
Wilson loop which wraps around the time bound-
ary for a �xed spatial location ~r:

L(~r) = 1
3
TrT eig

R
1=T

0

d�A0(�;~r): (1)

The expectation value of this Polyakov line gives
the self-energy of a single quark in the gluon
medium: < L >= e�F=T . Con�nement implies
F =1 so that <L>= 0 in the disordered phase.
For each ordered phase, <L> is equal to a di�er-
ent element of Z(3)[1]. Unlike topologically triv-
ial Wilson loops, then, the Polyakov line is aware
of the phase structure of an SU (3) system and
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can map out the structure of any interface.
It is widely believed, and has been shown by

simulation[2], that the interfaces of SU (3) show
\critical wetting", meaning that a Z(3) interface
should be thought of as two order-disorder in-
terfaces stuck back-to-back, leaving a thin slice
of disorder within. Possible cosmological impli-
cations have been discussed in the past[3], with
Z(3) interfaces from the hot quark-gluon plasma
splitting apart, as the early universe cooled to
Tc, to spread con�ned matter outwards. How-
ever, questions have been raised as to whether
these essentially Euclidean objects can have any
signi�cance in the real universe, especially as the
high-T order leads to unphysical thermodynamic
properties for the interfaces[4] in the presence of
fermions, and it has been argued that there may
be only one true Z(3) phase even at high T [5].

2. The Interface Tension at High T

The calculation of the interface tension, �, is
an instanton problem, in which the Polyakov line
interpolates between di�erent Z(3) vacua. An ef-
fective one-dimensional theory describes the in-
terface pro�le, with the e�ective action for the
Polyakov line consisting of a classical kinetic
part and a potential term formed by integrat-
ing out one-loop quantum uctuations about a
constant background �eld. The potential incor-
porates the Z(3) symmetry, having minima when
L 2 Z(3)[1]. The instanton calculation has been
performed[6], predicting a behaviour in 2+1 Eu-
clidean dimensions of the form

� = �0T
2:5=g; (2)
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where �0 is a constant predicted to be 8.33 for
SU (3) in the continuum, in the limit as T !
1. On the lattice, this prediction is modi�ed
to 9.82. It has also been argued[5] that higher-
order infrared divergences invalidate this calcula-
tion, leaving only one true Z(3) phase and, con-
sequently, an interface tension of zero.
In order to test this prediction, we simulate

SU (3) pure gauge theory in 2+1 dimensions on a
cubic Euclidean lattice of dimension Lz�Lx�Lt,
Lz > Lx � Lt. The familiarWilson plaquette ac-
tion is used, with the variables de�ned on the lat-
tice links being SU (3) matrices. A \twist"[2] en-
sures the appearance of a physical interface: a set
of plaquettes pierced by a skewer in the x direc-
tion has its contribution to the action multiplied
by an element of Z(3), representing an e�ective
change of variables; periodic boundary conditions
then require the �eld to interpolate between the
two resulting vacua elsewhere in the z direction.
Simulating with and without the twist and

measuring the average action in each case gives
us the di�erence �S, from which we obtain �F ,
the free energy of the interface. With lattice spac-
ing a, the interface \area" is A = Lxa and the
temperature T = 1=(Lta), so that

1

�
�S =

@

@�

�
�A

T

�
=

Lx

2
p
6�L1:5

t

�0; (3)

where the second equality uses (2) and introduces
the lattice parameter � = 6=(ag2).
Our simulations were performed for various

16:0 < � < 200:0 with Lt = 2. The spatial di-
mensions were scaled with the interface width,
� p

�; for � = 200, we used Lz = 96 and
Lx = 32. To estimate �0, it is necessary to ex-
trapolate to � = 1. Unfortunately, the exact
form of the perturbative correction to � in (2) is
not known. In 3+1 dimensions, a 1=� dependence
is seen, but there is good reason to expect addi-
tional factors of ln � from the infrared divergences
in 2+1 dimensions, as seen in the Debye mass[7].
In �g. 1, we perform the extrapolation using a
best �t to a power of 1=�, which we measure to
be 0:85(10). The extrapolated value obtained is
�0 = 9:91(1)(14), the second error being asso-
ciated with the power of 1=�. This value is in
good agreement with the instanton calculation,

suggesting that the Z(3) phases are indeed dis-
tinct at high T , and must be taken into account
in calculations from the Euclidean path integral.
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Figure 1. A linear extrapolation of �0 against
1=�0:85 to give the � =1 limit.

3. Qualitative Interface Behaviour Near Tc

At high T � Tc, the two Z(3) phases intro-
duced on the lattice by use of the twist are well
de�ned and separated by a rigid interface; uctu-
ations in phase are very small. However, at and
below Tc, these Z(3) phases cease to exist, along
with any Z(3) interface, being replaced by the
single disordered phase with symmetry restored.
This raises the question: how does the interface
behave between these two regimes?
As T decreases towards Tc, a corresponding de-

crease is seen in the energy penalty suppressing
phase uctuations. One also expects the expecta-
tion values of Polyakov lines to converge on zero
at the (second-order) phase transition, this being
the value seen in the disordered phase. The com-
bination of these factors means that the \height"
of the Z(3) interface (the di�erence in the real
part of the Polyakov line as one moves across it)
decreases just as more and larger bubbles of dif-
ferent phase appear within the two main Z(3) do-
mains on the lattice. The interface thus becomes
increasingly di�cult to discern as one approaches
Tc. For our system, it is hard to see the interface
on a plot of Polyakov line values below � � 9:00,
against a critical value of �c � 8:175[8]. This,
of course, is precisely the temperature range of
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interest.
The �rst objective must be to uncover the qual-

