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Abstract

We demonstrate that the technique of abelian bosonization through duality trans-

formations can be extended to gauging anomalous symmetries. The example of a Dirac

fermion theory is �rst illustrated. This idea is then also applied to bosonize a chiral

fermion by gauging its chiral phase symmetry.

Two dimensional �eld theory has long proven to be a fruitful area of investigation.

An interesting phenomenon in two dimensional �eld theory known to physicists for

some time is bosonization [1]. It states the equality of the correlation function of some

operators of two apparently di�erent theories, one being a theory of a Dirac fermion

and the other that of a scalar boson. Conventionally this equality is expressed in terms

of bosonization rules [2][3]. Recently C.P. Burgess and F. Quevedo [4] have shown how

to systematically derive these rules for bosonization in two dimensions as a particular

case of a duality transformation [5]. The technique is, briey stated, that �rst the

phase symmetry of the fermion theory is gauged which adds a new gauge �eld A� to

the theory. The corresponding �eld strength F�� is then constrained so that it vanishes

everywhere. This constraint can be incorporated through a Lagrange multiplier �eld

�. To obtain the bosonized action one �xes the gauge (@ �A = 0) and integrates out the

original fermion �eld as well as the new gauge �eld A�. One is then left with a bosonic

action in terms of the Lagrange multiplier �. On the other hand, integrating over

the Lagrange multiplier �eld � and the gauge �eld A� recovers the original fermionic

theory. In other words, this method is a change of variable with the path integral, a

change from a fermionic variable to a bosonic variable.
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A slightly di�erent way of representing the same idea is with the following path

integral identity1:
Z
D DA��[A�] exp[iŜF [ ;A�; a�; b�]] =

Z
D exp[iSF [ ; a�; b�]] (1)

where SF [ ; a�; b�] is an action for fermionic theory and a� and b� are external �elds

which couple to  (see below) and we assumed ŜF [ ;A� = 0; a�; b�] = SF [ ; a�; b�].

Here �[A�(x; t)] =
Q

x;t �[A�(x; t)] is the functional delta function. Eq.(1) shows that

one has a great deal of arbitrariness in adding A� to the action provided one takes the

functional integral over DA��[A�]. For topologically trivial space-time one can write

�[A�] as �[@ �A]�[12���F�� ] and the bosonization can be carried out by writing one of

these functional delta functions as its functional Fourier transform and performing the

 and A� integrations. The Fourier �elds then play the role of new variables. Following

this prescription, in general, leads to a nonlocal action unless A� is introduced in to

ŜF in a special way. In [4] it is shown that if one adds A� through the gauging phase

symmetry of the original Dirac fermionic theory, one ends up with an action in terms

of the Lagrange multiplier implementing �[1
2
���F�� ] which is the bosonized action and

local as well. In this letter we will show that if one adds A� through gauging the chiral

phase symmetry of the original Dirac fermion theory, one ends up with the same local

action. We will also demonstrate that the new bosonic �eld is a Lagrange multiplier

implementing either �[1
2
���F�� ] or �[@ �A] in general. In certain special cases though

there is no freedom in this choice, for example for non-chiral rotation studied in [4]

one must use �[1
2
���F�� ]. Finally, we apply this idea, to illustrate how to bosonize

chiral fermionic theory by adding A� into the theory through gauging its chiral phase

symmetry.

We start with the following generating functional for massless Dirac fermion:

Z[a�; b�] =

Z
D exp[iSF [ ; a�; b�]] (2)

where

SF [ ; a�; b�] =

Z
d2x(� �@� + i � a� + i �3 b�): (3)

and a� and b� are external �elds. This classical action has the following chiral phase

symmetry 2,

 �! exp[
i

2
(q + 1)�+

i

2
(q � 1)�3] (4)

which is a constant phase rotation of right (left) hand component of  by � (q�).

In the following, we gauge this symmetry and constrain the gauge �eld A� so that it

vanishes. Following the above discussion the generating functional can be written as,

Z[a�; b�] =

Z
D DA��[@ �A]�[

1

2
���F�� ] exp[iS[ ;A�; a�; b�]] (5)

1Throughout the paper space-time is assumed to be at with topology R2. We also ignore all
irrelevant normalization constants in path integral.

