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1 Introduction

The last twenty years the methods dealing with constrained systems dynamics were

essentially developed on the base of BRST method. BRST method was �rst introduced

in [15,16] and [58] for treating the gauge theories and nowadays this method is the most

powerful when dealing with the degenerated Lagrangians in Field Theory.

The BRST method got very elegant mathematical formulation in the Hamiltonian

as well as in the Lagrangian frameworks in the series of remarkable works of Fradkin,

Batalin, Vilkovisky [25,26,10,27] (see also the review [31]) and [11,12,13,14] . |It turns out

that BRST method which in fact is highly developed Lagrangian multipliers method [42]

received its mathematical formulation in terms of the Symplectic Geometry of Superspace.

In general case where the algebra of symmetries of the Theory is not closed o�{shell (i.e.

the commutator of two in�nitesimal symmetry transformations is symmetry transformation

up to equations of motion) the

Superspace = Space of the initial �elds + Odd Space of the ghosts �elds corresponding

to symmetries

(Superspace= Space of the �elds + Odd Space of anti�elds)

provided with the Poisson bracket corresponding to Even (Odd) symplectic structure

is the bag in which can be packed in a very compact and beautiful way all the stu� (con-

straints, structure functions, ghosts,... ) arising during BRST procedure in Hamiltonian

(Lagrangian) frameworks. In both approaches the application of the Symplectic Geometry

is highly formal and technical. But there is an essential di�erence between Hamiltonian

and Lagrangian cases. One cannot say that the necessity of application of Even symplectic

geometry in Hamiltonian framework induced its development in mathematics. It is not

the case for Odd symplectic geometry.

In the pioneer works of Batalin{Vilkovisky [11,12,13,14] the Lagrangian covariant for-

mulation of BRST formalism was constructed. These works in fact contain the construc-

tions which were the beginning of Odd symplectic geometry. The following mathematical

constructions used in these works were proposed for mathematical investigations:

1) The master{equation of the Theory was formulated in terms of Odd Poisson Bracket

2) For formulating a Quantum Master{equation it was introduced the Delta{operator

in the space of �elds{anti�elds (�A;��

A):

� =
@2

@�A@��

A

(1:1)

3) It was considered the group of canonical transformations preserving this operator|

canonical transformations preserving canonical volume form in the space of �elds{anti�elds.

(Canonical transformations do not preserve volume form)

During the years it becomes clear that these mathematical constructions are very

fruitful for mathematical investigations.|They indeed contain a rich and beautiful geom-

etry.
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This paper is mostly devoted to the geometrical problems arising from the construc-

tions of Batalin{Vilkovisky (BV) formalism in the [11,12] and to the interpretation of the

BV formalism in terms of this geometry.

We sketch here brie
y the main properties of Odd symplectic geometry.

On the superspace one can consider Even or Odd symplectic structures given cor-

respondingly by Even or Odd non{degenerated closed two form on it. The analogue of

Darboux Theorem [1] states that there are (locally) the coordinates in which to Even struc-

ture corresponds Poisson bracket which conjugates half of bosonic coordinates to another

half (as for usual symplectic structure on the underlying space) and fermionic coordinates

to themselves. If the symplectic structure is Odd then there are coordinates in which

Poisson bracket conjugates bosonic coordinates to fermionic ones (see [57]).

There is essential di�erence between Even and Odd symplectic structures. Even struc-

ture on a superspace can be considered as a natural prolongation of the usual symplectic

structure from the underlying space. It is not the case for Odd one. Let us consider

following basic example:

Let T �M be cotangent bundle of M with canonically de�ned symplectic structure on

it [1]. By changing the parity of covectors we come from T �M to the superspace ST �M

associated with T �M . The canonical symplectic structure transforms to Odd symplectic

structure.(See for details Section 4). The natural correspondence between polyvectorial

�elds on M and the functions on ST �M transforms Schoutten bracket to Odd Poisson

bracket*

Indeed roughly speaking for physicists the supermathematics often is nothing but

changing of small greek and latin letters on capital letters and putting in the suitable

places the corresponding sign factors|powers of (�1). And very often it is the fact. (See

for example the most part of the formulae in this paper). But there are cases where

the constructions in supermathematics have the properties which radically di�er from the

properties of their ancestors (in a bosonic case). And it is the case when we deal with Odd

symplectic structure.

Like for usual symplectic structure the group of transformations preserving Even

(Odd) symplectic structure is in�nite{dimensional: to every function corresponds vector

�eld{in�nitesimal transformation preserving symplectic structure.** That is why mechan-

ics is meaningful and geometry is very poor. In the case of usual symplectic geometry

canonical transformations "kill" all the invariants except the Liouville volume form (and

corresponded Poincare{Cartan integral invariant). The same happens in supercase.

