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Abstract

We present results of a lattice analysis of the B parameter, BB , the decay constant

fB, and several mass splittings using the static approximation. Results were obtained

for 60 quenched gauge con�gurations computed at � = 6:2 on a lattice size of 243 �

48. Light quark propagators were calculated using the O(a)-improved Sheikholeslami-

Wohlert action. We �nd Bstatic
B = 0:99

+5

� 6
(stat)

+3

�2
(syst), f staticB = 266

+18

�20

+28

�27
MeV

and f2Bs BBs=f
2
B BB = 1:34

+9

� 8

+5

� 3
, where a variational �tting technique was used to

extract f staticB . For the mass splittings we obtain MBs � MBd = 87
+15

�12

+ 6

�12
MeV,

M�b�MBd = 420
+100

� 90

+30

�30
MeV and M2

B��M2
B = 0:485

+25

�25

+70

�65
GeV2. We compare

di�erent smearing techniques intended to improve the signal/noise ratio. A detailed

assessment of systematic e�ects is made, with the conclusion that the main systematic

uncertainties in matrix elements are associated with the renormalisation constants

relating a lattice matrix element to its continuum counterpart.
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1 Introduction

Heavy quark systems have attracted considerable interest in recent years. Studying the de-

cays of hadrons containing heavy quarks is important in order to narrow the constraints on

the less known elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Precise knowl-

edge of the CKM matrix elements serves to test the consistency of the Standard Model and

to detect possible signals of \new physics". Theoretical tools for dealing with heavy quark

systems, such as the Heavy Quark E�ective Theory (HQET) [1, 2, 3], have been developed

and are being successfully applied in the analysis and interpretation of experimental data.

However, theoretical estimates of form factors, decay constants and mixing parameters are

subject to uncertainties due to strong interaction e�ects whose nature is intrinsically non-

perturbative on typical hadronic scales. Lattice simulations of QCD are designed to provide

a non-perturbative treatment of hadronic processes and have already made important con-

tributions to the study of the spectroscopy and decays of hadrons in both the light and heavy

quark sector [4]. For systems involving heavy quarks, most notably the b quark, the rôle

of lattice simulations is two-fold: �rstly, to make predictions for yet unmeasured quantities

such as the decay constant of the B meson, fB, or the masses of baryons containing b quarks;

secondly, to test the validity of other theoretical methods such as large mass expansions or

the HQET.

One problem that is encountered in current simulations of heavy quark systems is the fact

that typical values of the inverse lattice spacing lie in the range 2 � 3:5GeV which is well

below the b mass. There are several methods for dealing with this problem, one of which was

proposed by Eichten [5] in which the heavy quark propagator is expanded in inverse powers

of the heavy quark mass. The so-called static approximation is the leading term in this

expansion, for which the b quark is in�nitely heavy. One may also hope to compute some of

the higher-order corrections to the static limit, although the presence of power divergences

presents theoretical and practical complications [6].

Another method for lattice studies of heavy quark systems is to use propagating heavy

quarks. At present, these simulations are carried out for quark masses around the charm

quark mass, and the results obtained in this fashion must be extrapolated to the mass of

the b quark. Clearly, this method depends crucially on controlling the e�ects of non-zero

lattice spacing (\lattice artefacts") at the heavy masses used in the simulation. In general,

the inuence of lattice artefacts on quantities involving propagating quarks can be reduced

by considering \improved" actions as suggested by Symanzik [7] and detailed further by the

authors of [8] and [9]. For heavy-light decay constants, improvement has been successfully

applied to quark masses in the region of that of the charm quark [10, 11]. Furthermore,

the data from the static approximation, obtained at in�nite quark mass, serve to guide the

extrapolation of results obtained using propagating heavy quarks to the mass of the b.
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In this paper we report on our results for fB, the B parameter BB describing B0 �B0

mixing and mass splittings involving the B and B� mesons as well as the �b. The results are

obtained using the static approximation for the heavy quark, whereas the O(a)-improved

Sheikholeslami-Wohlert action [8, 9] is used for the light quarks. In many ways this study is

intended as a continuation and extension of earlier simulations. For example, we are able to

study the e�ects of O(a)-improvement on the results and, in particular, on the B��B mass

splitting, which is very sensitive to discretisation errors. Furthermore, this splitting arises

only at next-to-leading order in the large mass expansion and serves therefore as a measure

of higher-order corrections to the static limit.

We now list our main results. For the renormalisation-group-invariant B parameter in the

static approximation we obtain

Bstatic
Bd

= 0:99
+5

�6
(stat)

+3

�2
(syst) (1)

and the decay constant f staticB is found to be

f staticBd
= 266

+18

�20
(stat)

+28

�27
(syst)MeV: (2)

From the chiral behaviour of Bstatic
B and f staticB we extract

f2Bs BBs

f2Bd BBd

= 1:34
+9

� 8
(stat)

+5

�3
(syst): (3)

Finally, for the mass splittings we obtain

MBs �MBd = 87
+15

�12
(stat)

+ 6

�12
(syst)MeV (4)

M�b �MBd = 420
+100

� 90
(stat)

+30

�30
(syst)MeV (5)

M2
B� �M2

B = 0:485
+25

�25
(stat)

+70

�65
(syst)GeV2: (6)

Here, the systematic error on dimensionful quantities is dominated by uncertainties in the

lattice scale, whereas systematic errors on dimensionless quantities arise from the spread

of values using alternative �tting procedures. There is an additional uncertainty in the

estimate of Bstatic
Bd

, which arises from the perturbative matching between full QCD and the

lattice theory in the static approximation. We estimate this uncertainty to be as large as

15{20%, as will be discussed later.

The paper is organised as follows. In section 2 we describe the details of our simulation

and analysis. Section 3 contains our results for Bstatic
B and f staticB . The splittings Bs � Bd,

B� � B and �b � B are discussed in section 4. Finally, section 5 contains a summary and

our conclusions.
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2 The Simulation

Our results are based on 60 SU(3) gauge con�gurations in the quenched approximation,

calculated on a lattice of size 243 � 48 at � = 6:2. The con�gurations were generated using

the hybrid over-relaxed algorithm described in [14].

Light quark propagators were computed at three values of the hopping parameter �l, namely

�l = 0:14144; 0.14226 and 0.14262, using the Sheikholeslami-Wohlert (SW) action [8]

SSWF = SWF � i
�l

2

X
x;�;�

q(x)F��(x)��� q(x); (7)

where SWF is the standard Wilson action and F�� is a lattice de�nition of the �eld strength

tensor [14].

The chosen �l values are in the region of the strange quark, whose mass, as determined from

the mass ratio m2
K=m

2
�, corresponds to �s = 0:1419(1), while the chiral limit of massless

quarks is reached at �crit = 0:14315(2) [15].

The leading term in the expansion of the heavy quark propagator is given by

SQ(~x; t;~0; 0) =

(
�(t) e�mQt

1 + 4

2
+ �(�t) emQt

1� 4

2

)
�(3)(~x)P~0(t; 0); (8)

where P~0(t; 0) is the product of links from (~0; t) to the origin, for example for t > 0,

P~0(t; 0) = Uy

4(~0; t� 1)Uy

4 (~0; t� 2) � � �Uy

4(~0; 0): (9)

The static quark propagator, eq. (8), and the light quark propagators were combined to

compute correlation functions for the relevant quantities in this paper.

In order to obtain O(a)-improved matrix elements for heavy-light bilinears using the static

approximation, it is su�cient to carry out the improvement prescription in the light quark

sector only [27]. Therefore we describe the light quark using the SW action and consider

operators in which only the light quark �eld q(x) has been \rotated" [9, 10], i.e.

O� = by(x) � (1� 1
2
� !D )q(x): (10)

Here, b(x) denotes the heavy quark spinor in the static approximation, and � is some Dirac

matrix.

It is useful to use extended (or \smeared") interpolating operators in order to isolate the

ground state in correlation functions e�ciently. This is of particular importance in the

static approximation where it is notoriously di�cult to obtain a reliable signal [16]. In this

study we compare di�erent smearing techniques which can be broadly divided into gauge-

invariant and gauge-dependent methods, the latter being performed on gauge con�gurations

transformed to the Coulomb gauge.
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For gauge-invariant smearing we use the Jacobi smearing algorithm described in [17]. The

smeared �eld at timeslice t, qS(~x; t) is de�ned by

qS(~x; t) �
X
~x0

J(x; x0) q(~x0; t) (11)

where

J(x; x0) =
NX
n=0

�S �
n(x; x0); (12)

and � is the gauge-invariant discretised version of the three-dimensional Laplace operator.

The parameter �S and the number of iterations N can be used to control the smearing

radius. Here, we quote our results for �S = 0:25 and N = 140, which corresponds to a r.m.s.

smearing radius of r0 = 6:4 [10]. The same values were used in our previous study of f staticB ,

obtained on a subset of 20 of our 60 gauge con�gurations [10].

In order to study smearing methods in a �xed gauge, the con�gurations were transformed

to the Coulomb gauge using the algorithms described in [18, 19]. The lattice analog of the

continuum Coulomb gauge condition, @iAi(x) = 0, is

�(x) = Tr(D(x)Dy(x)) = 0 (13)

where

D(x) =
X
i

�
Ui(x) + Uy

i (x� i) � h.c.
�
traceless

(14)

with the index i signifying spatial components only. At each iteration of the gauge �xing

procedure the average value of � was calculated, h�i = P
x �(x)=V , where V is the total

lattice volume. For each gauge con�guration the gauge was �xed to a precision h�i � 10�4.

