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ABSTRACT

We present dyonic multi-membrane solutions of the N=2 D=8 supergravity

theory that serves as the e�ective �eld theory of the T 2-compacti�ed type II su-

perstring theory. The `electric' charge is fractional for generic asymptotic values

of an axion �eld, as for D=4 dyons. These membrane solutions are supersymmet-

ric, saturate a Bogomolnyi bound, �ll out orbits of an Sl(2;Z) subgroup of the

type II D=8 T-duality group, and are non-singular when considered as solutions of

T 3-compacti�ed D=11 supergravity. On K3 compacti�cation to D=4, the conjec-

tured type II/heterotic equivalence allows the Sl(2;Z) group to be reinterpreted as

the S-duality group of the toroidally compacti�ed heterotic string and the dyonic

membranes wrapped around homology two-cycles of K3 as S-duals of perturbative

heterotic string states.



1. Introduction

A feature of recent developments in superstring theory is the emerging impor-

tance for a variety of non-perturbative phenomena of extended object, or `p-brane',

solutions of the classical string theory. In particular, these solutions are crucial for

an understanding of the various conjectured duality symmetries of both the het-

erotic and type II superstrings (see [1] for a recent review). It is customary to call

a p-brane `electric' if it is the source for a (p+1)-form potential in the e�ective �eld

theory Lagrangian and `magnetic' if it is the source for the dual (D � p � 3)-form

potential. The word `source' may need some explanation here: one �rst solves

the source-free equations of motion of the e�ective �eld theory; it is necessary to

introduce an actual, `fundamental', source only if the analytic continuation of the

source-free solution meets with a (timelike) singularity. Otherwise, no source is

needed, but here one can interpret the extended object solution as an e�ective

source on length scales that are long compared to the size of the object's core.

In a D-dimensional spacetime the magnetic dual of an electric p-brane is a

~p-brane, where ~p is related to p by [2]

~p = D � p � 4 : (1:1)

It follows that a p-brane can carry both electric and magnetic charge only if

D = 2p + 4 ; p = 0; 1; 2; : : : (1:2)

The simplest case isD = 4 for which there arises the possibility of particles carrying

both electric and magnetic charge, i.e. dyons. The next simplest case is D = 6 for

which there exists the possibility of dyonic strings. In fact, one can �nd a self-dual

string in D = 6, which is intrinsically dyonic because the two-form potential to

which it couples has a self-dual �eld strength [3]. This feature makes the D=6

case rather di�erent from D=4, so we shall move on to the next case which is
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that of membranes, i.e. p = 2, in D=8
?
. In this case we need a Lagrangian with

a three-form potential. The unique D=8 supersymmetric �eld theory with this

property is N=2 D=8 supergravity [5], which is the e�ective �eld theory for the

T 2-compacti�ed type II superstring. This article reports on the construction of

dyonic multi-membrane solutions of this e�ective �eld theory.

The N=2 D=8 supergravity theory has an Sl(3;R)�Sl(2;R) symmetry of the

equations of motion. The discrete subgroup Sl(3;Z) � Sl(2;Z) was conjectured

in [6] to extend to a U-duality of the D=8 type II superstring theory; this group

contains the T-duality group SO(2; 2;Z) � [Sl(2;Z) � Sl(2;Z)]=Z2. There is a

consistent truncation of the N=2 D=8 supergravity in which the only surviving

�elds are the spacetime metric, g�� , a scalar, �, a pseudoscalar � and a three-form

gauge potential, A, with four-form �eld strength F = dA. The Lagrangian of this

truncated theory is

L = N

(
p�g�R� 2@��@

�� � 2e4�@��@
��� 1

12
e�2�F��
�F

��
�
�

� 1

144
"������
��F����F��
�

)
;

(1:3)

where N is a normalization factor, which we can choose at our convenience. The

coe�cient of the "�FF term is crucial to the results to follow so we should point

out that we disagree by a factor of three with the coe�cient of this term given

in [5]. The coe�cient can be simply determined by dimensional reduction of the

D=11 supergravity theory, which was the method used in [5], but this leads to the

coe�cient used here rather than that of [5].

The � and � kinetic terms of (1.3) constitute a sigma model with target space

? During the preparation of this paper an article, chie
y about D=6 dyonic strings and their

D=10 interpretation, appeared in which the possibility of dyonic membranes in D = 8 was

noted [4].
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Sl(2;R)=U(1). It is convenient to introduce the complex �eld

� = 2� + ie�2� ; (1:4)

taking values in the upper half complex plane, since the Sl(2;R) group acts on � by

fractional linear transformations. Since the asymptotic value of � is undetermined

by the equations of motion, the possible vacua correspond to points in the upper

half plane. However, T-duality of the type II D=8 superstring theory implies

that points that lie in an orbit of an Sl(2;Z) subgroup of Sl(2;R) correspond to

equivalent vacua. Thus, the moduli space of vacua in the string theory context is,

assuming T-duality, the fundamental domain of SL(2;Z) in the upper half complex

plane.