* It is the reason why one of the names of Odd bracket proposed by Leites [43,45] is

Buttin bracket| In 1969 C. Buttin in [22] investigated the graded algebras of polyvectorial

�elds.

** Symplectic geometry is adequate language for Hamiltonian Mechanics. And more

natural is application of Even and Odd symplectic geometry for formulation of Hamiltonian

mechanics in superspace [43]. The formulation of Hamiltonian mechanics in terms of even

bracket describes the classical mechanics of fermions (See for example [18]). In the middle

of 80{th D.V.Volkov with collaborators proposed to consider odd symplectic structure as

more fundamental for quantization. ([60,61], see also [36]. But till now there is no essential

development in this direction.
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Moreover (and here begins the essential di�erence between Even and Odd structures)

the Odd canonical transformations on the contrary to Even ones do not preserve any

volume form. (If bosonic coordinate x1 is multiplied by 2 and conjugated fermionic one

�1 is divided by 2 then the volume form dx1d�1 is multiplied by 4). So at �rst sight

the Odd symplectic structure have more poor geometry than Even one. But the fact

that no volume form is preserved by the Odd canonical transformations makes meaningful

to consider the superspace provided with Odd symplectic structure and a volume form

simultaneously. One can consider as a group of transformations the group of Odd canonical

transformations preserving this volume form. It turns out that non{trivial geometry is

related with this structure. The geometrical objects depended on a higher derivatives

appear [34,35]. Let we consider for example the second order operator with value on

a function equal to the divergence (by the volume form) of the Hamiltonian vector �eld

corresponding to this function via Odd symplectic structure. One can see that it is second{

order di�erential operator which is the covariant expression of the Delta{operator (1.1) [34].

(The corresponding constructions for Even structure are trivial). In the special case where

Delta{ operator on ST �M is generated by volume form on M one can see that its action

on the function corresponds to the action of divergence operator on polyvector �elds i.e.

it is nilpotent:

�2 = 0: (1:2)

In general it is not the case. It turns out that

The BV master{equation can be formulated as the nilpotency condition of the Delta{
operator corresponding to the volume form (in the space of �elds{anti�elds) related with
the exponent of the master{action of the theory.

One has to note that in the physical examples of local �eld theories with an open

algebra of the symmetries (such as supergravity Lagrangians) the Delta{operator governing

BV{ quantum master{equation has a pure academical interest. The known cases are

treated by the procedure suggested in [33,51] which is a special case of BV{formalism.

During the years its geometrical properties were not under the serious attention. Some

problems of Odd symplectic geometry were considered in [34,35,38].

In a [70] Witten proposed a program for the construction of String Field Theory in the

framework of the Batalin{Vilkovisky formalism and noted the necessity of its geometrical

investigation. The properties of this geometry were investigated in [55,56], [38,39,40] and

[30]. The most detailed analysis was performed by A.S.Schwarz [55,56].

The BV formalism is developing now in di�erent directions.

The understanding of the meaning of the Delta{operator induces the activity for

investigating the algebraical properties of Delta{operator and its application to Topological

Field Theory. (See for example [52], [29]). We have to note also multilevel �eld{anti�eld

formalism with the most general Lagrangian hypergauges developed by Batalin and Tyutin

[7,8,9] and of course SP(2) BV{formalism (see [4,5], [6] and also [50]). It is interesting to

note the problem of locality of the master{equation general solution and the approach to

the BV formalism based on the Koszul{Tate resolution ([42], [23], [46,21] and [24,32,59]).

There are also an interesting results of application of Odd symplectic geometry which are

not strictly connected with BV formalism [38,47,48,49]. In this paper we do not consider

these topics. Our aim is very restrictive: to give a description of the pioneer work of
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Batalin{Vilkovisky on the basis of Odd symplectic geometry.(We even do not consider

here so called case of reducible theories [13], [53]).

In the second section of this paper we give a survey of BV formalism making accent

on its algebraico{geometrical meaning.

The content of the third section is devoted to the integration theory over surfaces

in a superspace [40]. We consider densities|the objects which can be integrated over

the surfaces and investigate the problem of de�ning the right generalization of the closed

di�erential forms on the supercase. This problem indeed is strictly connected with a

problem of reducing of partition function of degenerated theory on the surface of the

constraints (gauge conditions).| From the geometrical point of view to the symmetries of

a Theory correspond vectors �elds on the space of �elds which preserve the action. The

reduced partition function, when gauge conditions are �xed is the integral of a non{local

density constructed by means of these vector �elds over the surface de�ned by the gauge

conditions. The gauge independence means that this density has to be closed.