De�ning the smeared quark �eld qS(~x; t) via

qS(~x; t) �
X
~x0

f(~x; ~x0) q(~x0; t) (15)

we considered the following smearing functions f(~x; ~x0) for smearing radius r0:

Exponential : f(~x; ~x0) = exp f�j~x� ~x0j=r0g (16)

Gaussian : f(~x; ~x0) = exp
n
�j~x� ~x0j2=r20

o
(17)

Cube : f(~x; ~x0) =
3Y
i=1

�(r0 � jxi � x0ij) (18)

Double Cube : f(~x; ~x0) =
3Y
i=1

�
1� jxi � x0ij

2r0

�
�(2r0 � jxi � x0ij): (19)

Following the analysis in ref. [20], where a variety of smearing radii was studied, we chose

r0 = 5 in all cases.

Our 60 gauge con�gurations and the light quark propagators were computed on the 64-

node Meiko i860 Computing Surface at Edinburgh. The transformation to the Coulomb
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gauge was performed on the Cray Y-MP/8 at the Daresbury Rutherford Appleton Labora-

tory. Smeared propagators using the gauge-invariant Jacobi algorithm were calculated on a

Thinking Machines CM-200 at the University of Edinburgh. All other smearing types and

the relevant correlators were computed on a variety of DEC ALPHA machines.

Statistical errors are estimated from a bootstrap procedure [21], which involves the creation

of 200 bootstrap samples from our set of 60 con�gurations. Correlators are �tted for each

sample by minimising �2, taking correlations among di�erent timeslices into account. The

quoted statistical errors are obtained from the central 68% of the corresponding bootstrap

distribution [14].

In order to convert our values for decay constants and mass splittings into physical units we

need an estimate of the inverse lattice spacing in GeV. In this study we take

a�1 = 2:9 � 0:2GeV; (20)

thus deviating slightly from some of our earlier papers where we quoted 2.7GeV as the central

value [10, 14, 15]. The error in eq. (20) is large enough to encompass all our estimates for

a�1 from quantities such as m�, f�, mN , the string tension
p
K and the hadronic scale R0

discussed in [22]. The shift was partly motivated by a recent study using newly generated

UKQCD data [23]: using the quantity R0 we found a�1 = 2:95
+ 7

�11
GeV. Also, a non-

perturbative determination of the renormalisation constant of the axial current resulted in

a value of ZA = 1:04 [24] which is larger by about 8% than the perturbative value which we

had used previously. Thus the scale as estimated from f� decreases to around 3.1GeV which

enables us to signi�cantly reduce the upper uncertainty on our �nal value of a�1 [GeV].

3 Decay Constants and Mixing Parameters

In this section we present the results for f staticB and Bstatic
B . We begin by listing the various

operators in the lattice e�ective theory and discussing the relevant renormalisation factors.

The 2- and 3-point correlators are de�ned before the results are discussed. We close the

section with a discussion of the phenomenological implications of our �ndings.

3.1 Lattice Operators and Renormalisation

In the continuum full theory, the pseudoscalar decay constant of the B meson is de�ned

through the matrix element of the axial current:

h0jA�(0)jB(~p)i = i p� fB; A�(x) = b(x) �5 q(x): (21)
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The �B = 2 four-fermi operator OL which gives rise to B0 �B0 mixing is given by

OL =
�
b �(1 � 5) q

� �
b �(1� 5) q

�
: (22)

This operator enters the e�ective Hamiltonian describing B0 �B0 mixing whose amplitude

is usually expressed in terms of the B parameter, which is the ratio of the operator matrix

element to its value in the vacuum insertion approximation

BB(�) =
hB0 jOL(�) jB0i

8
3
f2BM

2
B

; (23)

where � is a renormalisation scale. We have adopted a convention in which f� = 132MeV.

The renormalisation-group-invariant B parameter for nf active quark avours is then given

by4

BB = �s(�)
�2=�0 BB(�); (24)

with �0 = 11 � 2nf=3. The strong coupling constant appearing in the above expression is

usually de�ned in the MS scheme.

In order to get estimates for the matrix elements of the axial current and of the four-fermi

operator OL in the continuum, these operators need to be matched to the relevant lattice

operators in the static e�ective theory. The matching of operators in the static approximation

is usually performed as a two-step process, in which one �rst matches the operators in the

e�ective theory on the lattice to those in the continuum e�ective theory. In the second step,

one then matches the continuum e�ective theory to the operator in full QCD.

For the axial current, this two-step matching process was considered for Wilson fermions to

one-loop order in [25, 26] and extended to the O(a)-improved case in [27] and [28].

At � = a�1 the renormalisation factor between full QCD and the lattice e�ective theory at

order �s for the SW action is

Zstatic
A = 1 +

�cs(a
�1)

4�

n
2 ln(a2m2

b)� 2
o
� 15:02

�latts (a�1)

3�
: (25)

In order to evaluate Zstatic
A numerically for mb = 5GeV, we de�ne the strong coupling

constant in the continuum by

�cs(a
�1) � 2�

�0 ln(a�1=�QCD)
(26)

where we take �QCD = 200MeV and �0 = 11 � 2
3
nf with nf = 4 for � = a�1 = 2:9GeV.

Thus, despite the fact that our results for matrix elements of lattice operators are obtained

in the quenched approximation, we use the relevant number of active quark avours at the

4Strictly speaking, BB de�ned in this manner is renormalisation-group-invariant only up to leading order

in �s.
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respective renormalisation scale when matching the continuum e�ective theory to full QCD.

This concept implies that we abandon the quenched approximation once we have obtained

the matrix elements in the continuum e�ective theory after the �rst matching step. Of course,

all our results are still subject to a systematic error due to quenching, which is, however,

hard to quantify unless precision data from dynamical simulations become available.

For the matching step between the e�ective theories in the continuum and on the lattice we

take the \boosted" value for the gauge coupling [29, 30]

�latts (a�1) =
6

4� �u40
(27)

where u0 is a measure of the average link variable, for which we take u0 = (8�crit)
�1 with

�crit = 0:14315(2) [15]. With these de�nitions, we �nd

Zstatic
A = 0:78: (28)

This is very close to the value of Zstatic
A = 0:79 quoted in our previous study [10], and also to

Zstatic
A = 0:81 used in a simulation by the APE collaboration [36] employing the SW action

for light quarks at � = 6:2.

In the case of the four-fermi operator the situation is more complicated due to operator

mixing. When relating the full continuum theory to the continuum e�ective theory, it is

useful to introduce

OS =
�
b (1� 5) q

� �
b (1� 5) q

�
: (29)

This operator is generated at order �s in the continuum owing to the mass of the heavy

quark [31]. The one-loop matching factors between the continuum full theory at scale mb

and the continuum e�ective theory at scale � < mb are given by5

Ofull
L (mb) =

(
1 +

g2

16�2

h
4 ln (m2

b=�
2) + CL

i)
Oe�
L (�) +

g2

16�2
CS O

e�
S (�) (30)

with CL = �14 and CS = �8 [31].
In the matching step between the continuum e�ective and the lattice e�ective theories, two

additional operators are generated due to the explicit chiral symmetry breaking induced by

the Wilson term

OR =
�
b �(1 + 5) q

� �
b �(1 + 5) q

�
(31)

ON =
�
b �(1� 5) q

� �
b �(1 + 5) q

�
+

�
b �(1 + 5) q

� �
b �(1 � 5) q

�
+ 2

�
b (1� 5) q

� �
b (1 + 5) q

�
+ 2

�
b (1 + 5) q

� �
b (1� 5) q

�
: (32)

5Note that in refs. [31, 27] the operator Ofull

L
is obtained at the scale � = a�1 < mb. This requires

the factor 4 multiplying ln(m2

b
=�2) to be replaced by a factor 6, which is the di�erence of the anomalous

dimensions in the continuum full and continuum e�ective theories.
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For the O(a)-improved SW action, the full one-loop matching for the four-fermi operator

Oe�
L to the lattice e�ective theory at scale � = a�1 is given by

Oe�
L (a�1) =

(
1 +

�latts (a�1)

4�
[DL +DI

L]

)
Olatt
L

+
�latts (a�1)

4�
[DR +DI

R]O
latt
R +

�latts (a�1)

4�
[DN +DI

N ]O
latt
N (33)

The coe�cients DL; DR; DN were calculated in [31], whereas those for the SW action,

DI
L; D

I
R; D

I
N are listed in [27]. A subtle point to note is that the coe�cient DL is quoted

as DL = �65:5 in refs. [31, 27]. In [26] it was stated, however, that the reduced value of

the quark self-energy should be used if the static-light meson propagator is being �tted to

the usual exponential. Using the reduced value e(R) in the formula for DL yields a value of

DL = �38:9, and hence results in a much smaller correction to Oe�
L in the matching step

between the lattice e�ective and the continuum e�ective theory. In the following we quote

numerical values for all relevant renormalisation constants using the reduced value of the

quark self-energy. It should be added that the expression for Zstatic
A in eq. (25) is also based

on the reduced value e(R), and thus our procedure to extract the B parameter from a suitable

ratio of matrix elements in the static theory is entirely consistent.