2Our conventions are: x
0 = t; x

1 = x; �
11 = ��

00 = �
01 = 1; 0 = i�1; 1 = �2; 3 � 

0

1 = �3 and

L = 1

2
(1 + 3).
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where

S[ ;A�; a�; b�] =

Z
d2x[ �(�@� +

i

2
(q+ 1)A�+

i

2
(q� 1)3A� + ia� + i3b�) ]: (6)

Using the identity �3 = ��
��, one can perform the fermionic integral in eq.(5). The

result is [6]:

Z
D exp[i

Z
d2x[ �(�@� + iÂ�) ]] = exp[� i

8�

Z
d2xF̂���

��
2
�1F̂�� ��� ]: (7)

where

Â� � 1

2
(q + 1)A� +

1

2
(q � 1)���A

� + a� + ���b
� : (8)

Now at this point we have to add a new bosonic �eld to the theory through Fourier

transform of one of the delta functionals. We may write the following functional Fourier

transform:

�[
1

2
���F�� ] =

Z
D� exp[i

Z
d2x[

1

2
� ���F�� ]]: (9)

Replacing eq.(7) and eq.(9) into eq.(5), the generating functional becomes

Z[a�; b�] =

Z
D�DA��[@ �A] exp[iS[�;A�; a�; b�]] (10)

where

S[�;A�; a; b] =

Z
d2x[
�1
2�

(
1

4
(q + 1)���F�� +B)2�1(

1

4
(q + 1)���F�� + B) +

1

2
����F�� ]

(11)

and we de�ned B � ���@�a� + @ � b and set @ � A = 0. Now we �nally perform the

integration over DA�. From @ �A = 0 we conclude that A� = ���@
��, so we do change

of variables as A� �! �. Since determinant of ordinary derivative is a constant, the

Jacobian for this transformation is an irrelevant constant, so DA��[@ � A] = D�. In

terms of � we also have F���
�� = 22�. Therefore, equation (10) can be written as3,

Z[a�; b�] =

Z
D�D� exp[i

Z
d2x[� 1

2�
B2�1B + Q(�)]] (12)

where

Q(�) = � 1

8�
(q + 1)2�2�+ [� 1

2�
(q + 1)B +2�]�: (13)

Since Q(�) is quadratic, it can be expanded around its saddle point, �c, as

Q(�) = � 1

8�
(q + 1)2(�� �c)2(�� �c) +Q(�c) (14)

where the saddle point satis�es the following equation

� 1

4�
(q + 1)22�c + (� 1

2�
(q + 1)B +2�) = 0: (15)

3We assume our �elds to fall to zero at spatial in�nity su�ciently quickly to permit the neglect
of all surface terms.
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The resulting � � �c integration is an irrelevant constant. Therefore, equation (12)

reduces to

Z[a�; b�] =

Z
D� exp[i

Z
d2x[� 1

2�
B2�1B +Q(�c)]] (16)

where Q(�c) simpli�es to

Q(�c) =
2�

(q + 1)2
�2�� 2

q + 1
�B +

1

2�
B2�1B: (17)

Replacing this into equation (16) and using the de�nition for B, we end up with

following bosonic action:

SB [�; a�; b�] =

Z
d2x[� 2�

(q + 1)2
@��@

��+
2

q + 1
@��(�

��a� + b�)]: (18)

Note that the nonlocal terms from performing the  and A� integrations are canceled

as in the non-chiral case [4]. In terms of the canonically-normalized scalar variable,

� = 2
p
�

q+1
�, the dual action takes its standard form:

SB[�; a�; b�] =

Z
d2x[�1

2
@��@

��+
1p
�
@��b

� +
1p
�
@���

��a� ]: (19)

Comparing the coe�cients of a� and b� in equations (3) and (19) shows that the

currents in these two theories are related by

i �  ! � 1p
�
���@�� ; i �3  !