We shall be interested in in�nite planar membrane solutions of the equations

of motion of (1.3) that are asymptotically 
at as one approaches spatial in�nity

in non-coplanar directions; we shall call this `transverse spatial in�nity', which is

topologically S4 � R2. Membrane solutions can be characterised by their electric

and magnetic number densities

q =
N

e

I
G p =

e

2�

I
F (1:5)

where the integral is over a 4-sphere cross-section of transverse spatial in�nity, e is

an arbitrary unit of `electric' charge, and the two-form G is related to the Hodge

dual ~F of F by

G � e�2� ~F � 2�F : (1:6)

We shall require an asymptotic translational invariance in directions coplanar with

the membrane so that these number densities are actually constant; we shall refer

to these constants as the membrane `charges'. Their conservation follows from

the fact that the combined equations of motion and Bianchi identities of the �eld-
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strength four-form F can be written as dF = 0 where F is the Sl(2;R) doublet

F = (F;G) : (1:7)

We shall choose the constants N and e such that

q =
1


4

I
G p =

1


4

I
F (1:8)

where 
4 = 2�2 is the volume of the unit 4-sphere. With this choice, the charges

(p; q) form an Sl(2;R) doublet.

As shown in [2], the electric and magnetic charges of extended objects are

subject to a generalization of the Dirac quantization condition. However, just as

the Dirac quantization condition must be replaced, in the context of dyons, by the

Schwinger-Zwanziger quantization condition so, in the context of dyonic extended

objects, the Nepomechie-Teitelboim (N-T) quantization condition must be replaced

by an extended object analogue of the Schwinger-Zwanziger quantization condition.

With the above choice of normalization constant, N , and electric charge unit, e,

this generalized N-T quantization condition for two dyonic membranes with charges

(p; q) and (p0; q0) takes the simple (manifestly Sl(2;R) invariant) form

qp0 � q0p 2 Z: (1:9)

As for dyons in D=4 [7], this formula allows fractional q for dyonic membranes, but

the consequences for dyonic membranes are not quite the same as those for dyons

because one cannot take for granted the existence of purely electric membranes in

the quantum theory.

In [8] it was shown how an analogue of the Bogomolnyi-Gibbons-Hull bound

for particle-like solutions of Maxwell/Einstein theory can be derived for p-brane

solutions of certain antisymmetric tensor generalizations of Maxwell/Einstein the-

ory. The precise interactions of the antisymmetric tensor �eld, e.g. the coe�cient
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of possible Chern-Simons terms was crucial to this result. In all cases, the interac-

tions were precisely those for which the bosonic �eld theory could be interpreted

as a consistent truncation of a supergravity theory. Since this condition is satis�ed

by the Lagrangian (1.3) one would expect to be able to derive a similar bound

on the tension of membrane solutions of its equations of motion; this case is not

covered by the results of [8] because Lagrangians with scalar �elds were not con-

sidered there. This expectation is correct; we shall show that the tension, M , of

membrane solutions of (1.3) satis�es the Sl(2;R) invariant bound

M2 � 1

4

h
e2h�i

�
q + 2h�ip

�2
+ e�2h�ip2

i
; (1:10)

where h�i and h�i are the asymptotic values of � and �.

Solutions which saturate the bound are `supersymmetric' in that they admit

Killing spinors. The purely electric and magnetic D=8 supersymmetric membrane

solutions, with � � 0, have been given previously [3]. The supersymmetric mem-

brane solutions we construct here di�er in that they have non-constant axion �eld

and carry both electric and magnetic charge, i.e. they are `dyonic'. There is a

U(1) parameter family of these solutions for each value of the asymptotic values

of � and �, corresponding to the U(1) stability subgroup of Sl(2;R) acting on the

upper-half plane by fractional linear transformations. Although only a Z2 family

of these will survive quantization, the identi�cation of vacua related by a trans-

formation in the Sl(2;Z) T-duality subgroup of Sl(2;R) allows us to �nd Sl(2;Z)

orbits of membrane solutions about equivalent vacua, as has been done previously

for particle-like solutions in D=4 [9]. Almost all such solutions are dyonic.

One motivation for our work derives from a recently suggested D=8 mem-

brane/membrane duality [10]. The point here is, �rstly, that while the purely

electric membrane solution of N=2 D=8 supergravity theory can be interpreted

as the membrane solution of D=11 supergravity in a T 3 compacti�ed spacetime,

the purely magnetic one can be interpreted as a double dimension reduction of the
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�vebrane solution of D=11 supergravity
?
. Secondly, the worldvolume action of

this magnetic membrane is that of a D=11 supermembrane in a T 3 compacti�ed

spacetime (and not that of a D=8 supermembrane, as one might have guessed;

the extra three coordinates come from the antisymmetric tensor in the �vebrane's

worldvolume action). This suggests a complete non-perturbative equivalence be-

tween the electric and magnetic membranes. This equivalence would be guaranteed

in string theory by non-perturbative T-duality. Unfortunately, this cannot be es-

tablished in string perturbation theory, but one can reverse the logic and use the

evidence of membrane/membrane duality given in [10] and the results presented

here as evidence for the non-perturbative validity of T-duality.