Expanding the various matching factors to order �s, we arrive at the following expression

for the matching of the operator Ofull
L (mb) to the operators in the lattice e�ective theory:

Ofull
L (mb) =

(
1 +

�cs(a
�1)

4�

h
4 ln(a2m2

b)� 14
i
� 22:06

�latts (a�1)

4�

)
Olatt
L

� 4:19
�latts (a�1)

4�
Olatt
R � 13:96

�latts (a�1)

4�
Olatt
N � 2

�cs(a
�1)

�
Olatt
S (34)

� ZLO
latt
L + ZRO

latt
R + ZNO

latt
N + ZSO

latt
S : (35)

It is this expression which we will use from now on to convert our lattice results into an

estimate of the B parameter.

Using our numerical values for the coupling constants �s(a
�1) and �latts (a�1) we �nd

ZL = 0:55; ZR = �0:15; ZN = �0:04; ZS = �0:18: (36)

As was already mentioned in [31], the correction to the matrix element of Olatt
L is rather large,

thus calling the applicability of one-loop perturbative matching into question. In fact, if the

matching is performed by �rst computing Oe�
L (a�1) according to eq. (33), and then inserting

the result into eq. (30), we observe that our estimate for BB increases by 20%. This way of

matching includes some part of the O(�2s) contributions to the renormalisation factors, and

hence it serves to estimate the inuence of higher loop corrections in the matching procedure.

In reference [32] the two-loop anomalous dimensions of the axial current and the four-fermi

operator were calculated for the e�ective theory in the continuum. Including this result into
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the matching step between Ofull
L (mb) and O

e�
L (�) in eq. (30) changes the �nal result only by

1{2%. Therefore we conclude that the bulk of the uncertainty arises from the matching step

between the continuum e�ective and lattice e�ective theories, and also from the large factor

of CL = �14 in eq. (30). An entirely non-perturbative determination of the renormalisation

constants relating Oe�
L to the di�erent lattice operators, as outlined in [33], is highly desirable

in order to clarify this important issue, which is of equal importance in the case of Zstatic
A , as

will be illustrated later.

3.2 Correlators for 2- and 3-point Functions

In order to extract the pseudoscalar decay constant we consider the correlation function of

the time-component of the improved static-light axial current

X
~x

hA4(~x; t)A
y

4(~0; 0)i t�0�! f2BMB

2
e�MB t: (37)

In practice, using particular combinations of the smeared (S) and local (L) axial current, we

compute correlation functions de�ned by

CSS(t) =
X
~x

h0jAS
4 (~x; t)A

y

4

S
(~0; 0)j0i t�0�! (ZS)2 e�E t (38)

CLS(t) =
X
~x

h0jAL
4 (~x; t)A

y

4

S
(~0; 0)j0i t�0�! ZSZL e�E t; (39)

CSL(t) =
X
~x

h0jAS
4 (~x; t)A

y

4

L
(~0; 0)j0i t�0�! ZSZL e�E t; (40)

where E is the unphysical di�erence between the mass of the meson and the bare mass of

the heavy quark.

The pseudoscalar decay constant f staticB is related to ZL via

f staticB = ZL

s
2

MB

Zstatic
A ; (41)

where MB is the mass of the B meson.

ZL and thus f staticB is extracted from CSS(t) and CLS(t) as follows: by �tting CSS(t) to the

functional form given in eq. (38) we obtain ZS and E. At su�ciently large times the ratio

CLS(t)=CSS(t)! ZL=ZS , so that ZL can be determined. As was observed earlier [34, 35, 10],

using the correlation function CLS(t) in which the operator at the source is smeared yields

much better statistics than the corresponding correlator CSL(t) for which the smearing is

performed at the sink.

Alternative methods, discussed in [36], include a direct �t of CLS(t) in order to extract ZLZS

which can then be combined with the ratio ZL=ZS to compute ZL. However, this method
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requires the ground state to be unambiguously isolated, which is more di�cult for CLS(t),

since the plateau in the e�ective mass plot is approached from below.

A more direct method, which does not involve any �tting and was also advocated in [36], is

to consider the ratio

RZL(t1; t2) =
CLS(t1)C

LS(t2)

CSS(t1 + t2)
�! (ZL)2: (42)

Here, however, one needs a reliable signal for fairly large times t1 + t2. Since the authors of

[36] accumulated 220 con�gurations they were able to apply this method successfully, which

turned out to be consistent with the other ones. In view of our smaller statistical sample,

we did not use the ratio RZL(t1; t2) to extract f
static
B .

In order to determine the B parameter we computed the relevant 3-point correlator using

the following expression

KSS
i (t1; t2) �

X
~x1; ~x2

D
0
���T nAyS(~x1;�t1)Olatt

i (0)Ay
S
(~x2; t2)

o��� 0E

t1;t2�0�! (ZS)2

2MB

e�E (t1+t2)
D
B0

���Olatt
i

���B0
E
; (43)

where i = L; R; S; N labels the four operators in the lattice e�ective theory, and AS(~x; t) is

the smeared axial current. In order to cancel the contributions from ZS and the exponen-

tials in eq. (43) we consider suitable ratios of KSS
i (t1; t2) and the 2-point correlator CSL(t),

i.e. with the local operators always at the origin and the smearing performed at the same

timeslices in both the numerator and denominator.

Using the de�nition of BB(�) in the continuum theory eq. (23), and de�ning the ratio

RSS
i (t1; t2) in the lattice e�ective theory as

RSS
i (t1; t2) =

KSS
i (t1; t2)

8
3
CSL(t1)CSL(t2)

(44)

then, provided t1; t2 � 0, the B parameter at scale mb is obtained from

X
i

Zi (Z
static
A )�2RSS

i (t1; t2)
t1;t2�0�! BB(mb); i = L; R; S; N (45)

with the Zi's given in eq. (36).

In the computation of the ratio RSS
i (t1; t2) on a periodic lattice we expect a signal for the

correlator describing B0 �B0 mixing for t1 and t2 on opposite halves of the lattice [37], i.e.

0 < t1 < T=2;

T=2 < t2 < T; (46)

where T = 48 is the length of our lattice in the time direction. In order to exploit time-

reversal symmetry and thus to enhance the signal for the correlator, we compute the ratio

10



RSS
i (t1; t2) from

RSS
i (t1; t2) =

[KSS
i (t1; t2) +KSS

i (T � t1; T � t2)]
4
3
[CSL(t1) + CSL(T � t1)] [CSL(t2) + CSL(T � t2)]

(47)

The correlators were calculated for timeslices 2 � t1 � 12 and 36 � t2 � 46, which includes

the entire region where one expects their asymptotic behaviour.

3.3 Results for Bstatic
B

In this subsection we present the results for the B parameter Bstatic
B using di�erent smearing

methods. For gauge-�xed con�gurations the four types of smearing de�ned in eqs. (16) { (19)

were used, i.e. exponential (EXP), gaussian (GAU), cube (CUB) and double cube smearing

(DCB). The results from the gauge-invariant Jacobi smearing algorithm are labelled (INV).

We begin by describing the two methods we used to extract Bstatic
B (�) at renormalisation

scale � = mb from the ratios RSS
i (t1; t2); i = L; R; S; N .

Method (a): The four ratios RSS
i (t1; t2) are �tted individually to their asymptotic values

Ri. The B parameter is then obtained through

Bstatic
B (mb) =

X
i

Zi (Z
static
A )�2Ri; (48)

with the factors Zi given in eq. (36).

Method (b): Using the four ratios RSS
i (t1; t2), we de�ne the B parameter eBstatic

B (mb; t1; t2)

for each set of timeslices (t1; t2)

eBstatic
B (mb; t1; t2) =

X
i

Zi (Z
static
A )�2RSS

i (t1; t2); (49)

and �t eBstatic
B (mb; t1; t2) to a constant in suitably chosen intervals of (t1; t2).

The plateaux in the ratios RSS
i (t1; t2) can most conveniently be identi�ed by �xing t1 at

t1 = tf < T=2, and studying RSS
i (t1; t2) as a function of t2 only.

In order to illustrate method (a) we show in Figure 1 the plateaux for the four ratios RSS
i (tf ; t2)

for tf = 3, using Jacobi smearing at �l = 0:14144. It is seen that a good signal is obtained

for the four lattice operators, on the backward half of the lattice as expected.

In Figure 2 we show the signal for eBstatic
B (mb; tf ; t2) obtained using method (b) for both cube

and Jacobi smearing. Despite the slightly shorter plateau for cube smearing which is also

observed for all other smearing types in Coulomb gauge, the signal obtained in this fashion

is also very clear.

11



Figure 1: The ratios RSS
L (tf ; t2), R

SS
R (tf ; t2), R

SS
S (tf ; t2) and RSS

N (tf ; t2) for tf = 3 and

�l = 0:14144 using Jacobi smearing. The solid lines represent the �ts over the respective

time interval.
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Figure 2: The quantity eBstatic
B (mb; tf ; t2) de�ned in eq. (49) for cube smearing (left) and

Jacobi smearing (right) at �l = 0:14144 and tf = 3.

