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Abstract

We compute the hierarchical �4-trajectory in terms of perturbation

theory in a running coupling. In the three dimensional case we resolve

a singularity due to resonance of power counting factors in terms of

logarithms of the running coupling. Numerical data is presented and

the limits of validity explored. We also compute moving eigenvalues

and eigenvectors on the trajectory as well as their fusion rules.
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1 Introduction

In the block spin renormalization scheme of Wilson [?, ?] renormalized theo-

ries come as renormalized trajectories of e�ective actions. Departing from a

bare action the renormalized trajectory is reached by an in�nite iteration of

block spin transformations. For this limit to exist the bare couplings have to

be tuned as the number of block spin transformations is increased. Consider

an asymptotically free model at weak coupling. There the point is to keep

couplings under control which increase by value under a block spin transfor-

mation. Such couplings are called relevant. In weakly coupled models they

can be identi�ed by naive power counting. This renormalization scheme has

been beautifully implemented both within and beyond perturbation theory.

Let us mention the work of Polchinski [?], Gawedzki and Kupiainen [?] ,

Gallavotti [?], and Rivasseau [?] as a guide to the extensive literature. The
underlying picture of an ultraviolet asymptotically free model is to think of
the renormalized trajectory as unstable manifold of a trivial �xed point. Al-
though this picture has been in mind behind block spin renormalization since
the very beginning [?] it has not been formalized yet to an approach free of a

bare action. This paper is a contribution to �ll this gap. It extends the anal-
ysis begun in [?] and [?] in the context of renormalization group improved
actions for the two dimensional O(N)-invariant nonlinear �-model. Here we
will work it out for the �4-trajectory in the hierarchical approximation. The
hierarchical model was invented by Dyson [?] and Baker [?] and has enjoyed

the attention of Bleher and Sinai [?], Collet and Eckmann [?], Koch and Wit-
twer [?], Felder [?], and Pordt [?], to mention a few. The �4-trajectory will
be de�ned as a curve which departs the trivial �xed point in the �4-direction.
Technically we perform a renormalized perturbation expansion in a running
coupling. In the three dimensional case we perform a perturbation expan-
sion in a running coupling and its logarithm. The dynamical principle which

proves to be strong enough to determine the trajectory at least in perturba-

tion theory is stability under the renormalization group. With stability we
mean that the trajectory is left invariant under a transformation as a set in
theory space. Recall that a renormalized action always comes together with

a sequence of descendents generated by further block spin transformations.

Even in the case of a discrete transformation this sequence will prove to con-
sist of points on a continuous curve in theory space which is stable under the

renormalization group. It is the computation of this curve we address. The
result is an iterative form of renormalized perturbation theory. Its closest
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relatives in the literature are the renormalized tree expansions of Gallavotti

and collaborators [?, ?, ?]. A pedagocial exposure can be found in [?]. Our

expansion is however free of divergencies piled up in standard perturbation

theory by in�nitely iterated renormalization group transformations from the

very beginning. Surprisingly we do not need to treat relevant and irrelevant

couplings on a di�erent footing. It will involve neither bare couplings nor

renormalization conditions in the original sense. A renormalization group

transformation in our approach translates to a transformation of the run-

ning coupling according to some �-function. We will consider in particular

a choice of coordinate whose associated �-function is exactly linear. This

idea has also appeared in [?] and references therein. Renormalized perturba-

tion theory furthermore will surprise us with a sequence of discrete poles at

special rational dimensions. These poles will be traced back to certain reso-

nance conditions on the scaling dimensions of powers of �elds. In particular

the case of three dimensions will be shown to be resonant. We will resolve the
associated singularity by a double expansion in both the running coupling
and its logarithm. The expansion will then be extended to the computation
of moving eigenvectors in the sense of [?] on the renormalized trajectory and
their fusion rules. Finally we perform a numerical test of our renormalized

actions. As expected they prove to work well in a small �eld region. The
extension of our program to full models is under way. A prototype with
momentum space regularization has been developed in [?].

2 Hierarchical renormalization group

The hierarchical renormalization group in the form advocated by Gawedzki
and Kupiainen [?] is a theory of the non linear transformation

RZ( ) =
�Z

d�
(�) Z(L
1�D

2  + �)
�LD

m(1)

on some space of Boltzmann factors Z(�). In the scalar theory � is a single
real �eld variable.

d�
(�) = (2�
)�
1

2 exp
�
�
�2

2


�
d�m(2)

is the Gaussian measure on R with mean zero and covariance 
. The pa-

rameters of (1) are the Euclidean dimension D and the block scale L. The
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subspace of even Boltzmann factors Z(��) = Z(�) is stable under (1). We

will restrict our attention to this subspace. Let the potential be given by

Z(�) = exp(�V (�)). The transformation for the potential is

RV ( ) = �LD log

�Z
d�
(�) exp

�
�V (L1�D

2  + �)
��

:m(3)

The below analysis will be done in terms of the potential. The method will be

perturbation theory. The question of stability bounds will not be addressed.

Regarding mathematical aspects of (1) and (3) we refer to the work of Collet

and Eckmann [?], Gawedzki and Kupiainen [?] and of Koch and Wittwer

[?].