In the bosonic case di�erential forms are simultaneously linear functions on the tangent

vectors and well de�ned integration objects. In the supercase it is not the case.| The role

of the di�erential forms as integration objects are played by so called pseudodi�erential

and pseudointegral forms. ( The investigations of these problems were started in a right

direction in a works [19,20] then were continued in [28] and [2,3] and were considered in

details in the series of papers [62{68].) Our considerations in this section are based on

these works.

In the 4-th Section we deliver the main results in Odd symplectic geometry (described

shortly above) related to BV formalism and give an interpretation of BV formalism in

terms of this geometry.

Our considerations are based on the works [38,39,40,56] and on unpublished results

of the author.

We use the de�nitions and notations in supermathematics following [17,44,45,54]. All

the derivatives in this paper are left.

2. Batalin{Vilkovisky Formalism

In this section we give the description of BV formalism [11,12,14] making accents on

its geometrical meaning.

2.1 Closed and open algebras of symmetries

Let E be the space of all �eld con�gurations and a theory be described by the action

S = S('A); 'A 2 E: (2:1:1)

We use the language of de-Witt condensed notations. Index A runs over all discrete and

continuous indices * ([69]).

FA =
@S(')

@'A
= 0: (2:1:2)

* On this language the �eld '(x) is the point 'A in E. The action|�eld dependent func-
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are classical equations of motion which de�ne the space Mst of the stationary points (�eld

con�gurations) of the function S('A) (functional S ('a(x))).

Mst =
�
'A : FA(') = 0

	
: (2:1:3)

The action S(') is non{degenerated if

corank
@FA(')
@'B

jMst
= 0 or Det

@2S

@'A@'B
jMst

6= 0: (2:1:4)

In a general case if (2.1.4) does not hold the theory is degenerated.

Let RA
� be a set of vector �elds| symmetries of the theory

RA
�FA = 0 (2:1:5)

i:e: S('A + �'A)� S('A) � 0 for in�nitesimalvariations �'A = ���RA
� (2:1:6)

which do not vanish "classically"

RA
� jMst

6= 0 : (2:1:7)

(2.1.5) are Noether identities of second kind. (S(')) is local functional:

S('A) =

Z
L('a(x);

@'a(x)

@x�
; � � �)d4x (A = (a; x�)) (2:1:8)

The global symmetries (when �� in (2.1.6) do not depend on x�) do not put identities

(2.1.5) on the motion equations (2.1.2) (See in details [69])

The global symmetries are excluded out of consideration. If theory is not degenerated

then (2.1.4) leads to

dimMst = 0 (2:1:9)

for (2.1.3).

Of course (2.1.9) follows from (2.1.4) only if we consider the solutions of (2.1.2) obeying

to the initial conditions which exclude the global symmetries. It is the case when we

consider a continual integral

Z(J) =

Z
e
1
�hS(')+J'D' (2:1:10)

which yields the Green functions of the theory.

tional S = S('A) is (2.1.1). The variational derivative of the functional
�S('a(x))
�'a(y)

is
@S(')
@'A

.

The expressions like
R
eS('

A)D' (continual integral) are formal. All our considerations be-

low have exact meaning in the �nite{dimensional case. In the real (in�nite{dimensional)

case they need a special interpretation which comes from a physical context. The serious

drawback of this language is that the di�erence between local and non{local functionals is

not explicit in these notations.
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In the case if (2.1.4) ((2.1.9)) obeys, (2.1.10) can be calculated perturbatively in power

series on �h by extracting the quadratic part of the action and calculating the corresponding

Gaussian integral|It corresponds to the expansion of the action S(') around the set of

stationary points|Mst.

It is easy to see that the vector �elds:

RA = EABFB (2:1:12)

where EAB is arbitrary antisymmetric tensor

EAB = �EBA (2:1:13)

evidently obeys to (2.1.5) and do not obeys to (2.1.7)|it is the symmetries vanishing on

classical level. *

One can see that if two vector �elds{symmetries TA and T 0A obey to (2.1.5) and

coincide on Mst

TAFA = T 0AFA = 0; (2:1:14)

TA � T 0A i:e: TAjMst
= T 0AjMst

(2:1:15)

then there exist EAB obeying (2.1.13) such that

TA � TA
0

= EABFB : (2:1:16)

We consider so called irreducible theories and assume that the set fR�g of the symmetries
is complete: X

�

��R� � 0 ) 8� �� � 0 (2:1:17)

and

8TA :
X
A

TAFA � 0 ) TA �
X
�

��RA
� : (2:1:18)

The set fRA
�g obeying to the conditions (2.1.17) and (2.1.18) we call the basis of the

symmetries of the theory.