As one goes to smaller quark masses, the signals become noisier but are still of good quality,

and the plateaux can easily be identi�ed. For the other smearing types computed in the

Coulomb gauge the picture is similar, and therefore we do not show the plots corresponding to

Figs. 1 and 2. In general, eBstatic
B (mb; tf ; t2) and the ratios RSS

i show slightly larger statistical

errors when Jacobi smearing is used, but, apart from that, the di�erent smearing types give

very similar results.

We have also studied the behaviour of the plateaux for di�erent values of tf . Using a larger

value, e.g. tf = 4 leads to bigger errors in the ratios RSS
i (tf ; t2) and eBstatic

B (mb; tf ; t2), and

the plateaux are shifted to smaller values in t2. On the other hand, using tf = 2 gives

smaller statistical errors, but the plateaux are less at which leads to higher �2=dof when

�tting the ratios to a constant. We emphasise that the ratios are statistically compatible

for tf = 2; 3; 4 for all smearing types considered. Hence, for our best estimates, using either

method (a) or (b), we perform a simultaneous �t to the plateaux observed for tf = 3; 4. The

results obtained by combining the plateaux for tf = 2; 3; 4 are quoted as a systematic error

on our �nal value for Bstatic
B .

The values for Bstatic
B (mb) extracted using methods (a) and (b) are entirely consistent. We

have a slight preference for method (a): it gives better plateaux and o�ers more exibility

in the �tting procedure by ensuring that each of the four contributions are �tted in a region

where the respective asymptotic behaviour has been reached. In the following therefore we

13



base all our estimates on method (a). Correlations between di�erent timeslices were taken

into account in each �t. We did not attempt a simultaneous �t allowing for cross-correlations

between di�erent operators and timeslices, as systematic e�ects among the four operators

could well be di�erent. As was noted in ref. [38], this could lead to an ampli�cation of

systematic errors in the �tted values.

In Table 3.3 we show the results from �tting the ratios RSS
i (t1; t2) to a constant for the three

light hopping parameters and for all smearing types considered, and also list �2=dof and the

value for Bstatic
B (mb) after renormalisation according to eq. (48). A remarkable feature is the

consistency of the results among all smearing types considered, which we take as evidence

that the asymptotic behaviour has been reached.

The values for the ratios RL; RR and RN of the operators which mix due to the explicit chiral

symmetry breaking induced by the Wilson term, are close to one, which is in accordance

with the expectation from the vacuum insertion approximation.

One notices only a weak dependence of the four ratios and of Bstatic
B (mb) on the light quark

mass. In fact, the results for Bstatic
B (mb) are compatible with a completely at chiral be-

haviour within statistical errors as was already noted in [12].

The renormalisation-group-invariant B parameter Bstatic
B is obtained from Bstatic

B (mb) accord-

ing to eq. (24) for nf = 5 active quark avours via

Bstatic
B = �s(mb)

�6=23Bstatic
B (mb) ' 1:43Bstatic

B (mb): (50)

Assuming a linear dependence on the mass of the light quark, we can now extrapolate our

results for Bstatic
B to the chiral limit at �crit = 0:14315(2) or to the mass of the strange quark

which, according to [15], is found at �s = 0:1419(1). Figure 3 shows the chiral extrapolations

of Bstatic
B for cube and Jacobi smearing from both correlated and uncorrelated �ts. Although

the measured values appear to be almost perfectly linear as a function of the quark mass,

the correlated extrapolation misses the points at smaller quark masses which might signal

the use of a bad �tting function. This results in a higher value for Bstatic
B in the chiral limit

than that from the uncorrelated �t. The values for Bstatic
B from the two extrapolations agree

well within errors, but except for Jacobi smearing the correlated �ts have fairly large �2=dof.

We quote our best estimates for Bstatic
B at �crit and �s from the correlated chiral extrapolation

of Bstatic
B itself. The measured values at the three light hopping parameters are shown with

the extrapolated results in Table 3.3. In the following we will quote our best estimate from

Jacobi smearing, which gave the cleanest chiral extrapolation.

Combining the spread of values obtained from using di�erent smearing functions and �tting

intervals, extracting Bstatic
B using method (b), and from performing uncorrelated �ts into an

14



�l smearing

0.14144 EXP GAU CUB DCB INV

RL 0.96 +2
�2 0.97 +2

� 2 0.95 +3
� 2 0.96 +2

� 2 0.94 +2
�3

�2=dof 4.72/5 4.81/5 6.13/5 4.89/5 0.86/5

RR 0.97 +3
�2 0.97 +2

� 2 0.96 +3
� 2 0.97 +2

� 2 0.96 +3
�3

�2=dof 8.54/7 7.90/6 9.60/6 7.85/6 2.26/5

RS -0.61 +1
� 1 -0.61 +1

� 1 -0.61 +1
� 2 -0.61 +1

�1 -0.60 +2
�1

�2=dof 2.29/4 2.48/4 2.68/4 2.46/4 0.92/4

RN 1.01 +3
�3 1.00 +3

� 3 1.01 +3
� 4 1.01 +3

� 3 1.02 +3
�4

�2=dof 4.54/5 5.52/5 4.67/5 5.05/5 1.95/5

Bstatic
B (mb) 0.72 +2

�2 0.74 +2
� 2 0.72 +3

� 2 0.73 +2
� 2 0.71 +2

�3

0.14226 EXP GAU CUB DCB INV

RL 0.94 +2
�2 0.96 +2

� 2 0.94 +3
� 3 0.95 +2

� 2 0.93 +3
�4

�2=dof 4.00/5 4.31/5 5.74/5 4.29/5 0.79/5

RR 0.99 +3
�2 0.97 +2

� 2 0.97 +3
� 3 0.98 +2

� 2 0.98 +4
�3

�2=dof 8.48/7 9.38/6 10.92/6 8.92/6 2.56/5

RS -0.61 +1
� 2 -0.61 +1

� 1 -0.60 +1
� 2 -0.61 +1

�2 -0.59 +2
�1

�2=dof 1.87/4 2.00/4 2.03/4 1.97/4 1.19/4

RN 1.02 +3
�3 1.00 +2

� 3 1.02 +3
� 4 1.01 +3

� 3 1.02 +3
�4

�2=dof 3.01/5 4.62/5 3.45/5 3.79/5 1.85/5

Bstatic
B (mb) 0.71 +3

�2 0.73 +2
� 2 0.71 +3

� 3 0.72 +2
� 2 0.69 +3

�4

0.14262 EXP GAU CUB DCB INV

RL 0.92 +3
�3 0.95 +2

� 2 0.93 +3
� 3 0.94 +3

� 2 0.92 +3
�4

�2=dof 3.05/5 3.51/5 4.80/5 3.33/5 0.60/5

RR 1.02 +3
�3 0.98 +2

� 2 0.98 +3
� 3 0.99 +2

� 3 1.00 +4
�3

�2=dof 8.03/7 10.90/6 11.70/6 9.95/6 2.82/5

RS -0.61 +2
� 2 -0.61 +1

� 1 -0.60 +2
� 2 -0.61 +1

�2 -0.59 +2
�2

�2=dof 2.54/4 2.01/4 1.88/4 2.21/4 1.47/4

RN 1.01 +2
�4 1.01 +2

� 3 1.02 +3
� 4 1.01 +3

� 3 1.01 +3
�4

�2=dof 2.23/5 4.01/5 2.71/5 3.04/5 2.25/5

Bstatic
B (mb) 0.69 +3

�3 0.72 +3
� 2 0.70 +3

� 3 0.72 +3
� 2 0.69 +3

�5

Table 1: Results for the �ts to the ratios of the four lattice operators using method (a).
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Figure 3: Chiral extrapolations of Bstatic
B for cube smearing (left) and gauge-invariant smear-

ing (right). The solid lines denote a correlated chiral extrapolation, whereas the uncorrelated

�ts are denoted by the dashed line. The extrapolated values from both procedures are shifted

slightly in amq.

�l EXP GAU CUB DCB INV

0:14144 1.04
+3

� 3
1.05

+3

� 3
1.03

+4

� 3
1.04

+3

� 3
1.01

+3

� 5

0:14226 1.01
+4

� 3
1.04

+3

� 3
1.02

+4

� 4
1.03

+4

� 3
0.99

+4

� 6

0:14262 0.99
+4

� 4
1.03

+4

� 3
1.00

+5

� 4
1.01

+4

� 3
0.98

+5

� 6

�crit 1.00
+4

� 4
1.04

+4

� 4
1.02

+5

� 4
1.03

+4

� 3
0.99

+5

� 6

�s 1.02
+4

� 3
1.05

+3

� 3
1.03

+4

� 3
1.04

+3

� 3
1.01

+4

� 5

�2=dof 2.56/1 1.91/1 1.49/1 1.85/1 0.19/1

Table 2: Correlated chiral extrapolations of Bstatic
B to �crit and �s for all smearing types

considered.
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estimate of systematic errors, we �nd

BBd = 0:99
+5

�6
(stat)

+3

�2
(syst) (51)

BBs = 1:01
+4

�5
(stat)

+2

�1
(syst): (52)

Within our errors we conclude that in the static approximation the matrix element of the

four-fermi �B = 2 operator is indeed consistent with one. However, if the matching of matrix

elements between full QCD and the lattice e�ective theory is performed using eqs. (30) and

(33), rather than eq. (34), as was discussed in subsection 3.1, the above values change to

BBd = 1:19
+5

�6

+3

� 2
and BBs = 1:21

+4

�5

+2

� 1
, respectively. Therefore we conclude that our

best estimates in eqs. (51) and (52) are subject to a further 20% uncertainty arising from

higher-order contributions to the renormalisation constants. A method demonstrating how

to determine these factors non-perturbatively was discussed in [33].