Another motivation comes from the conjectured non-perturbative equivalence

of the K3 � T 2 compacti�ed type II superstring theory with the toroidally com-

pacti�ed heterotic string theory [6], for which there is now considerable evidence.

Many recent papers dedicated to tests of this conjecture have taken as their starting

point the related conjecture that the D=6 string theories obtained by compacti-

�cation of the type IIA superstring on K3 and the heterotic string on T 4 are

non-perturbatively equivalent [11]. Given this D=6 equivalence, the equivalence in

D=4 follows upon further compacti�cation on T 2. S-duality of the heterotic string

[12,13] can then be re-interpreted as T-duality of the type II superstring [14,11].

This approach to understanding D=4 S-duality via the heterotic/type II equiva-

lence can be characterised by the motto \10 to 6 and then to 4". Our work can be

viewed as a �rst step towards an understanding of heterotic S-duality via the alter-

native \10 to 8 and then to 4" approach. The �rst step is a T 2 compacti�cation of

both the type II and the heterotic string to D=8. A subsequent compacti�cation of

the D=8 type II superstring on K3 is then expected to lead to a D=4 string theory

that is equivalent to the T 4 compacti�ed D=8 heterotic string. Because K3 has no

isometries, the full T-duality group of the D=4 type II superstring theory obtained

in this way must be already apparent in D=8. Type II/heterotic duality implies

? This was stated in [10]; here we verify it.
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that some Sl(2;Z) subgroup of this Sl(2;Z)� Sl(2;Z) T-duality group should be

identi�ed with the S-duality group of the heterotic string, and the relevant sub-

group is precisely the Sl(2;Z) T-duality subgroup that acts on dyonic membrane

solutions of (1.3).

This can be seen (assuming the type II/heterotic equivalence) from the origin

in the D=8 type II superstring of the 28 vector potentials of the e�ective D=4

Maxwell/Einstein N=4 supergravity theory. Six of them come from the six vector

potentials that are already present in D=8; these were discarded in the truncation

leading to (1.3). The remaining 22 come from the three-form potential A of (1.3)

or, equivalently, its �eld-strength four-form F, via the ansatz

F (x; y) = F I(x) ^ !I(y) ; (1:11)

where !I span the 22-dimensional space of harmonic two-forms on K3 (coordi-

nates y) and F I are the 22 Maxwell �eld-strength two-forms of the D=4 spacetime

(coordinates x). Since we discarded the six D=8 vector potentials, the D=8 La-

grangian (1.3) yields a D=4 Lagrangian with only 22 of the 28 vector potentials of

the full e�ective supergravity theory and an Sl(2;R)� SO(3; 19) symmetry group

of the equations of motion. When this D=4 theory is viewed as a truncation of

the e�ective supergravity theory of the D=4 heterotic string the SO(3; 19) group is

clearly the subgroup of the full SO(6; 22) `classical' T-duality group that survives

the truncation of the six vector potentials, so the Sl(2;R) subgroup can only be

identi�ed with the `classical' S-duality group of the heterotic string.

In the following, we begin with a presentation of the dyonic membrane solutions

of the �eld equations of the Lagrangian (1.3). We then explain how these solu-

tions were found and why their tension saturates a Bogomolnyi-Gibbons-Hull type

bound. We also exhibit the Killing spinors admitted by these solutions, thereby

establishing their supersymmetry. We then discuss the global structure of the dy-

onic membranes and their interpretation as solutions of D=11 supergravity. We

conclude with some further comments on the signi�cance of our results.
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2. D=8 dyonic membranes

The �eld equations of the Lagrangian (1.3) are

G�� = 2T��

@�
�p�g e�2�F ����

�
= �2

�
@��
�
~F ����

@�
�p�g e4�@��� = 1

24
F���� ~F

����

@�
�p�g @��� = p�g�2e4�(@�)2 � 1

24
e�2�F 2

�
;

(2:1)

where

T�� =
�
@��@�� � 1

2
g��(@�)

2
�
+ e4�

�
@��@�� � 1

2
g��(@�)

2
�

+
1

6
e�2�

�
F���
F�

��
 � 1

8
g��F

2
�
;

(2:2)

and

~F ���� � 1

24
"������
�F��
� : (2:3)

We shall consider �eld con�gurations representing an in�nite planar membrane and

choose coordinates such that it is aligned with the x1 � y and x2 � z axes. We shall

look for product metrics in which the metric of the �ve-dimensional `transverse'

space is conformally 
at and may therefore be parameterised by the coordinates

x � (x3; : : : ; x7) of an associated �ve-dimensional Euclidean space, E 5. There

are certainly many solutions of the �eld equations (1.3) within this class of �eld

con�gurations, but we shall concentrate on those that admit Killing spinors. We

shall �rst present these solutions. Then, in the following section, we shall explain

how they were obtained and why they are supersymmetric. We shall present the

solutions in terms of the complex �eld � de�ned in (1.4). If we �x boundary

conditions such that the spacetime is asymptotically 
at as jxj ! 1, and such

that

�! i ; (2:4)

then the following multi-membrane �eld con�gurations solve (2.1) for arbitrary
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angular parameter �:

ds2 = H�
1

2 [�dt2 + dy2 + dz2] +H
1

2dx � dx
F =

1

2
cos � (?dH) +

1

2
sin � dH�1 ^ dt ^ dy ^ dz

� =
sin 2� (1�H) + 2iH

1

2

2(sin2 � +H cos2 �)
:

(2:5)

Here, the symbol ? indicates the Hodge dual in E 5 and

H = 1 +

NX
n=1

�n

jx� xnj3 (2:6)

for n arbitrary constants �n associated with the N points x = xn, for any �nite

value of n. That is, H(x) solves the Laplacian on E 5 with an arbitrary number of

point sources and such that H ! 1 as jxj ! 1. The constants �n are proportional

to the ADM tension of each membrane solution. Speci�cally, for a one membrane

solution with parameter � the ADM tension is

M =
3

4
� : (2:7)

We have presented the solutions for a specially chosen asymptotic value of �

because a solution with any other asymptotic value of � can be found by making

use of the Sl(2;R) invariance of the �eld equations. As stated earlier, this Sl(2;R)

group acts on � by fractional linear transformations:

�! a�+ b

c� + d
; (2:8)

where a; b; c; d are real numbers such that ad� bc = 1. The Sl(2;R) group acts on

the four-form doublet F = (F;G) by a generalization of electromagnetic duality.
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Speci�cally, if � is transformed as in (2.8), then the associated transformation of

F is

F ! (F;G)

 
d �b
�c a

!
: (2:9)

Since there is a U(1) isotropy subgroup of Sl(2;R) that does not change the

asymptotic value, h�i, of �, there must be a U(1) family of solutions for each choice

of h�i. This is the signi�cance of the angular parameter � in (2.5). This U(1) group

is an analogue of the electromagnetic duality group since it takes a purely electric

or purely magnetic solution into a dyonic one. Thus, the general solution of (2.5)

can be obtained by a U(1) transformation of the purely magnetic solution

ds2 = H�
1

2 [�dt2 + dy2 + dz2] +H
1

2dx � dx
F =

1

2
? dH

� = iH�
1

2 :

(2:10)

However, because of charge quantization, this classical U(1) symmetry will be

broken to Z2 in the quantum theory; there will be some `preferred' value of h�i
for which only the purely electric or purely magnetic solutions survive (by analogy

with D=4 dyons one might suppose that h�i = i is the `preferred' value; we shall

examine this hypothesis in more detail later). It might therefore appear that the

more general dyonic membrane solutions of (2.5) are irrelevant to the type II string

theory, at least for the `preferred' value of h�i. However, the sigma-model target

space of (1.3) is only required by supersymmetry to be locally isometric to the coset

space SL(2;R)=U(1). It may di�er globally since it is possible to identify points on

this space that di�er by the action of Sl(2;Z). Thus, the true sigma-model space

could be

M = Sl(2;Z)nSl(2;R)=U(1) : (2:11)

In this case the true moduli space is not the entire upper-half �-plane but rather the

fundamental domain of Sl(2;Z) in the upper half plane. In the context of the D=8
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type II superstring theory, T-duality implies that this is indeed the true moduli

space of vacua, so vacua which di�er by the action of Sl(2;Z) should be identi�ed.

Thus an Sl(2;Z) transformation of the purely magnetic membrane solution (2.10)

will produce a new solution with a di�erent, but equivalent, value of �, and this

solution will have an e�ective non-zero value of �, i.e. it will be dyonic.

Actually, we shall �nd a more general class of dyon solutions by applying this

procedure to the dyonic solutions (2.5) rather than to the purely magnetic solution

(2.10), i.e. we allow for an arbitrary initial value of the angular parameter �. First

we make an Sl(2;R) transform of the solution (2.5)to arrive at

ds2 = H�
1

2 [�dt2 + dy2 + dz2] +H
1

2 dx � dx
F =

1

2
e2h�i

�
cos ? dH + sin dH�1 ^ dt ^ dy ^ dz

�

� = 2h�i + e�2h�i � (1 �H) sin 2 + 2iH
1

2

2(H cos2  + sin2  )
;

(2:12)

where

e�2h�i =
1

c2 + d2
; 2h�i = bd+ ac

c2 + d2
; (2:13)

and the new angular parameter  is given by

tan =
d sin � + c cos �

d cos � � c sin �
: (2:14)

Then, we restrict a; b; c; d to be integers to obtain the dyon solutions with h�i �= i.

By construction, these solutions form a representation of Sl(2;Z). Note that the

set of dyon solutions obtained in this way will contain a purely magnetic solution

if and only if tan � is rational. If this condition is satis�ed then there will also be

a purely electric solution.