1p
�
@��: (20)

For q = �1 eq.(14) becomes linear and eventually eq.(19) turns out to be nonlocal. To

cure this problem we use the following functional Fourier transform instead of eq.(9)

�[@ �A] =
Z
D� exp[i

Z
d2x[�@ �A]]: (21)

Replacing eq.(7) and eq.(21) into eq.(5), the generating functional becomes

Z[a�; b�] =

Z
D�DA��[

1

2
���F�� ] exp[iS[�;A�; a�; b�]] (22)

where

S[�;A; a�; b�] =

Z
d2x[� 1

2�
(
1

2
(q� 1)@ �A+B)2�1(

1

2
(q � 1)@ �A+B) + �@ �A] (23)

and we set ���F�� = 0. To perform the integral over the gauge potential, A� , we do

change of variables as A� �! � with A� � @��. By doing the same steps as before, we

end up with the following bosonic action:

SB[�; a; b] =

Z
d2x[� 2�

(q � 1)2
@��@

��+
2

q � 1
@��(�

��a� + b�)] (24)

which turns out to be nonlocal for q = 1. In terms of the canonically-normalized scalar

variable, � = 2
p
�

q�1 �, the dual action is equal to equation (19). This ultimately shows
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the use of anomalous symmetry in duality transformations for bosonizatoin of Dirac

massless fermion theory in (1+1) dimension. However, we emphasize that the bosonic

�eld in the dual theory must be chosen to be the Lagrange multiplier implementing

�[1
2
���F�� ] in the case q = 1 (non-chiral phase rotation), of �[@ �A] in the case q = �1

and of either of them in other cases.

Now using the fact that anomalous symmetries potentially has the ability to bosonize

Dirac fermion �eld, we shall bosonize chiral fermion �eld by employing its anomalous

chiral phase symmetry. Consider the following generating functional for chiral fermion

particles:

Z[a�] =

Z
D R exp[i

Z
d2x R

�(�@� + ia�) R] (25)

where a� is an external �eld. This classical action has phase symmetry,  R �!
exp[i�] R, where � is constant. Adding an A� �eld through gauging this symme-

try and constraining the gauge �eld to be zero everywhere, one can write eq.(25) for

trivial space-time topology as,

Z[a�] =

Z
D RDA��[@ �A]�[

1

2
���F�� ] exp[iSR[ R; A�; a�]] (26)

where

SR[ R; A�; a�] =

Z
d2x R

�(�@� + iA� + ia�) R: (27)

The result of performing D R integral is [7]:

Z
D R exp[i

Z
d2x[ R

�(�@�+ iÂ�) R]] = exp[
�i
8�

Z
d2xF̂���

��
2
�1(F̂����� � 2@ � Â)]

(28)

where Â� � A�+ a�. Using the identity �
����� = ������� ������ , one can show that

(F̂���
�� + 2@ � Â)2�1(F̂����� � 2@ � Â) = 4Â � Â. Therefore, eq.(28) can be written as

L:H:S: = exp[
�i
16�

Z
d2x(F̂���

�� � 2@ � Â)2�1(F̂����� � 2@ � Â)�
i

4�

Z
d2xÂ � Â]: (29)

Using the fact that eq.(28) is �xed only up to a local polynomial in the �eld Â� and its

derivatives 4 the last term in eq.(29) can be dropped by adding a local counterterm.

Now we have to add a new bosonic �eld in to the theory through Fourier transform of

one of the delta functions in eq.(26). Since phase symmetry in this case in corresponding

to q = 0 of previous example, the new scalar �eld can be Lagrange multiplier of either

of the constraints in eq.(26). Writing �[@ �A] with a Fourier transform, eq.(26) becomes

Z[a�] =

Z
D�DA��[

1

2
���F�� ] exp[iS[A�; a�]] (30)

where

S[A�; a�] =

Z
d2x[
�1
4�

(�@ �A+���@�a��@ �a)2�1(�@ �A+���@�a��@ �a)+�@ �A] (31)

4The same freedom occurs in performing the fermion path integral in eq.(7).
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and we set ���F�� = 0. Performing the DA� integral, one ends up with the following

local bosonic action:

SRB[�; a�] =

Z
d2x[��@��@��� (@��� @�����)a�]: (32)

In terms of canonically-normalized scalar variable, � = �
p
2��, the bosonized chiral

fermion action is

SRB[�; a�] =

Z
d2x[�1

2
@��@

��+
1p
2�

(@��� @�����)a�]: (33)

To compare eq.(33) with original chiral fermion action, we write both action in light

cone coordinate, x� = 1p
2
(x� t). The chiral fermion action takes the following form:

SF [ R; a�] =

Z
d2x �R(�@+ + ia+) R (34)

and using the fact that �+� = 1 and �+� = �1, eq.(33) becomes

SRB[�; a�] =

Z
d2x(�1

2
@+�@��+

1p
�
@��a+): (35)

Eq.(34) shows that  R has only right-moving modes, i.e.,  R(x; t) =  R(x�), and only
the a+ component couples to it. On the other hand eq.(35) indicates that � will have

both right- and left-moving modes, i.e., �(x; t) = �(x+) + �(x�), but source only

couples to the right-moving modes through @��(x�). To compare from symmetry

point of view, we add a local counterterm, i
�
a�a

�, to the eq.(31) and it changes eq.(33)

to the following form:

SRB[�; a�] =

Z
d2x[�1

2
(@��� 1p

2�
a�)(@

��� 1p
2�
a�) +

1

2
p
2�

����F
��
a ] (36)

where F��
a = @�a� � @�a�. Under �a� = @�� and �� = 1p

2�
� transformation, the

bosonic action has the following \classical" anomaly:

�SRB[�; a�] =
1

4�

Z
d2x����F

��
a (37)

which reproduces the quantum chiral anomaly of fermion theory [8]. This illustrates

our claim about abelian chiral bosonization as a duality transformation.

Discussion

We have shown how to bosonize massless Dirac fermionic theory through gauging

its chiral phase symmetry. The gauging of the chiral symmetry results in the addition

of an A� �eld which is then constrained so that it vanishes everywhere. Also new scalar

boson �eld is introduced into the theory by writing part of �[A�] as functional Fourier

transform. This new scalar �eld is a Lagrange multiplier implementing �[@ �A] in the

case q = �1, implementing �[1
2
���F�� ] in the case q = 1 and one is free to choose
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either of them in other cases. Thus one is able to bosonize chiral fermion theory by

exploiting chiral phase symmetry. In this example, q = 0, we were free to choose the

scalar �eld as the Lagrange multiplier of �[@ �A] or �[1
2
���F�� ].

We now ask the question of why in the case q 6= �1 both constraints appear on

the same footing whereas in the case of q = �1 they do not. The answer is that, in

q 6= �1 case, if one implements both constraints and integrates out  and A�, one ends

up with a nonlocal action containing two indistinguishable scalar �elds, the Lagrange

multipliers of �[@ � A] and �[1
2
���F�� ]. The local dual action may then be obtained

by integrating out either one of them. In contrast, in the case q = 1, after integrating

out  and A�, one ends up with a local action in terms of the Lagrange multiplier of

�[1
2
���F�� ] only and similarly in the case q = �1, in terms of the Lagrange multiplier

of �[@ �A]. In each cases the second Lagrange multipler appears trivially in R D��[2�]
and so it can be ignored.

New bosonic �elds could be introduced in to the theory in a slightly di�erent way

through writing �[A�] as functional Fourier transform. In this case the Lagrange

multiplier is a contravariant vector, 
�. In topologically trivial space-time one can

make a change of variables to A� � @�A + ���@
�B and 
� � @�! + ���@�� where

A ;B ; ! and � are scalars. Integrating out  , A and B, one ends up with the same

result as in the previous paragraph for di�erent q's.

Our extended work on duality illustrates that a theory can be dualized by gauging

any of its classical symmetries irrespective of quantum anomalies. Although the dual

of Dirac massless fermion is always the same for any choice of q, it may be possible to

discover models in which two dual theories are di�erent. We also remark that the result

of this paper also shows that in cases in which the original theories have no quantum

symmetries but only classical symmetries such as chiral fermion theories one can still

use these techniques to �nd their dual theories. Therefore, it may be interesting to

extend the present example, abelian chiral bosonization, to the nonabelian case [9]

which also has only classical symmetry.

There are other path integral approaches to abelian bosonization [10]. Smooth

bosonization depends on introduction of a collective �eld through a local chiral trans-

formation,  (x) = exp[i�(x)3]�(x). By using a Fadeev-Popov type trick, �(x) is

promoted to a dynamical �eld and theory containing both �elds becomes gauge in-

variant. In this method the pure bosonic or fermionic theory emerges through two

di�erent gauge �xings of the enlarged action. This method may be extended if one use

 (x) = exp[ i
2
(q + 1)�(x) + i

2
(q � 1)�(x)3]�(x) as the local chiral transformation.
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