In ref. [39] the B parameter was calculated at � = 6:4 using propagating heavy Wilson

quarks with masses in the region of mcharm. Extrapolating their results to the mass of the B

meson the authors of [39] �nd BB = 1:16�0:07 which is not incompatible with our result at

in�nite quark mass, given the additional perturbative uncertainty in BBd and BBs. We wish

to stress that the calculation of the B parameter should be repeated with propagating heavy

quarks using an O(a)-improved action in order to study 1=mQ corrections to our result by

analysing the mass dependence of BB.

3.4 Results for f staticB

In this subsection we present our results for f staticB extracted using di�erent smearing func-

tions. As outlined in subsection 3.2, our best estimates are obtained by �rst �tting CSS(t)

to extract the binding energy E and (ZS)2. The value of ZS is then combined with the ratio

ZL=ZS obtained from a �t to CLS(t)=CSS(t), in order to extract ZL.

It has been suggested that this method of determining ZL and subsequently f staticB potentially

su�ers from an incomplete isolation of the ground state [40]. Failure to extract the ground

state results in higher values for the binding energy and consequently in higher values for

ZS and hence ZL. Therefore the authors of [40] followed a variational approach, based on

smearing functions obtained using a relativistic quark model. The variational approach was

also used by the authors of [41] who constructed the complete set of smearing functions

allowed by the cubic group for a given lattice size.

In a recent study by the APE Collaboration [42] a number of checks for the isolation of the

ground state without using the variational approach were presented. As will be shown later

in this subsection, our results for f staticB are entirely consistent with those in [42].

Here, for the gauge-�xed con�gurations, in addition to exponential smearing (EXP), we also
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used a radially-excited exponential smearing function (EXP2S) de�ned by

f(~x; ~x0) = j~x� ~x0j exp f�j~x� ~x0j=r0g (53)

which is expected to have a considerable overlap with higher states. We then employed a

variational approach to estimate the size of possible contamination of the correlators from

the �rst excited state. Our values for E, ZS and ZL from 2-state �ts were then compared

to the results obtained from the other smearing functions using the procedure outlined in

subsection 3.2.

Following ref. [43], we constructed a matrix correlator CSS
ij (t) using the EXP and EXP2S

smearing types as a 2 � 2 variational basis and determined the eigenvalues and -vectors of

the generalised eigenvalue equation

CSS
ij (t+ 1) v

(�)
j = ��(t+ 1; t)CSS

ij (t) v
(�)
j : (54)

For su�ciently large times t, the eigenvalues �� approach the eigenvalues of the transfer

matrix, and therefore

�1(t+ 1; t)
t�0�! e�E (55)

�2(t+ 1; t)
t�0�! e�E

�

(56)

where E; E� are the binding energies of the ground and �rst excited states respectively.

Hence the quantity

�e�(t) � log
�1(t+ 1; t)

�2(t+ 1; t)
(57)

approaches the energy di�erence �E = E��E for su�ciently large t. In Table 3.4 we show

the values of �e�(t) as a function of t for all three values of �l. It appears that �e�(t) shows

a plateau already for times around t = 2. Therefore we �x �E to be �e�(t = 2) and perform

a constrained 3-parameter �t of the correlation function CSS(t); S = EXP according to

CSS(t) ' (ZS)2 e�E t
n
1 +

(ZS�)2

(ZS)2
e��Et

o
(58)

where ZS� is the amplitude of the �rst excited state. It is this �tting form which we will from

now on call a 2-state �t, whereas the usual 1-state �t is de�ned in eq. (38). It is possible in

principle to use the eigenvector v
(1)
j corresponding to the eigenvalue �1 to project the matrix

correlator onto the approximate ground state. However, the resulting correlation function

does not di�er appreciably from the one computed using the usual 1S exponential smearing

function, and therefore we did not pursue this possibility further.

In order to compare the results from the 1- and 2-state �ts, we follow ref. [40] and plot the

results for E and ZL obtained from 1-state �ts to both EXP and EXP2S correlators over a

time window tmin, tmax as a function of expf��E tming. Keeping the length of the �tting
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�e�(t)

t 0.14144 0.14226 0.14262

2 0.23
+ 5

� 5
0.23

+ 5

� 4
0.23

+ 5

� 3

3 0.23
+ 6

� 5
0.24

+ 6

� 4
0.24

+ 6

� 4

4 0.21
+ 9

� 7
0.23

+ 9

� 7
0.24

+ 9

� 7

Table 3: The e�ective energy di�erence for the �rst three computed timeslices at all values

of the hopping parameter of the light quark.

window �xed at tmax � tmin = 6 and increasing tmin allows one to extrapolate the results

from the 1-state �ts to t = 1. Therefore, as tmin is increased, we expect that the results

from 1-state �ts converge to the value obtained from the 2-state �t performed over a large

interval in t.

In fact, as Figure 4 shows, the results from the 1-state �t for the 1S exponential smearing

function (EXP) are in agreement with the 2-state �t already for tmin = 2. Furthermore, the

results for the 1-state �ts using the 2S exponential smearing function, which is supposed to

have a poorer overlap onto the ground state, show indeed the expected stronger dependence

on tmin. We conclude that the �tting form eq. (38) applied to the 1S exponentially smeared

correlator is able to isolate the ground state correctly, provided the �tting interval is chosen

suitably. Thus the 2-state �t merely serves to con�rm the result obtained using the 1-state

�t. This observation is further strengthened by comparing the �tted values for E, (ZS)2 and

ZL for 1- and 2-state �ts. The comparison is shown in Table 3.4 for one value of the light

hopping parameter.

The CUB and DCB smearing types are more problematic. Here, the plateaux for the CSS(t)

correlators only start around tmin = 6; 7 compared to tmin = 4; 5 for EXP and INV smearing.

The results from 1-state �ts for the binding energy, however, are quite consistent with the

results from EXP and INV, whereas the values for ZL are higher. Using �E determined

from EXP smearing in a 2-state �t of the CUB and DCB correlators results in lower values

for ZL but with a signi�cant increase of the statistical errors. Single cube smearing (CUB) is

particularly bad in this respect. One may suspect that the cube size was not tuned correctly

in order to optimise the overlap of the operators. However, in [44] it was shown that sizes

of r0 = 4 and 6 gave substantially worse results than r0 = 5.

At any rate, the values for ZL from all smearing methods di�er by at most one to two stan-

dard deviations, which is remarkably consistent, given the very di�erent smearing functions

employed to enhance the signal of the ground state.
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Figure 4: Values for the binding energy and ZL obtained from 2-state �ts compared to 1-

state �ts performed using a \sliding" window tmin; tmax, as a function of expf��E tming for
exponential smearing functions at �l = 0:14144.

EXP INV

2-state �t 1-state �t 1-state �t

E 0.567
+11

�13
0.569

+ 6

� 6
0.570

+ 6

� 4

(ZS)2 0.0113
+12

�14
0.0115

+ 4

� 4
(1.20

+ 5

� 6
)�103

(ZS�)2=(ZS)2 0.05
+20

�15

tmin; tmax 2, 11 4, 11 5, 11

�2=dof 3.2/7 3.1/6 0.6/5

ZL 0.136
+ 7

� 9
0.137

+ 3

� 3
0.138

+ 3

� 3

Table 4: The binding energy E, (ZS)2, the ratio (ZS�)2=(ZS)2 between the �rst excited

state and the ground state, and the �nal result for ZL for 1- and 2-state �ts for exponential,

and 1-state �ts for gauge-invariant smearing at �l = 0:14144. Also shown are the respective

�tting ranges.
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We have thus established consistency between the results from 1-state and 2-state exponen-

tially smeared correlators, plus consistency among exponential and gauge-invariant smearing.

We have also checked the stability of our results when directly �tting the correlator CLS(t)

and computing ZL from
q
R(t)� ZL ZS. As was reported in [44], results from exponential

and gauge-invariant smearing are stable under the variation of the �tting procedure, whereas

CUB and DCB smearing exhibit greater sensitivity to the method and �tting ranges em-

ployed.

The results for the binding energy E and ZL for all values of �l are shown in Table 3.4. Also

shown are the extrapolated values at �crit and �s which were obtained assuming a linear

dependence of E and ZL on the light quark mass.