3 The trivial �xed point

(3) has a trivial �xed point V�(�) = 0. This �xed point is the hierarchical
massless free �eld. The linearization of (3) at this trivial �xed point is given
by

LV�RO( ) = LD

Z
d�
(�) O

�
L1�D

2  + �
�
:m(4)

This linearization is diagonalizable. The eigenvectors are normal ordered

products

: �n :
0=
@n

@jn

����
j=0

exp

 
j��

j2
0

2

!
m(5)

with normal ordering covariance 
0 =
�
1 � L2�D

�
�1


. The normal ordering
covariance has been chosen in order to be invariant with respect to integration
with d�
 . Its singularity at D = 2 is an infrared singularity of the hierarchical
massless free �eld in two dimensions. The eigenvalues are

�n = LD+n(1�D
2
) :m(6)

The eigenvalue of : �4 :
0 is �4 = L4�D. The eigenvector : �4 :
0 is therefore

relevant for D < 4, marginal for D = 4, and irrelevant for D > 4 dimen-

sions. Perturbation theory can be used to compute corrections to (4) in a

neighbourhood of V�(�).
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4 The �4 - trajectory

Let us de�ne a curve V (�; g) in the space of potentials parametrized by a

local coordinate g. We call it the �4 - trajetory. We expand the potential

V (�; g) =
1XXX
n=0

V2n(g) : �
2n :
0m(7)

in the base of eigenvectors (5). A natural coordinate in a vicinity of V�(�)

is the �4 - coupling de�ned by V4(g) = g. Let us use it for a moment. Let

the �4 - trajectory then be the curve V (�; g) de�ned by the following two

conditions:

1) V (�; g) is stable under R. Then there exists a function �(g) such that

RV (�; g) = V (�; �(g)) :m(8)

The function �(g) is of course coordinate dependent. With the �4 -
coupling as coordinate it is called � - function.

2) V (�; g) visits the trivial �xed point V�(�) at g = 0. The tangent to
V (�; g) at V�(�) is given by

@

@g

����
g=0

V (�; g) = : �4 :
0m(9)

This condition is equivalent with V4(g) = g + O(g2) together with

V2n(g) = O(g2), n 6= 2.

The �4 - trajectory is the object of principal interest in massless �4 - theory
at weak coupling.

5 Perturbation theory

The �4 - trajectory can be computed by perturbation theory in g as solution

to (8) and (9). Potentials on the �4 - trajectory are said to scale. A potential

V (�; g) is said to scale to order s in g if there exists a function

�(g) = �(s)(g) +O(gs+1) ;

�(s)(g) =
sXXX

r=1

brg
r ;m(10)
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such that

V (�; g) = V (s)(�; g) +O(gs+1) ;

RV (s)(�; g) = V (s)(�; �(g)) +O(gs+1) ;m(11)

and

V (1)(�; g) = g : �4 :
0 :m(12)

The scheme is to compute �(s+1)(g) and V (s+1)(�; g) given �(s)(g) and

V (s)(�; g) to some order s. Let us explain it in some detail at the case of

D = 4 dimensions, block scale L = 2, and covariance 
 = 1. Then the normal

ordering covariance is 
0 = 4

3
. Computing a block spin transformation (3),

we speak of V (�) as bare potential and of RV (�) as e�ective potential. The

point of departure is (12). Anticipating the terms generated in RV (1)(�; g)
to second order in g we make the ansatz

V (2)(�; g) = c0g
2 + c2g

2 : �2 : +g : �4 : +c6g
2 : �6 : :m(13)

The coe�cients are determined by the condition that (11) be ful�lled to
second order. (13) is mapped to

RV (2)(�; g(g0)) = (16c0 �
5440

9
)g0

2
+ (4c2 � 448)g0

2
: �2 :

+g0 : �4 : +(
c6

4
� 2)g0

2
: �6 : +O(g0

3
) :m(14)

Here the e�ective coupling de�ned as the coe�cient of : �4 : in the e�ective
potential is given by

g0(g) = g � 60g2 +O(g3) :m(15)

Comparing the e�ective potential as a function of the e�ective coupling with
the bare potential as a function of the bare coupling we conclude that

c0 =
1088

27
; c2 =

448

3
; c6 = �

8

3
m(16)

on the �4 - trajectory. The coe�cients of the � - function (10) to this order

are

b1 = 1 ; b2 = �60 :m(17)
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It follows that g is marginally irrelevant in four dimensions. This completes

the �rst step. It is iterated in the obvious manner. The general form of the

order s approximation is

V (s)(�; g) =
s+1XXX
n=0

c
(s)

2n (g) : �
2n : ;

c
(s)
2n (g) =

sXXX
r=2

c2n;rg
r ; n 6 1 ;

c
(s)

4 (g) = g ;

c
(s)
2n (g) =

sXXX
r=n�1

c2n;rg
r ; n > 3 :m(18)

It includes all normal ordered products generated in the e�ective potential by
(3) from (12) to order s in g. The iteration proceeds as above with the order
s + 1 ansatz of the form (18). The condition (11) yields a system of linear
equations for the order s + 1 coe�cients. (To highest order the coe�cients

have no other choice.) This system has a unique solution: the �4 - trajectory.
Note that the coe�cient bs+1 of the � - function is already determined by
V (s)(�; g). For instance (15) does not contain any of the coe�cients in (13).
The expansion can be computed to higher orders using computer algebra.
To third order we �nd

c
(3)
0 (g) =

1088

27
g2 �

54784

27
g3 ;

c
(3)

2 (g) =
448

3
g2 �

497408

27
g3 ;

c
(3)
6 (g) = �

8

3
g2 + 352g3 ;

c
(3)

8 (g) =
32

3
g3m(19)

together with

�(3)(g) = g � 60g2 + 8880g3 :m(20)

Let us remark that the perturbation coe�cients (10) and (11) come with

alternating signs. The coe�cients show a frightening increase in absolute

value with the order in g. The full series is not expected to converge. Note
that the coe�cients look better when g is replaced by g=4!.
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