Clearly, a similar set of dyonic membrane solutions can be found for any other

initial choice of h�i. However, if initially h�i 6= i, then the Sl(2;Z) subgroup is

not found by simply restricting a; b; c; d to be integers. Rather, the elements of the

Sl(2;Z) subgroup are similarity transforms of matrices with integer entries.
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3. Killing spinors and the Bogomol'nyi Bound

We have claimed that the dyonic membrane solutions presented above are

supersymmetric, i.e. that they admit Killing spinors. We shall now elaborate on

this point. A Killing spinor is a spinor �eld, �, that is in the kernel of a �rst-order

Lorentz-covariant Dirac-type operator D̂, i.e. D̂� = 0, where a minimal condition

on D̂ is that the vector �eld ��
�� is Killing if � is. In the context of �eld theories

with scalar and vector �elds, this condition limits, but does not de�ne, D̂. Within

the context of a supergravity theory, D̂ is de�ned by the gravitini transformation

laws, but an alternative intrinsic de�nition is possible in the context of an a priori

arbitrary bosonic Lagrangian via the modi�ed Nester tensor

Ê�� =
1

2
������D̂��+ c:c: : (3:1)

This is because the operator D̂ is �xed, if it exists, by the requirement that

D�Ê
�� = D̂�� �

���D̂��� 1

2
����� ; (3:2)

as a consequence of the �eld equations, for some complex spinor �. This re-

quirement also �xes �. The signi�cance of the relation (3.2) is that it allows the

derivation of a bound on the mass per unit p-volume, i.e. the tension, of con-

�gurations that are subject only to the boundary conditions at transverse spatial

in�nity satis�ed by p-brane solutions of the equations of motion [8]. It can happen

that the �eld equations of a given Lagrangian are such that (3.2) is not satis�ed

by any operator D̂ for any spinor �. In this case a bound on the tension cannot

be derived by this method. Conversely, requiring that such a bound be derivable

in a Lagrangian whose interactions are parameterised by arbitrary functions of the

scalar �elds can �x these functions. For example, allowing arbitrary interactions

of � consistent with the requirement that the �eld equations be of second order,

and an arbitrary coe�cient of the �F ~F term, one �nds that the only Lagrangian

in this class for which an energy bound on the membrane tension can be derived

is precisely the Lagrangian of (1.3).
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For the case in hand, one �nds that

D̂�� � D��� 1

2

9� e

2�@��+
1

96
���
���� e

��F��
� ; (3:3)

and

� = ��� @�� � 
9�
�� e2�@�� � 1

48
���
�� e��F��
� : (3:4)

The matrix 
9 is de�ned by


9 = �0�1 � � ��7 (3:5)

where the underlining indicates a 
at space Dirac matrix. It follows from (3.3)

that

Ê�� = E�� � 1

2
e2�(������
9�)@��� 1

4
e����(F ������� � ~F �������
9)� (3:6)

where E�� is the standard Nester tensor. Note that the Dirac conjugate � of a

spinor  is de�ned by

� =  y�0 ; (3:7)

so that � �0 is negative de�nite. Note also that the Lorentz invariant �  is pure

imaginary; this follows from the fact that this invariant vanishes identically when

 is Majorana
?
.

As explained in the introduction, the relevant concept for de�ning membrane

charges is transverse spatial in�nity, which has topology S4 �R2. It is convenient

to choose periodic boundary conditions to convert this to S4�T 2, i.e. we consider

the membrane to be wrapped around a large two-torus. The energy per unit area,

? To see this, choose the Majorana basis in which the matrices �� are pure imaginary (in

D=4, with the same metric convention they would be all real). But �0 is anti-Hermitian,

because it is unitary and squares to one, so �0 is symmetric in the Majorana basis (in fact,

equal to i times the charge conjugation matrix, which is symmetric in D=8). But, in this

basis a Majorana spinor is real, so that �  =  T�0 for real spinor  , which vanishes by

symmetry.
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M , is then the, now �nite, total energy divided by the volume, V2, of the two-

torus. This energy can expressed as an integral over the S4�T 2 surface at spatial

in�nity. Speci�cally, if P is the total transverse 6-momentum per unit area, such

that M =
p
�jPj2, then [8]

��1� �P�1 =
1

2V2
4

I
1

dS��E
�� ; (3:8)

where 
4 is the volume of the unit 4-sphere. With appropriate asymptotic fall o�

conditions on the metric, and assuming that

�! �1 (3:9)

as jxj ! 1, for some constant spinor �1, (3.8) can be rewritten as

��1� �P�1 =
1

2
4

I
1

dSijE
ij ; (3:10)

where the integral is now over the 4-sphere at spatial in�nity and the index i is

associated with the coordinates x of the transverse space.

Assuming that the only components of F that are non-vanishing at transverse

spatial in�nity are Fijkl and Ftyzi, and that these components depend asymptoti-

cally only on xi, one has that

1

2V2
4

I
1

dS��Ê
�� =

1

2
4

I
1

dSijÊ
ij

= ��1

h
� �P� 1

8
4

e�h�i�kl

I
1

dSij

�
F ijkl � ~F ijkl
9

�i
�1 ;

(3:11)

since the @� term in (3.6) does not contribute to the integral. From the de�nitions
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(1.8) of the charges (p; q) one then �nds that

1

2V2
4

I
1

dS��Ê
�� = ��1K�1 (3:12)

where

K = � �P� 1

2

h
eh�i(q + 2h�ip)�yz � e�h�ip �yz
9

i
: (3:13)

Using Gauss's law, the relation (3.2), and choosing � to satisfy a `modi�ed Witten

condition', one can prove that the integral on the left hand side of (3.12) is positive,

subject to the usual assumptions. It follows that the Dirac matrix K is positive

semi-de�nite, which implies the bound (3.11) quoted in the introduction.