EXP CUB DCB INV

E 1-state 2-state 1-state 1-state 1-state

tmin; tmax 4 { 11 2 { 11 7 { 11 7 { 11 5 { 11

0.14144 0.569
+ 6

� 6
0.567

+11

�13
0.566

+ 8

�10
0.572

+ 7

� 7
0.570

+ 6

� 4

0.14226 0.550
+ 7

� 6
0.548

+13

�14
0.547

+10

�11
0.553

+ 9

� 7
0.550

+ 6

� 5

0.14262 0.544
+ 9

� 7
0.542

+13

�17
0.539

+11

�12
0.546

+ 9

� 8
0.543

+ 7

� 6

�crit 0.528
+10

� 6
0.526

+15

�15
0.527

+11

�12
0.522

+12

�10
0.528

+ 7

� 5

�s 0.557
+ 8

� 6
0.556

+13

�12
0.555

+ 9

�10
0.552

+10

� 8
0.557

+ 8

� 5

ZL 1-state 2-state 1-state 1-state 1-state

0.14144 0.137
+ 3

� 3
0.136

+ 7

� 9
0.147

+ 6

� 6
0.146

+ 6

� 5
0.138

+ 3

� 3

0.14226 0.126
+ 3

� 3
0.125

+ 6

� 8
0.134

+ 6

� 6
0.133

+ 6

� 6
0.126

+ 3

� 3

0.14262 0.122
+ 3

� 3
0.121

+ 7

� 9
0.129

+ 6

� 6
0.127

+ 7

� 5
0.122

+ 3

� 3

�crit 0.114
+ 3

� 3
0.112

+ 8

� 8
0.121

+ 6

� 6
0.118

+ 7

� 5
0.113

+ 3

� 3

�s 0.131
+ 3

� 3
0.130

+ 7

� 8
0.140

+ 6

� 6
0.138

+ 7

� 5
0.131

+ 4

� 4

Table 5: Results for the binding energy E and ZL for all smearing types and values of �l.

Also shown are the extrapolated values at �crit and �s.

In the following we will take the results from the 2-state �ts of the exponentially smeared

correlators as our best estimate. Thereby we ensure that the more conservative choice of

a larger statistical error encompasses all systematic variations in the �nal numbers from

using gauge-invariant smearing and/or di�erent �tting procedures. Thus, we do not quote

an additional systematic error, and our �nal answer for ZL at �crit is

ZL = 0:112
+8

�8
(59)
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which is in excellent agreement with ref. [36] in which ZL = 0:111(6) is quoted. At the

common value of �l = 0:14144 in this work and ref. [36], the values of E and ZL are consistent.

Therefore we conclude that the small discrepancy between the binding energy obtained by

APE and that in our earlier work [10] based on a subset of 20 con�gurations, has been

resolved.

Using Zstatic
A = 0:78 and a�1 = 2:9(2)GeV we obtain

f staticB = 266
+18

�20
(stat)

+28

�27
(syst)MeV (60)

where the systematic error is due to the uncertainty in the lattice scale. Using the value of

ZL at �s we obtain the ratio
fBs
fBd

= 1:16
+4

�3
: (61)

We can now compare our �ndings to other simulations. The direct comparison of f staticB [MeV]

is however obscured by the di�erent treatment of systematic e�ects such as the choice of

Zstatic
A and the quantity used to set the lattice scale. Therefore we choose to compare the

results for ZL from simulations using the Wilson action [12, 35, 20, 41, 45, 40] and the

O(a)-improved SW action [36, 42]. Following a suggestion in ref. [46] and assuming a scaling

behaviour log ZL � log a and g�2 � log a, we plot log ZL as a function of � in Figure 5. It

is seen that the results (with the possible exception of ref. [35]) are well aligned for � � 5:9,

which supports the argument that scaling occurs in this region of �. Furthermore there

is consistency between the results coming from the variational approach ([41, 40] and this

work) and those using the conventional approach [45, 36, 42].

The most striking observation is that, as far as ZL is concerned, there is practically no

di�erence between the results obtained using the Wilson action and the SW action. A

direct comparison was carried out by the APE Collaboration at � = 6:4 [42] and � = 6:0

[20], and no di�erence within the statistical errors could be found. At �rst sight this may

not seem surprising, since in the static theory improvement is performed in the light quark

sector for which its e�ects on the mass spectrum were found to be small [14]. However, the

renormalisation factor Zstatic
A at leading order in �s is quite di�erent for the improved and

unimproved action.6 In fact this di�erence amounts to an increase of 10{15% in the case of

the SW action in the current range of � values. Consequently, collaborations working with

the SW action quote relatively high values for f staticB in general, compared to those using the

usual Wilson action.

We conclude that at present the most severe systematic error in f staticB is the uncertainty in the

renormalisation factor Zstatic
A . As in the case of the corresponding factors for B0 �B0 mixing,

the perturbative estimate for this constant results in a large correction which signals that

6The one-loop expressions for Zstatic

A
for the O(a)-improved theory were computed independently by the

authors of [27] and [28].
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Figure 5: ZL plotted logarithmically versus � using data from several simulations obtained

using both the Wilson and the SW action.
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higher-order contributions may be important. A non-perturbative determination of Zstatic
A

using the method advocated in [33] for both the Wilson and the SW action is therefore of

utmost importance.

Systematic errors in f staticB coming from uncertainties in the lattice scale will be further

reduced once quantities that show good scaling behaviour, such as the 1S-1P splitting in

charmonium or the hadronic scale R0, become available for a wide range of �.

3.5 Phenomenological Implications

We can now combine our best estimates from the previous two subsections into estimates

for fB
p
BB. Using the results in eqs. (51) and (60) we �nd

fBd

q
BBd = 264

+17

�24
(stat)

+28

�27
(syst)MeV: (62)

Using the values obtained after extrapolation to the strange quark mass we also quote the

phenomenologically interesting ratios

fBs
p
BBs

fBd

q
BBd

= 1:16
+4

� 4
(stat)

+2

� 1
(syst) (63)

f2Bs BBs

f2Bd BBd

= 1:34 +9

� 8
(stat) +5

� 3
(syst) (64)

f2Bs BBsMBs

f2Bd BBdMBd

= 1:37 +9

� 8
(stat) +5

� 4
(syst); (65)

where the systematic error is obtained from the spread of values using the systematic errors

on BBd, BBs, as well as the result for Z
L from a 1-state �t.

The phenomenological implication of our results for fBd, eq. (60), or fBd

q
BBd, eq. (62), is,

however, uncertain due to a number of systematic e�ects such as

� the lack of an extrapolation to the continuum limit

� large uncertainties in the values of the renormalisation constants Zstatic
A ; ZL; : : : ; ZN

� the need to account for O(�QCD=mb) corrections

� quenching, i.e. neglecting the e�ects of quark loops.

In ref. [40] it was shown that the extrapolation of f staticB to the continuum can yield a result

below 200MeV (albeit with a fairly large upper uncertainty). We have performed a tentative

extrapolation, combining our result with the result of ref. [42]. The extrapolation gave a

central value of f staticB ' 250MeV at zero lattice spacing for the SW action7. The di�erence

7The extrapolated value does not change if R0 is used to set the scale instead of the string tension.
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between the two results is partly due to the fact that Zstatic
A is signi�cantly smaller for the

Wilson action than for the SW action as we mentioned before.

Lattice estimates for fB, especially in the static approximation, should therefore be treated

with caution for phenomenological purposes. However, it is reasonable to assume that sys-

tematic e�ects partly cancel in ratios such as fBs=fBd. In fact, as was shown in [40], the

a dependence of this ratio is compatible with zero. Therefore, in the following we illustrate

the e�ect of our �ndings on the CKM matrix, using only the ratios in eqs. (63) to (65), which

are considered to be less a�icted with systematic e�ects.

We focus on attempts to constrain the CKM parameters � and � in the standard Wolfenstein

parametrisation. The B0
d �B0

d mixing parameter xd is given by

xd =
G2
F M

2
W

6�2
�Bd f

2
Bd
BBdMBd �̂Bd ytf2(yt) jV �

tdVtbj2 (66)

where �Bd is the B
0
d lifetime, �̂Bd parametrises short-distance QCD corrections, and f2 is a

slowly varying function of yt = m2
t=M

2
W . The current world average for xd is [47]

xd = 0:76 � 0:06: (67)

Mixing in the B0
s �B0

s system can now be exploited in order to place constraints on the ratio

jVtsj2=jVtdj2:
xs

xd
=
�Bs
�Bd

�̂Bs
�̂Bd

MBs

MBd

f2BsBBs

f2Bd BBd

jVtsj2
jVtdj2

: (68)

In this ratio the dependence on the top quark mass is cancelled, and one is left with an ex-

pression involving only the CKMmatrix elements plus SU(3)avour breaking terms. Assuming

�̂Bs = �̂Bd, and taking our estimate for f2Bs BBsMBs=f
2
Bd
BBdMBd, we �nd

xs

xd
= (1:38� 0:17)

jVtsj2
jVtdj2

; (69)

where we have used �Bd = 1:53 � 0:09 ps and �Bs = 1:54 � 0:14 ps. This result is in good

agreement with ref. [48] where the proportionality factor is quoted as 1.25.

Using the experimental result for xd, we will now infer a value for the mixing parameter xs.

This requires an estimate for the ratio jVtsj2=jVtdj2, which is usually obtained from global

�ts using the better-known CKM matrix elements as well as experimental data and other

theoretical estimates as input [49]. In the standard Wolfenstein parametrisation the ratio

jVtsj2=jVtdj2 reads
jVtsj2
jVtdj2

= �2(1� 2� + �2 + �2) (70)

where � = jVusj = 0:2205 � 0:0018 [50]. The contraints on the CKM parameters � and �

depend crucially on the actual values of fBd

q
BBd and BK.
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Figure 6: The mixing parameter xs as a function of fBd

q
BBd for a �xed value of BK = 0:8

using our result eq. (65). The solid line follows the central values, whereas the dotted line

represents the error band obtained from the errors on f2BsBBsMBs=f
2
Bd
BBdMBd and xd.