The "number" of symmetries of irreducible theory is equal to dimension of Mst

It is useful to represent the considerations above in the following exact sequence:

0! F ! E ! B ! 0 (2:1:19)

where F is the space of symmetries vanishing on the Mst (2.1.12) ("on{shell"vanishing

symmetries), E is the space of all vector �elds obeying to (2.1.5) (symmetries) and

B = E=F (2:1:20)

* We often omit the sign factor in the formulae|i.e. the corresponding expressions are

exact in the case where the space E of the �elds is bosonic. For example in (2.1.13) one

have to add the sign factor (�1)p(A)p(B)
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B is the space of the symmetries of classical theory.

E and F are the moduli on the algebra of the functions on E. We have to note that

the sequence

0! F ! E ! B ! 0

is typical for the theories of constrained systems. The fact that the "physical space" is B

and on other hand the space E is preferable to work in, is the source of arising the ghosts

in the formalisms of these theories (see [42,23,24,32]).

The set of equivalence classes f[R�]g consist the basis in B and fR�g are the repre-
sentatives of this basis in E. (The basis of symmetries fR�g) de�ned above is the set of

representatives of the basis f[R�]g in B.

It is easy to see using (2.1.5) that commutator of two symmetries R� , R� [R�;R�]

is the symmetry too. So comparing (2.1.5), (2.1.12) and (2.1.16) we see that

[R�;R�] = t



��R
 +EAB
�� FB (2:1:21)

Where EAB
�� are obeyed to (2.1.13). In the case if

EAB
�� = 0 (2:1:22)

the algebra of symmetries of the theory in physics is called "closed algebra"("o�{shell

algebra of symmetries"). In the case if (2.1.22) does not hold the algebra of symmetries of

theory is called "open algebra" ("on{shell algebra of symmetries").

Of course these de�nitions are R�{basis dependence. The space B de�ned by (2.1.20)

is in usual sense the algebra Lie, because F is ideal in E as algebra of vector �elds. It is

easy to see that the transformation

R� ! ���R� +EAB
� FB (2:1:23)

where EAB
� is antisymmetric (See (2.1.13)) changes the basis of symmetries to another

one. In principal by this transformation one can construct the basis of symmetries for

which EAB
�� in (2.1.21) and even t




�� is vanished| so called abelian basis of symmetries
(See subsection 2.3).

But in �eld theory we are restricted in a choosing arbitrary basis R� of symmetries

(the representativesR�) for the basis [R�]) in B. These restrictions are locality conditions

on R�.

2.2 BV prescription

For calculating the (2.1.10)|the generating functional for Green functions in the

case if theory is degenerated (dimM jst 6= 0) one have to exclude the degrees of freedom

connected with the symmetries (2.1.5), (2.1.7).

If the basis of symmetries R� is local and abelian the gauge degrees of freedom are

easily extracted from (2.1.10). If the basis of symmetries fR�g consist the Lie algebra

(t



�� � const; E = 0 in (2.1.21)) then we come to well{known Faddeev{Popov trick.
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The BV{prescription for calculating the generating functional (2.1.10) works in a most

general case (2.1.21). We recall here brie
y this prescription and give in the next subsection

the arguments explaining it.

For the degenerated theory with action S(') and with basis of symmetries fR�g let
equations

	� = 0 (2:2:1)

de�ne the surface 
 in the space E of �elds which de�nes gauge conditions corresponding

to the symmetries fR�g (dim(M jst \ 
) = 0). To reduce the continual integral

Z =

Z
e
S(')
�h D' (D' =

Y
A

d'A) (2:2:2)

to the integral de�ned on this surface (the eliminating the gauge degrees of freedom) one

have consider the following construction [11]:

Let Ee be a space with coordinates

�A = ('A; c�; ��; ��) (2:2:3)

where auxiliary coordinates c�, �� are ghosts corresponding to the symmetries R�, ��{

Lagrange multipliers corresponding to constraints (gauge conditions) 	�. The parity of

Lagrange multipliers coincide and the parity of ghosts is opposite to the parity of corre-

sponding symmetry:

p(c�) = p(��) = p(��) + 1 = p(R�) + 1: (2:2:4)

We introduce a space of �elds and anti�elds SEe with coordinates (�A;��

A) where �
� have

opposite parity to �:

p(��

A) = p(�A) + 1: (2:2:4a)

It is convenient to consider the subspace Eemin of Ee containing the �elds �A = ('A; c�) and

correspondingly a subspace SEemin of SEe| the space of (�A
min;�

�

Amin)� ('A; c�; '�A; c
�
�).