This bound is saturated by solutions of the equations of motion for which there

exists a spinor � such that

D̂�� = 0 ; � = 0 : (3:14)

Non-trivial solutions of these relations, i.e. those for which M 6= 0, require � to

satisfy a condition of the form

�
�(x)�� + �(x)��
9

�
�(x) = �(x) ; (3:15)

where

�� = �0�1�2 : (3:16)

and � and � are functions such that

�2 + �2 = 1 : (3:17)

This can be seen from the fact that the spinor � must be an eigen-spinor of the

matrix K with zero eigenvalue. The angular parameter � enters into the solutions
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(2.5) as the limit of the ratio of the functions � and �, i.e.

lim
jxj!1

��
�

�
= tan � : (3:18)

The multi-dyon solutions (2.5) were obtained by substituting an appropriate

ansatz into the relations (3.14). The constraint (3.15) reduces the dimension of

the space of Killing spinors to half that of the constant Killing spinors of the

vacuum. Thus, the solutions we �nd in this way will break half the supersymmetry.

Furthermore, they saturate the bound (3.11) by construction, so their membrane

tension is given by the formula

M2 =
1

4

h
e2h�i(q + 2h�ip)2 + e�2h�ip2

i
: (3:19)

where M is related to the constants �n appearing in the solutions by

M =
3

4

NX
n=1

�n : (3:20)

Since this applies for any value of N we may suppose that each �n satis�es a

similar bound so that, in particular, �n � 0. In this case, the only singularities

of the metric are at the `centres' x = xn. The question whether these are real

singularities or merely coordinate singularities will be addressed in the following

section. From (2.9) we see that the Sl(2;R) transformation of (p,q) is

(p; q)! (p; q)

 
d �b
�c a

!
: (3:21)

Given that h�i and h�i are also transformed according to (2.8), the SL(2;R) in-

variance of the formula (3.19) is easily veri�ed.
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The above procedure has the advantage that it not only yields the solutions ad-

mitting Killing spinors, for given boundary conditions, but also the Killing spinors.

For the solutions (2.5) one �nds that

� =
1p
2
H�

1

8 (H cos2 � + sin2 �)�
1

4

n�
(sin2 � +H cos2 �)

1

2 +H
1

2 cos �
� 1
2+

�
(sin2 � +H cos2 �)

1

2 �H
1

2 cos �
� 1
2 
9

o
�0 ;

(3:22)

where the constant spinor �0 must satisfy

��
9�0 = �0 ; (3:23)

in order that � satisfy the constraint (3.15). It follows that the space of Killing

spinors is half that of the vacuum solution, as anticipated. The expression (3.22)

for the Killing spinor � can be rewritten as

� = e
1

2
�
9H�

1

8 �0 ; (3:24)

where

tan � = H�
1

2 tan � : (3:25)

Note that these spinors vanish at the zeros of H�1.

In order to show that the SL(2;R) transform of the solutions (2.5), for which

h�i 6= i, are also supersymmetric it su�ces to show that the conditions (3.14) are

SL(2;R) invariant. Let us denote by D̂(�;F) the covariant derivative D̂ in (3.3),

thereby making explicit the dependence of this di�erential operator on the �elds.

Under the SL(2;R) transformation of these �elds, � ! �0 and F ! F 0 (given

explicitly in (2.8) and (2.9)), one can show that

D̂(�0;F 0) = e
1

2
�
9D̂(�;F)e� 1

2
�
9 (3:26)

where

tan � =
�ic(�� ��)

2d+ c(� + ��)
; (3:27)

i.e. D̂(�;F) is an Sl(2;R)-invariant covariant derivatve. If we take the Sl(2;R)
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transform of � to be

�0 = e
1

2
�
9� ; (3:28)

then

D̂(�0;F 0)�0 = e
1

2
�
9D̂(�;F)� ; (3:29)

Similarly, if �(�;F) is the spinor of (3.4) then one can show that

�(�0;F 0) = e�
1

2
�
9�(�;F) : (3:30)

It follows that given background �elds and a Killing spinor � satisfying the condi-

tions (3.14) for h�i = i, then the spinor

�0 = e
1

2
(�+�)
9H�

1

8 �0 (3:31)

satis�es the same conditions for the Sl(2;R) transformed solution with new asymp-

totic value h�0i 6= i. Incidentally, this result establishes the Sl(2;R) invariance of

the modi�ed Nester tensor Ê�� (assuming the above transformation property of �)

and the invariance of the Bogomolnyi bound is an immediate consequence of this.