In a recent study, the authors of [51] have obtained values for � and � based on choosing

BK = 0:8 � 0:2 (which is in agreement with recent lattice data [52]) and on the top quark

mass of mt = 174� 16GeV from CDF [53]. Using their values for � and � and our estimate

for f2Bs BBsMBs=f
2
Bd
BBd MBd in eq. (65), we plot in Figure 6 the B

0
s�B0

s mixing parameter xs

as a function of fBd

q
BBd. It is seen that values of fBd

q
BBd > 200MeV result in practically

unmeasurably large values of xs > 20. The current experimental lower bound is

xs � 9:0 (95%C:L:) (71)

The error band in the �gure is obtained from the errors on our value in eq. (65) and on the

experimental result for xd. The errors on xs should, however, not be taken too seriously,

since variations in BK introduce large uncertainties in the ratio jVtsj2=jVtdj2.

We conclude this section by noting that the minimum �2 in the global �ts in [51] occurs at

larger values of fBd

q
BBd as BK is increased. This indicates that large values like fBd

q
BBd �
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200MeV, as observed in lattice calculations in the static approximation, favour BK ' 1.

However at present BK is not available with good enough accuracy to provide further hints

on the possible range of fBd

q
BBd.

4 Mass Splittings

In this section we report on our results for the Bs�Bd, �b�B, and B��B mass splittings.

The B� � B splitting receives particular attention since it �rst arises at order 1=mQ and

therefore serves to test the quality of the heavy quark mass expansion. For all the splittings

computed we make a comparison with the results using propagating heavy quarks and with

experimental data.

4.1 The Bs �Bd mass di�erence

The Bs � Bd mass splitting is obtained from the chiral behaviour of the binding energy E

extracted from �ts to the pseudoscalar 2-point function according to eq. (38) [13]. Assuming

a linear dependence of E on the light quark mass, we �t the chiral behaviour of E according

to

E(�) = A+B
1

2

�
1

�
� 1

�crit

�
(72)

such that MBs �MBd is obtained from

E(�s)� E(�crit) =MBs �MBd = B
1

2

�
1

�s
� 1

�crit

�
: (73)

The results for di�erent smearing types, 1-state and 2-state �ts, as well as correlated and

uncorrelated chiral extrapolations, are shown in Table 4.1.

EXP CUB DCB INV

MBs �MBd 1-state 2-state 1-state 1-state 1-state

cor 0.029
+3

� 4
0.030

+5

� 5
0.028

+4

� 4
0.029

+4

�4
0.029

+3

� 3

unc 0.027
+4

� 4
0.027

+9

� 7
0.028

+5

� 5
0.030

+4

�6
0.028

+4

� 3

Table 6: The mass di�erence MBs �MBd in lattice units for all smearing types, using both

correlated and uncorrelated �ts. For exponential smearing the results from 2-state �ts are

also shown.

Taking the correlated value of the 2-state �t to the exponentially smeared correlator as our

best estimate, and using a�1 = 2:9(2)GeV to convert into physical units we �nd

MBs �MBd = 87
+15

�12
(stat)

+ 6

�12
(syst)MeV (74)
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where the systematic error combines the spread of values obtained from the uncertainty in

a�1 [GeV], using the 1-state result and performing an uncorrelated extrapolation.

This result is in excellent agreement with ref. [40], where a value of 86�12
+7

� 9
MeV is quoted

as the continuum result. In a recent high-statistics simulation by the APE Collaboration

[42] using the SW action at � = 6:2, theMBs�MBd splitting was quoted as 58�14MeV. In

general, APE's results for a range of � values [42] seem somewhat lower than those reported

in [40]. This is partly due to the fact that the string tension was used in [42] to set the

lattice scale, giving a lower value (e.g. a�1 = 2:55GeV at � = 6:2) than we use. Converting

APE's result into lattice units, one �nds aMBs � aMBd = 0:023(6) which is to be compared

to our determination of aMBs � aMBd = 0:030
+5

� 5
, and thus the two simulations are not in

disagreement.

The result in eq. (74) can now be compared to the results using propagating heavy quarks

[10]: extrapolating the pseudoscalar mass splitting MPs �MPd linearly in 1=MPd either to

MPd =1 or to MBd; MDd
one �nds

MBs �MBd = 84
+14

�12

+6

� 6
MeV; MPd =1 (75)

MBs �MBd = 93
+12

�12

+6

� 7
MeV; MPd =MBd (76)

MDs �MDd
= 107

+12

�12

+8

� 6
MeV; MPd =MDd

: (77)

The result at MBd = 1 is in excellent agreement with the static result in eq. (74). Fur-

thermore, the value at MPd = MBd agrees very well with the experimental result of 96 �
6MeV [50]. The experimental value forMDs�MDd

is 99:1�0:6MeV [50], which is compatible

with our estimate.

We conclude that for theMBs�MBd mass splitting it appears possible to interpolate between

the static result and those obtained using propagating heavy quarks. From the behaviour

of the splitting with 1=MP the size of �QCD=mQ corrections is estimated at around 10% at

the mass of the B meson.

4.2 The �b � B splitting

In order to study the mass splitting of the �b and the B meson, we de�ne a smeared

interpolating �eld �S
�(~x; t) according to

�S
�(~x; t) � �ijk b

i
�(~x; t)

X
~x0

f(~x; ~x0)
�
uj(~x0; t)C5 d

k(~x0; t)
�

(78)

where f(~x0; ~x) is one of the smearing functions in eqs. (12) and (16){(19), and C is the charge

conjugation matrix. In the above de�nition the spin of the baryon is carried by the heavy

quark �eld b(x).
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We de�ne correlators of the �b according to

CSS
�b
(t) �

X
~x

h�S
�(~x; t) �

y

�

S
(0)i t�0�!

�
ZS
�b

�2
e�E�b

t (79)

CLS
�b
(t) �

X
~x

h�L
�(~x; t) �

y

�

S
(0)i t�0�! ZL

�b
ZS
�b
e�E�b

t (80)

where S = EXP; CUB; DCB; INV. We then obtain the �b � B mass di�erence from an

exponential �t to the following ratio of smeared-smeared (SS) correlators

CSS
�b
(t)

CSS(t)
�
P

~xh�S(~x; t) �y
S
(0)iP

~xhAS
4 (~x; t)A

y

4

S
(0)i

t�0�! const: � e�(E�b
�E) t (81)

where

E�b � E =M�b �MBd: (82)

We used the same smearing functions in the numerator and denominator of the ratio in

eq. (81), although there is a priori no reason why one should do so. However, we found that

the uncertainty in the ratio was dominated by the baryon correlator, and therefore we did

not expect any gain in trying to optimise the signal using di�erent smearing functions for

the mesonic correlator. The ratios de�ned in eq. (81) gave short but clear plateaux in the

range 9 � t � 11.

The same procedure can of course be applied to the local-smeared (LS) correlators CLS
�b
(t)

and CLS(t). However, we observed that the e�ective mass plots for the ratio of LS correlators

do not show clear plateaux. In addition, the �ts of the correlators tend to give estimates for

the splitting that are higher by up to two standard deviations, which further suggests that

the ground state is not completely isolated in LS correlators.

The ratio of correlators eq. (81) was �tted to a single exponential for 9 � t � 11 at all values

of �l. In Table 4.2 we list our results in lattice units.

Exponential smearing gave the cleanest signal at all values of �l. Assuming a linear depen-

dence on the light quark mass, we extrapolated M�b �MB to the chiral limit. Again, the

results from exponential smearing showed a very good linearity and consequently gave low

�2=dof in the chiral �ts (see Table 4.2). Furthermore, correlated and uncorrelated extrapo-

lations gave almost the same central values. In contrast, the CUB, DCB and INV smearing

types gave di�ering, though statistically consistent, results for correlated and uncorrelated

�ts. The �2=dof's are, however, larger and fairly high for gauge-invariant smearing.

We therefore take our best estimate from the exponentially smeared correlators. In physical

units we obtain

M�b �MBd = 420
+100

� 90
(stat)

+30

�30
(syst)MeV (83)

with the systematic error coming from the uncertainty in a�1 [GeV]. Our value can be

compared to other simulation results and the experimental number in Table 4.2. Comparing
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M�b �MB

�l EXP CUB DCB INV

0.14144 0.22
+2

� 2
0.23

+2

� 2
0.22

+2

� 2
0.23

+2

� 2

0.14226 0.18
+2

� 3
0.19

+4

� 3
0.18

+3

� 3
0.19

+2

� 2

0.14262 0.16
+3

� 4
0.17

+6

� 5
0.14

+5

� 6
0.16

+3

� 3

�crit 0.14
+3

� 3
0.17

+3

� 3
0.16

+4

� 3
0.16

+3

� 3

�2=dof 0.01 0.18 0.78 1.88

Table 7: The �b�B mass splitting in lattice units at all three values of the light quark mass

and extrapolated to the chiral limit.

with the experimental value, it is seen that our new result is a marked improvement over a

previous simulation in the static approximation [13].