itative behaviour of the interface as T drops.
Several possibilities present themselves, given its
properties at high T and at Tc: the interface could
maintain its high-T rigid structure with mini-
mal \area", its \height" shrinking steadily until
it vanishes at Tc; it could spread out longitudi-
nally as correlation lengths on the lattice diverge
with decreasing T , revealing more and more dis-
ordered phase and becoming less and less mean-
ingful as a physical object; it could be washed out
by the formation of many more interfaces along
with the large bubbles of phase, colliding with
each other and leaving disordered phase as the
energy penalty drops; or it could maintain a rel-
atively narrow width, but su�er increasingly vio-
lent transverse uctuations which diverge towards
Tc, where it would break apart to leave only dis-
order.
To follow the interface into the regime near Tc,

one needs a way to identify it amidst the sea of
phase uctuations. One such way is to screen out
the highest-frequency uctuations, for instance
by a straightforward box-car average over neigh-
bouring Polyakov lines. This produces a spatial
phase pro�le where the interface can be seen much
more clearly, at the cost of some loss of informa-
tion about its shape. The interface becomes vis-
ible as a localised, narrow object right down to
Tc.
An improvement on this method is to contour

the Polyakov pro�les, picking various \heights"
between the two extremes at opposite longitudi-
nal ends of the lattice. Assuming no other inter-
faces are produced on the lattice, only one con-
tour at each level will wrap across the lattice, hav-
ing unit \winding number"; mere phase bubbles
will be represented by \topologically trivial" con-
tours. This produces a detailed picture of the
phase structure of the interface at any stage of
the simulation. Our results reveal that the inter-
face does indeed remain thin and localised, but
with increasingly large uctuations in shape as
T drops, as illustrated in the snapshot of �g.
2. This matches the fourth of the possible be-
haviours listed previously.
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Figure 2. A contour snapshot of Polyakov lines
(real parts) using three contour levels for Lx =
36; Lz = 72 and � = 8:5.

4. Quantitative Analysis

Having ascertained the qualitative behaviour of
the interface to be that of a uctuating string
whose uctuations increase as T ! Tc, the next
task is to gain a better quantitative understand-
ing. One might suspect that the uctuations
would diverge at Tc itself, dissolving the interface
and leaving only disorder, as desired. To test this,
we follow various uctuation moments: if �(x) is
the displacement fromaverage of an interface con-
tour at transverse location x, the n'th moment is
de�ned to be <�(x)n>. We track the �rst six mo-
ments, taking a separate average for each trans-
verse position. Since the interface is translation
invariant, with no preferred longitudinal position,
one expects the moments to be roughly constant
across the lattice after a large number of sweeps,
and this is indeed what we see, with the even
moments also found to be much larger than the
odd. Thus, we can further average the moments
across the lattice, and by producing such aver-
age moments for various temperatures near Tc,
we see that the even moments do indeed diverge
as T ! Tc.
The behaviour of the interface, rigid at high T

but with increasing uctuations as T drops, sug-
gests a description in terms of a scalar �eld theory
with a simple interaction to represent production
and destruction of bubbles of phase at the in-
terface. To maintain translation invariance, and
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Figure 3. A log plot of the x-averaged, Wick-
subtracted, n'th (even) moments as a function of
Lx, for � = 8:5.

produce the domination of the even moments, we
suggest a Lagrangian of the following form:

L = 1
2
(@x�)

2 � �
4!
(@x�)

4: (4)

Here,  and � are unknown functions of (� � �c).
We then equate the n'th uctuation moment, af-
ter Wick subtraction, to the n-point connected
vacuum correlation function of this Lagrangian.
As desired, the odd moments are predicted to be
zero, since the interaction is of even order. A test
of the applicability of the Lagrangian is provided
by the dependence of the moments on the lattice
width (the �nite size of the string). Correlation
functions predict dependences of Lx, L

2
x and L3

x

for the 2nd, 4th and 6th moments respectively,
and this is roughly what we see in results such as
�g. 3, with slopes of 1.16(1), 2.02(5) and 1.8(4).
Having satis�ed ourselves that the scalar �eld

theory model provides a reasonable description of
the interface near its breakdown, we can measure
the moments at di�erent T to �nd the functions
 and �. For 8:25 � � � 9:00, we obtain results
such as �g. 4. From the gradients, �tted to be
-0.53(1), -1.59(3) and -2.9(4), we estimate that
 � (� � �c)

0:53(1) and � � (� � �c)
0:53(4).

5. Conclusions

We have measured the tension of a Z(3) in-
terface in the T = 1 limit, and found excellent
agreement with theory, bolstering the argument
for the existence of Z(3)-breaking phases in the
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Figure 4. A log plot of the x-averaged, Wick-
subtracted, n'th (even) moments as a function of
(� � �c), for Lx = 36.

Euclidean path integral. We have also studied
the behaviour of this interface in a very di�er-
ent regime, near to its collapse. Measuring very
close to the critical temperature, we have found
its qualitative behaviour to be that of a string
with divergent uctuations at the critical point,
these being well described by a simple interacting
scalar �eld theory. Further analysis in continuing,
and a similar study in 3+1 dimensions may well
be rewarding.
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