4. Singularity structure

We now turn to the singularity structure of the dyonic membrane solutions

(2.5). Near a zero of H�1 we have

H � �

r3
(4:1)

where

r � jx� xnj : (4:2)

The asymptotic metric is

r
3

2 (�dt2 + dy2 + dz2) +
dr2

r
3

2

+ r
1

2d
2
4 (4:3)

where d
2
4 is the metric on the unit 4-sphere. One sees from this result that the
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proper distance to r = 0 on a surface of constant t; y; z is �nite, and that the radius

of the four-sphere of constant r on this surface shrinks to zero as r! 0. It follows

that the `lines' of force of F must end on a singularity at r = 0.

It is instructive to consider the membrane spacetime in the metric

d~s2 = e2�ds2 ; (4:4)

for which

d~s2 = (cos2 � +H�1 sin2 �)[�dt2 + dy2 + dz2] + (sin2 � +H cos2 �) dx � dx : (4:5)

The purely electric case now has a timelike naked singularity at zeros ofH�1, i.e. at

a membrane core, so it would have to be identi�ed with a fundamental membrane.

For this reason, one might choose to call the metric d~s2 the `membrane metric'.

Note that it would be the `string metric' if � were the dilaton, but � is not the

dilaton. In this `membrane metric' the metric for a membrane carrying magnetic

charge approaches the asymptotic metric

d~s2 � cos2 �
n
[�dt2 + dy2 + dz2] +H dx � dx

o
(4:6)

near any of the membrane cores. Since H � �
r3

in this limit, we now �nd that the

proper distance to r = 0 is in�nite on a hypersurface of constant t; y; z. Moreover,

this remains true for timelike and null geodesics. Thus, the dyonic multi-membrane

solutions are geodesically complete in the `membrane' metric provided that the

magnetic charge is non-zero.

Because � is not the dilaton, the interpretation of the above result within string

theory is unclear
?
. Moreover, the fact that the D=8 dyonic membrane solutions are

singular in the Einstein metric, which coincides with the string metric in the type

? However, � can be interpreted as the dilaton of the equivalent heterotic theory after com-

pacti�cation to D=4 on K3.
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II superstring theory context, must be considered a di�culty. Fortunately, this

di�culty has a simple resolution if one considers the dyonic solutions as solutions

of D=11 supergravity, which can be viewed as an e�ective action for the strongly

coupled type IIA superstring [15,11]. Consider the following 11-metric and four-

form

ds211 = e
2

3
�ds28 + e�

4

3
� du � du

F11 = F + 6du1 ^ du2 ^ du3 ^ d� ;
(4:7)

where u are the coordinates of T 3 and F is a �eld strength four-form (F=dA) of

the eight-dimensional spacetime. This �eld con�guration solves the equations of

D=11 supergravity if the 8-metric, four-form F , and scalar �elds � and � solve

the D=8 �eld equations (2.1). This allows us to lift the D=8 dyonic membrane

solutions (2.5) to D=11. The result is

ds211 = H�
2

3

h
sin2 � +H cos2 �

i 1

3

(�dt2 + dy2 + dz2)

+H
1

3

h
sin2 � +H cos2 �

i 1

3

dx � dx+H
1

3

h
sin2 � +H cos2 �

i� 2

3

du � du

F11 =
1

2
cos �(?dH) +

1

2
sin � dH�1 ^ dt ^ dy ^ dz

� 3 sin 2�

2[sin2 � +H cos2 �]2
du1 ^ du2 ^ du3 ^ dH :

(4:8)

In the purely electric case, cos � = 0, we have

ds211 = H�
2

3 (�dt2 + dy2 + dz2) +H
1

3

�
dx � dx+ du � du�

F11 =
1

2
dH�1 ^ dt ^ dy ^ dz :

(4:9)

The harmonic function H(x) can now be interpreted as a harmonic function on

E
5 � T 3. The only di�erence between this solution of D=11 supergravity and the

multi-membrane solution found in [16] is that there H was a harmonic function

on E 8. Thus, the solution (4.9) can be interpreted as a D=11 membrane in a

background spacetime of topology M6 � T 3 instead of M11, where Mk indicates a

k-dimensional Minkowski spacetime.
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In the purely magnetic case, sin � = 0, we have

ds211 = H�
1

3 (�dt2 + dy2 + dz2 + du � du) +H
2

3dx � dx
F11 =

1

2
? dH ;

(4:10)

which is the �vebrane solution of D=11 supergravity [17], except for the periodic

identi�cation of the T 3 coordinates. We can therefore interpret the purely mag-

netic D=8 membrane as a D=11 �vebrane wrapped around a three-torus. The

D=11 multi-�vebrane solution of [17] is geodesically complete [8], the singular-

ities of H being degenerate Killing horizons, so the singularity of the magnetic

D=8 membrane solution is resolved by its interpretation in D=11, apart from mild

singularities introduced by the periodic identi�cation of the T 3 coordinates.

These results for the purely electric and purely magnetic D=8 membranes

con�rm the assumption made in [10] concerning their D=11 origin. Now we �nd

that the more general dyonic membrane solution also has a D=11 interpretation.