In the space of �elds anti�elds one have to de�ne the odd symplectic structure (see

for details the Section 4) by Poisson bracket

fF;Gg =
@F

@�A

@G

@��

A

+ (�1)p(F ) @F
@��

A

@G

@�A
(2:2:5)

and Delta{operator*

�F =
@2F

@�A@��

A

(2:2:6)

Then one have to de�ne the master{action|-the function S(�;��) obeying to equation

�e
S

�h = 0, �h�S +
1

2
fS;Sg = 0 (2:2:7)

* all the derivatives are left
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or classically

fS;Sg = 0 (2:2:7a)

(the term proportional to �h in (2.2.7) is responsible to measure factor.)

and to initial conditions which are de�ned by the action S(') and symmetries R�:

Sj��=0 = S(');
@2S

@c�@'�A
j��

A
=0 = RA

� ; S(�;��) = ����� + S(�min;�
�

min) (2:2:8)

i.e.

S = S('; c; '�; c�) + ����� = S('A) + c�RA
�'A + : : : + ����� : (2:2:8a)

(The dependence of S(�;��) on the �elds (�; �; ��; ��) is trivial) The equation (2.2.7)

is called "master{equation". It can be proved that the master{equation with boundary

conditions (2.2.8) have unique solution [14].

To gauge �xing conditions corresponds gauge fermion

	 = 	��� (2:2:9)

The partition function (2.2.2) is reduced to integral

Z 0 =

Z
eS(�:�

�)�

�
��

A �
@	

@�A

�Y
A

d�Ad��

A (2:2:10)

To the changing of gauge (2.2.1) corresponds the changing of 	 in (2.2.9). The integral

(2.2.10) does not depend on the choice of 	. (Later we will discuss the geometrical meaning

of this construction).

In the case if basis of symmetries R� consists Lie algebra one can show that

S = S(') + c�RA
�'

�

A +
1

2
t��
c

�

�c
�c
 + ����� (2:2:11)

and (2.2.10) reduces to well{known Faddeev{Popov trick.

In the next section we deliver arguments explaining these constructions.

2.3 Abelization of Gauge Symmetries and BV prescription

"Make straight the way of the Lord"
( St John 1: 23)

In this subsection we will give motivation for BV prescription and will see how the

odd symplectic structure arise in this procedure. Our considerations in this subsection

are based on [12]. In 4{th Section we will study this problem on the background of odd

symplectic geometry.

Let us consider �rst a simplest case where fR�g is abelian basis of symmetries.

[R�;R�] = 0: (2:3:1)
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We will show below that in this case the eliminating of gauge degrees of freedom reduces

the partition function (2.2.2) to the

Z 0 =

Z
eS(')Det

�
RA
�

@	�

@'A

�Y
�

�(	�)
Y
A

d'A (2:3:2)

Indeed even in the case where basis of symmetries forms Lie algebra, (2.3.2) gives cor-

rect answer for the partition function. The localizing of nonlocal functional Det
�
RA
�
@	�

@'A

�
in the enlarged space of ghosts

Det

�
RA
�

@	�

@'A

�
=

Z
e
c�RA�

@	�

@'A
��
Y
�

dc�d�� (2:3:3)

gives us well{known Faddeev{Popov trick.

(The geometrical meaning of (2.3.2) and of (2.3.3) see in 3-th Section)

Before going in delivering the eq. (2.3.2) we will show that it coincides with BV

partition function (2.2.10).

Indeed in the case (2.3.1) the solution of (2.2.7) is

S = S(') + c�RA
�'

�

A + ����� (2:3:4)

Indeed it is easy to see that in this case

fS;Sg = 2RA
�

@S

@'A
= 0: (2:3:5)

(We consider the case where

@RA

@'A
= 0 (2:3:6)

(the symmetries preserve volume form). See also remark after (2.3.15)).

In this case using (2.3.3) we can rewrite (2.3.2) in the form (2.2.10)

Z
eS(')

Y
�

�(	�)Det(RA
�

@	�

@'A
)
Y
A

d'A =

Z
e
S(')+��	

�
+c

�RA�
@	�

@'A
��
Y
A;�

d��d��dc
�d'A =

Z
eS(')+c

�RA�'
�

A+�
�����('�A �

@	

@'A
)�(��� �

@	

@��
)�(c��)

Y
A;�

d��dc
�dc��d��d�

��d'Ad'�A =

Z
eS(�;�

�)�(��

A �
@	

@�A
)
Y
A

d�Ad��

A (2:3:7)
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where �A = ('a; c�; ��; ��) is given by (2.2.3) and 	 is given by (2.2.9).