M�b �MBd [MeV] Ref. Comments

420 +100

� 90

+30

�30
this work static, SW

720 � 160
+ 0

�130
[13] static, Wilson

359
+55

�45

+27

�26
[54] prop., SW

458 � 144 � 18 [55] prop., Wilson

362 � 50 [50] experiment

Table 8: Our value for the �b �Bd mass splitting compared to other simulations using the

Wilson action and/or propagating heavy quarks. Also shown is the experimental value.

In Figure 7 we plot our static result together with recent data obtained with propagating

heavy quarks [55, 54]. Our value, compared to an earlier study [13], is in much better

agreement with the mass behaviour of the results using propagating heavy quarks. In fact,

an extrapolation in 1=MP of these results to the static limit would be compatible with

our value within the (relatively large) statistical errors. For further discussion of the mass

behaviour, the reader is referred to [54].

4.3 The B�
� B splitting

Within the framework of large mass expansions, the B��B mass splitting plays an important

rôle, since it appears at order 1=mQ; at lowest order (i.e. in the static approximation)

30



Figure 7: The �b � B splitting in the static approximation (diamonds) compared to other

simulations and the experimental values for the �b�B and �c�D splittings. Only statistical

errors are shown.
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MB� =MB. At order 1=mQ the splitting arises due to the spin-dependent, chromomagnetic

correction term to the quark propagator

S1
�(x; 0) =

1 + 4

2
�(~x)

Z t

0
d� P~x(t; � )�ijFij(~x; t)P~0(�; 0) (84)

where P~x(t; � ) and P~0(�; 0) are de�ned according to eq. (9), and Fij is a lattice de�nition of

the �eld tensor.

Following the discussion in [13, 56] we compute the B� � B splitting from the insertion of

S1
�(x; 0) into the correlation function. The usual static correlator is given by

C0(t) � �
X
~x

h45 SQ(x; 0) 45 Sl(0; x)i (85)

where SQ(x; 0) is de�ned in eq. (8), and Sl(x; y) is the light quark propagator. In addition,

we de�ne

C�(t) � �
X
~x

h45 S1
�(x; 0) 45Sl(0; x)i (86)

For large time separations, the ratio R�(t) � C�(t)=C0(t) shows a linear behaviour

R�(t) � C�(t)

C0(t)
t�0�! A� +B�t: (87)

The splitting M2
B� �M2

B is then given by the linear slope B� according to

M2
B� �M2

B = Z�
4

3
B�: (88)

where Z� is the renormalisation constant of the magnetic moment operator of the heavy

quark [57, 58]. Using the \boosted" value of the gauge coupling in the numerical evaluation

of Z� at one loop, we �nd [58]

Z� = 1:52: (89)

This is a very large correction, which suggests that higher-order contributions may be im-

portant.

In our simulation the SS correlator C�(t) was calculated using only gauge-invariant (INV)

smearing. In the LS case, for which more smearing functions were used, the linear behaviour

of R�(t) could not be established reliably. Thus, we cannot compare di�erent smearing types

for the B� �B splitting and therefore restrict the discussion to gauge-invariant smearing.

The ratio R�(t) was �tted to the functional form in eq. (87) for 2 � t � 5 at all three values

of �l. Figure 8 shows the signal at �l = 0:14144 together with the �t. It appears that in

addition to the linear behaviour of R�(t) for very small t, there is also a linear increase for

7 � t � 11, albeit with much larger statistical errors. Fits to eq. (87) in this time interval

lead to values of B� which are larger by up to two standard deviations than those obtained

using 2 � t � 5. The �ts at larger times are, however, very sensitive to small variations in
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Figure 8: The ratio R�(t) for gauge-invariant smearing at �l = 0:14144. The �t to eq. (87)

is shown as a solid line in the �tting interval 2 � t � 5 and continued as the dotted line for

larger times.
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the �tting interval. We regard the two-sigma deviation at higher t as a correlated statistical

e�ect, and believe that the asymptotic behaviour is already observed for small t. Of course,

this must be con�rmed in future simulations with higher statistics.

The results for the values of the linear slope parameter B� from correlated �ts are shown in

Table 4.3 together with the linearly extrapolated value at �crit. Using uncorrelated �ts gives

essentially the same results. The values for B� increase slightly with decreasing light quark

mass, as was already observed in [13], but are also consistent, within the statistical errors,

with B� being independent of the light quark mass.

�l B�

0.14144 0.0266
+15

�13

0.14226 0.0273
+15

�15

0.14262 0.0275 +17

�16

�crit 0.0285 +15

�16

�s 0.0272
+14

�13

�2=dof 0.54

Table 9: The �tted linear slope B� of the ratio R�(t) in lattice units at all values of �l, in

the chiral limit and at the strange quark mass, extracted from the smeared-smeared (INV)

correlator.

Multiplying by Z� 4=3 and converting into physical units we �nd

M2
B� �M2

B = 0:485
+25

�25
(stat)

+70

�65
(syst)GeV2 (90)

M2
B�

s
�M2

Bs
= 0:465

+25

�25
(stat)

+65

�60
(syst)GeV2 (91)

with the systematic error coming from the uncertainty in a�1 only. A comparison with

experimental data and other simulations is made in Table 4.3. Our result for the B� � B

splitting is in very good agreement with the experimental value, although the errors are still

quite large. The lattice estimate for the B�
s � Bs splitting is lower than the experimental

result, which can partly be accounted for by the opposite chiral behaviour of the splitting

seen on the lattice. It is interesting to note, however, that both the experimental and

lattice determinations of M2
B�

s
�M2

Bs
yield a result that is compatible within errors with the

corresponding value of M2
B� �M2

B.

The use of the O(a)-improved SW action for the light quark leads to a considerable increase

in the splitting, as the comparison to the result of ref. [13] shows. Using propagating heavy

quarks and the SW action [10], one obtains a value that is about half of that obtained from
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the 1=mQ expansion. However, this is still an improvement over the case of propagating

heavy Wilson quarks [13] which gives a value about 10 times below the experimental result.

We therefore conclude that the O(a)-improved action leads to much better results for spin

splittings: using the Eichten expansion one �nds a value consistent with experiment, whereas

for propagating heavy quarks the discrepancy is reduced considerably, although the central

value is still too small by a factor of two.

M2
B� �M2

B [GeV
2] M2

B�

s
�M2

Bs
[GeV2] Ref. Comments

0:485
+25

�25

+70

�65
0:465

+25

�25

+65

�60
this work static, SW

0:22 � 4
+0

�3
[13] static, Wilson

0:202
+76

�84

+29

�27
[10] prop., SW

0:488 � 0:006 0:508 � 0:028 [50] experiment

Table 10: Our value for theB��B and B�
s�Bs mass splittings compared to other simulations

and experiment.

5 Summary and Conclusions

In this paper we have reported on the results from an extensive study of weak matrix elements

and the spectroscopy of heavy quark systems using the static approximation. A large part

of our analysis was devoted to studying di�erent types of smeared (extended) operators used

in order to improve the signal/noise ratio and the isolation of the ground state. Although

exponential or gauge-invariant smearing gave the best signal for most quantities, all the

smearing functions gave remarkably consistent results. In addition, the variational approach

employed in the determination of f staticB demonstrated the compatibility of results obtained

using this more re�ned �tting procedure with those from the usual single-exponential �ts.

Thus we are con�dent that we correctly isolate matrix elements and spectroscopy data from

the ground state contribution of suitable correlators.

We obtain a good signal for the various four-fermi operators relevant for B0 �B0 mix-

ing. Our estimate for BB in the static approximation is in agreement with its value in

the vacuum insertion approximation. Regarding fB, we note that our determination of

ZL = f staticB

q
2=MB=Z

static
A is consistent with other simulations.

Among the systematic errors present in this simulation, the most important (apart from

quenching) are due to uncertainties in the renormalisation constants relating the matrix

elements on the lattice to their continuum counterparts. These systematic e�ects manifest
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themselves most severely in our estimate for the B parameter, and in the case of f staticB ,

where there is practically no di�erence in ZL for the Wilson and the SW actions, yet the

corresponding values of Zstatic
A di�er by about 10{15%. Also, the large value of Z� in eq. (89)

implies that higher-order contributions may be important in the perturbative evaluation of

this constant.

Our results for the mass splittings show that these compare very well with experimental

estimates, although the statistical errors, especially for the �b � B splitting, are still large.

The B� �B splitting obtained from a 1=mQ correction to the static limit is in much better

agreement with experiment than results with propagating heavy quarks. Furthermore, using

the SW action involving the spin operator leads to a large improvement in lattice estimates

of spin splittings as was noted previously in the case of the J= � �c splitting [59].

The static approximation, in conjunction with a re�ned numerical analysis, remains a valu-

able tool in lattice studies of heavy quark systems. It plays the crucial rôle of guiding the

extrapolation of results obtained using propagating heavy quarks to the mass of the b quark,

by providing direct information at in�nite quark mass.

In future, one should concentrate on the analysis of systematic e�ects such as non-perturbative

determinations of the renormalisation constants. In the case of BB it would be highly de-

sirable to repeat the calculation for propagating heavy quarks, preferably with an improved

fermion action, in order to study the mass dependence.
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