Although the D=11 solution does not have an obvious p-brane interpretation, it

is non-singular, as we now show. Provided the magnetic charge is non-zero, i.e.

cos � 6= 0, the asymptotic form of the metric ds211 of (4.8) near any zero of H�1 is

ds211 � (cos �)
2

3

(
H�

1

3 (�dt2 + dy2 + dz2 + dv � dv) +H
2

3dx � dx
)
; (4:11)

where we have set u = (cos �)v. Apart from the overall factor the result is indepen-

dent of�. That is, the structure of the dyonic membrane near the singularities of

H is the same as for the purely magnetic case. We conclude that the singularities

of the dyonic membranes are equally resolved in D=11.
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5. Comments

In this paper we have obtained a bound on the tension of membrane solutions

of N=2 D=8 supergravity, and we have found the supersymmetric membrane so-

lutions that saturate this bound. In general these solutions are dyonic. Since N=2

D=8 supergravity is obtained by a T 3 compacti�cation of D = 11 supergravity,

followed by a consistent truncation of the massive modes, the D=8 dyonic mem-

branes can be interpreted as solutions of D=11 supergravity. The purely electric

and purely magnetic D=8 membranes become the D=11 membrane and �vebrane

respectively. The dyonic membranes have no obvious p-brane interpretation but

they are new solutions of D=11 supergravity which are non-singular if the peri-

odic identi�cation of the T 3 coordinates (u) is relaxed. These new solutions are

intermediate between the D=11 membrane and �vebrane solutions. They might

therefore be expected to play a role in the conjectured D=11 membrane/�vebrane

duality [6,10].

The dyonic membrane solutions were given initially for a particular choice of

the asymptotic values of the scalar �elds that parameterise the possible vacua,

but they can then be found for any choice of vacuum by means of an Sl(2;R)

transformation. In the context of type II string theory, an in�nite set of dyonic

membrane solutions can be found, in equivalent vacua, by the action of an Sl(2;Z)

subgroup of Sl(2;R) since this is a subgroup of the SO(2; 2;Z) T-duality group.

As explained in the introduction, this group can be re-interpreted as the S-duality

group of the equivalent heterotic string theory after a compacti�cation of the D=8

type II superstring to D=4 on K3. Some D=4 dyon solutions of the heterotic string

will thereby acquire an interpretation as D=8 dyonic membranes wrapped around

the homology two-cycles of K3. These dyons all correspond to non-perturbative

R-R states in the type II D=4 superstring but, according to the type II/ heterotic

equivalence conjecture, correspond to perturbative states of the heterotic string

and their non-perturbative S-duals. In fact, they must include the dyons that can

become massless at special points in theK3 moduli space [18], as expected from the
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known symmetry restoration of the heterotic string at special points in its moduli

space.

Dyonic membranes have many features in common with dyons. For example,

let us suppose that there is a purely magnetic membrane with charges (p; q) = (1; 0)

when h�i = i; this amounts to the assumption that the choice of � = 0 in (2.5)

is admissable in the quantum theory. Now consider a new vacuum related to the

original one by an Sl(2;R) transformation with the element

 
a b

c d

!
=

 
1 b

0 1

!
: (5:1)

One �nds that h�0i = b+i, or equivalently h�i = 0, 2h�i = b, in the new vacuum and

that the membrane solution in this vacuum has charges (p; q) = (1; b) = (1; 2h�i).
Thus, a dyonic membrane with unit magnetic charge has a fractional electric charge

given by

q = 2h�i (5:2)

This is just the generalization to dyonic membranes of the Witten e�ect for dyons

[7]. The identi�cation of vacua related by an Sl(2;Z) tansformation implies, in

particular, that 2� �= 2�+1, so the value of q for a dyon with unit magnetic charge

will change by one as the asymptotic value of 2� is smoothly continued from 2h�i to
2h�i+1. In the D=4 dyon case, this continuation of h�i can be realized physically

by transport around an axion string. In the D=8 dyonic membrane case it could

be achieved by transport around an axionic �vebrane.

There is, however, a new feature of dyonic membranes not shared by dyons.

To see this, we note that given the existence of a particle with charges (0; 1) in

the vacuum with � = i, the DSZ quantization condition implies that for any other

particle with charges (p; q), necessarily p 2 Z, i.e. while electric charge can be

fractional, magnetic charge cannot be. Had we assumed the existence of a particle

with charges (1; 0) we would have instead deduced that q 2 Z and p could be
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fractional. The DSZ quantization condition does not distinguish between these

possibilities, but perturbation theory does: in string perturbation theory there

exist particles with only electric charge and all semi-classical dyons have integer

magnetic charge. A similar conclusion can be made for any of the vacua in the same

equivalence class of � = i; as we saw earlier for dyonic membranes, the assumption

that there exist purely electric solutions is equivalent to the assumption that tan �

is rational. It seems, therefore, that for dyons the appeal to perturbation theory

allows us to restrict the allowed values of the angular parameter analogous to �,

but the same does not apply to dyonic membranes, at least in the context of type

II superstring theory, because all membrane solutions, electric, magnetic or dyonic,

are non-perturbative.
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