In general case (2.1.21), (2.3.2) depends on the gauge conditions (2.2.1) because the

integrand in (2.3.2) is not anymore closed density (see Section 4). For obtaining (2.2.10)

we do following:

1) From the basis of symmetries fR�g we go to abelian basis of symmetries fR�g
(temporary ignoring the problem of locality of symmetries)

2) We will show that in abelian basis we will come to (2.3.2) - so (2.2.10) is valid in

this case (See eq.(2.3.7) above).

3) Then we will return from non-local abelian basis fR�g to local physical basis fR�g.
We will see that in the enlarged space SEe of the �elds-anti�elds the returning to initial

symmetries corresponds to the canonical transformation preserving (2.2.5) and master-

equation (2.2.7). Using uniqueness of the solution of (2.2.7) with boundary condition

(2.2.8) we come to (2.2.10).

1) Let fR�g be basis of symmetries of theory S('). Let �a be the coordinates on

some surface 
0 given by the equation

	�
0 = 0 (2:3:8)

which is transversal to vector �elds fR�g. One can introduce in the space E the new

coordinates (�a; ��), which correspond to symmetries fR�g: for every set (�a0 ; �
�
0 ) we

consider the integral curve (the exponent) of vector �eld R(�0) = ��0R�:


��0 (t) = exp(t��0R�)j'0i; (0 � t � 1)

d
��0 (t)

dt
= ��0R�(
)

(2:3:9)

beginning at the point '0 with coordinates �a0 on the surface 
0. To the ending point of

this curve corresponds the set (�a0 ; �
�
0 ).

Of course, these new coordinates in general are non-local. But we do not pay attention

on this fact because at very end we return to initial local coordinates.

It is evident that the action S does not change along the integral curves 
A(t; �; �) so

in the new coordinates, S does not depend on ��

S = S(��) (2:3:10)

and R� = f @
@��

g is evidently the abelian basis of symmetries. In the initial coordinates

'A this abelian basis is equal to

R� =
@

@��
=

@'A(�; �)

@��
@

@'A
; (2:3:11)

RA

� =
@'A

@��
: (2:3:12)
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In the coordinates (�a; ��) the problem of excluding the gauge degrees of freedom is

trivial:

Z 0 =

Z
eS(�)

Y
a

d�a =

Z
eS(�)

Y
a;�

�(	�)j
@	�

@��
jd�ad��: (2:3:13)

Using that R�
� = ���, R

a
� = 0 in these coordinates we come to (2.3.2). Master{action in

these coordinates is

S = S(�) + c���� + ����� :

In the initial coordinates ('A)

Z 0 =

Z
eS(�)

Y
�

�(	�)j
@	�

@��
j
Y
a;�

d�ad�� =

Z
eS(�)

Y
�

�(	�)j
@	�

@��
j
Y
A

d'A
(2:3:14)

Using (2.3.12) we come to (2.3.2):

Z 0 =

Z
eS(')Det

�
RA
�

@	�

@'A

�Y
�

�(	�)
Y
A

d'A (2:3:15)

We see (using (2.3.7)) that in the basis fR�g (2.2.10) is valid.
The basis is abelian, exponent of action evidently obeys to master-equation. But the

price for receiving this simple formula is very high: the symmetries RA
� are nonlocal.

Remark. Our considerations in this section are precise up to the changing of volume

form. It corresponds to the classical limit (�h! 0) of master equation (2.2.7a).

3) The returning to initial symmetries fR�g: It is here where canonical structure

plays crucial role: The relation between new abelian basis fR�g and initial one is given

by equation

R� = ���R� +E[AB]
� FB (2:3:16)

(See equation (2.1.17, 2.1.18)).

One can show that the transformation (2.3.16) can be realized by canonical transfor-
mation in the space of �elds, anti�elds. We will show it in�nitesimally. We note (see in

details section 4 ) that to arbitrary odd function

Q(�min;�
�

min) = Q('; c; '�; c�)

corresponds canonical in�nitesimal transformation:

��A = �fQ;�Ag
���

A = �fQ;��

Ag
(2:3:17)

and:

�S = �fQ;Sg : (2:3:18)
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If we consider

Q = c����c
�

� + c�c�EAB
�� '

�

A'
�

B

then putting (2.3.4) in (2.3.18) and using (2.3.17) we obtain that

S ! S + �S = S(') + c�
�
RA
�'

�

A + ����RA
� + �EAB

� FB
�
+ : : : (2:3:19)

Using (2.2.8a) we see that (2.3.19) corresponds to in�nitesimal transformation (2.3.16).

We note that if the generator Q of canonical transformation obeys to equation

�Q = 0 (2:3:20)

then one can see that the canonical transformation (2.3.17) preserves volume form dv =Q
A d�

Ad��

A. Indeed from (2.3.17) follows that

�dv = 0 if �Q = 0: (2:3:21)

The classical master{equation (2.2.7a) is invariant under canonical transformations (trans-

formations preserving odd bracket f ; g), the quantum master{equation (2.2.7) is invariant

under the canonical transformations preserving the volume form. So from the fact that to

the changing of the basis of the symmetries corresponds canonical transformation (canon-

ical transformation preserving the volume form) and from the fact that master{equation

have unique solution follows (2.2.10).

3.Integration Theory over Surfaces in the Superspace

3.1.Densities in the superspace and Pseudodi�erential Forms

In this section we present some results of geometric integration theory on the surfaces

in the superspace (see [28], [64], [40]).

Let 
m:n be an (m:n){dimensional supersurface in the superspace EM:N given by

parametrization zA = zA(�B) the mapping of superspace Em:n in superspace EM:N where

zA = (x1; : : : ; xM ; �1; : : : ; �N ) are coordinates of superspace EM:N and �B = (�1; : : : ; �m;

�1; : : : ; �n) are the coordinates of Em:n

One can consider the functional �A(
) given on (m.n){supersurfaces by the following

expression:

�A(
) =

Z
A

�
zA(�);

@zA

@�B
; : : : ;

@kzA

@�B1 : : : @�Bk

�
dm+n� (3:1:1)

where the function A is obeyed to the following condition

A

�
zA;

@zA

@~�B
; � � � ; @kzA

@~�B1 : : : @~�Bk

�
= Ber

�
@�

@~�

�
�A
�
zA;

@zA

@�B
; � � � ; @kzA

@�B1 : : : @�Bk

�
:

(3:1:2)

In the case if the condition (3.1.2) holds the functional (3.1.1) does not depend on the

choice of parametrization z(�) of the supersurface 
.
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The function A obeying the condition (3.1.2) is called (m.n) density of rank k.

The (m.n) density A de�nes the functional �A(
) on (m.n) surfaces obeying to addi-

tivity condition

�A(
1 +
2) = �A(
1) + �A(
2) : (3:1:3)

The densities are the most general object of integration over surfaces [28].

Let us consider in a more details the case where the rank of density is equal one:

A = A

�
zA;

@zA

@�B

�
: (3:1:4)

The condition (3.1.2) can be rewritten in a following way

A

�
zA;KB

B0

@zA

@�B

�
= BerK �A

�
zA;

@zA

@�B

�
: (3:1:5)

Ber

�
A B

C D

�
=

Det(A �BD�1C)

DetD
(3:1:6)

is superdeterminant of the matrix.

In the bosonic case (if there are no odd variables) it is easy to see that the densities

which are linear functions on the @zA

@�B
are in one{one correspondence with di�erential forms:

to k{form ! = !i1:::ikdz
i1 ^ : : : ^ dzik corresponds density

A! =<
@zi1

@�1
; : : : ;

@zik

@�k
; ! >= k!!i1:::ik

@zi1

@�1
: : :

@zik

@�k
;

�A(

k) =

Z

k

! : (3:1:7)

The equation (3.1.5) holds because Det (Ber ! Det in bosonic case) is polylinear

antisymmetric function on tangent vectors @xa

@�b
.

In the case if the density A corresponds to di�erential form by (3.1.7) then Stokes

theorem is obeyed

�A!(@
) = �Ad! (
) (3:1:8)

One can show that in bosonic case the densities obeying to Stokes theorem correspond to

di�erential forms.

What happens in supercase?

In the bosonic case di�erential forms are simultaneously the linear functions on tangent

vectors on which exterior di�erentiation operator can be de�ned and on other hand they

are integration object (3.1.5)

In the supercase the di�erential form ! can be de�ned as the function linear on tangent

vectors which is superantisymmetric:

!(: : : ;u;v; : : :) = �!(: : : ;v;u; : : :)(�1)p(u)p(v) : (3:1:9)
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In supercase (3.1.9) is not in accordance with (3.1.6)|to di�erential form (3.1.7) does

not correspond density.

One have to construct the right generalization of di�erential form (considering as inte-

gration object), so called psendodi�erential forms as a density obeying to Stokes theorem.

It is the way which was at beginning developed in [19,20] and was studied in general case

in [2,3,62{68].

For de�ning pseudodi�erential forms we have to check the conditions which one have

to put on the density (3.1.4) for having the Stokes theorem (3.1.8) (see for details [64]).

Let two (m.n) surfaces 
0 and 
1 are given by parametrization zA0 = zA0 (�
B) and

zA1 = zA1 (�
B) correspondingly and

zA = zA(t; �B) ; (0 � t � 1) : z(0; �B) = z0(�
B); z(1; �B) = z1(�

B) (3:1:10)

is a parametrization of (m+ 1:n) surface V

@V = 
1 � 
0 (3:1:11)

(up to a boundary terms) Then if A is a density of rank 1 we have

�A(@V) = �A(
1) � �A(
0) =

Z
d�m+n

Z 1

0

dt
d

dt
A

�
zA(t; �B);

@zA(t; �B)

@�B

�
=

Z
d�m+n

Z
dt

��
dzA

dt

@A

@zA
+
dzAB
dt

@A

@zAB

��
=

Z
d�m+n

Z
dt

�
dzA

dt

@A

@zA
+

d

d�B

�
dzA

dt

@A

@zAB

�
�
dzA

dt

d

@�B
@A

@zAB
(�1)p(B)p(A)

�
=

Z
d�m+ndt(

dzA

dt

@A

@zA
� (

dzA

dt

@zA
0

@�B
@2A

@zA
0

@zAB
+
dzA

dt

@zA
0

B0

@�B
@2A

@zA
0

B0
@zAB

)(�1)p(A)p(B))

+boundary terms :

(3:1:12)

(We use notation zAB = @zA

@�B
).

From (3.1.11), (3.1.12) one can see that if the last term in integral (3.1.12) vanishes:

dzA

dt

@2zA
0

@�B@�B
0

@2A

@zA
0

B0
@zAB

(�1)p(A)p(B) = 0 i:e

@2A

@zA
0

B0
@zAB

= �(�1)p(B)p(B
0)+(p(B)+p(B0))p(A) @2A

@zA
0

B @zAB0

(3:1:13)

then this integral can be considered as (m+ 1:n) density dA of rank 1. The di�erential is

de�ned by the relation

dA

�
zA;

@zA

@�B
;
dzA

dt

�
=

dzA

dt

@A

@zA
�
dzA

dt

@zA
0

@�B
@2A

@zA
0

@zAB
(�1)p(A)p(B) : (3:1:14)
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We come to correct de�nition (3.1.14) of the exterior di�erential d of the density of rank 1

in supercase if the condition (3.1.13) holds (see for details [Vor]).(Of course in usual case

from (3.1.13)) immediately follows the statement after (3.1.8)).

The density is called pseudodi�erential form if condition (3.1.13) holds.

If A is pseudodi�erential form then dA is pseudodi�erential form too.

Example 3.1.1.

In the superspace EM:N with coordinates zA = (x1; : : : ; xM ; �1; : : : ; �N ) we consider

(m:n) density of rank 1.

A = Ber

�
@zA

@�B
LB

0

A

�
(3:1:15)

Where �B are coordinates of Em:n, LBA is (m:n) � (M:N) arbitrary matrix.

A is density because condition (3.1.2) is evidently satis�ed.

Indeed (3.1.15) is pseudodi�erential form. The condition (3.1.13) can be checked by

straightforward but long computations. (Alternatively (3.1.13) for (3.1.15) follows from

the fact that (3.1.15) is proportional to volume form on Em:n. The volume form evidently

obeys to (3.1.13) because the conditions (3.1.13) are reparametrization invariant).

It is useful to consider two particular cases of (3.1.15).

a) n = 0 (LB
0

A ) = 0 if p(B0) = 1). In this case Ber ! Det and to A corresponds

di�erential form

!A = L1A1
: : : LmAmdz

A1 ^ : : : ^ dzAm (3:1:16)

b) m = n = 1 and LBA is such that

A = Ber
@(x1; �1)

@(�; �)
=
x1�

�1�
�

x1��
1
�

(�1�)
2

(3:1:17)

zA = (x1; : : : ; xM ; �1; : : : ; �N ), �B = (�; �) (� is even and � is odd.)

(3.1.17) is the simplest example of non{linear pseudodi�erential form.

In the [2,3] Baranov and Schwarz suggested the following construction producing the

pseudodi�erential form which seems natural in spirit of ghost technique.

For (M:N) dimensional superspace EM:N let STEM:N be a superspace associated

with tangent bundle TEM:N of the superspace EM:N . (If zA are coordinates on EM:N

then (zA; z�A) are coordinates on STEM:N where z�A transform as dzA and have reversed

parity

p(z�A) = p(zA) + 1

The superspace STEM:N have dimension (M +N:M +N).

Then arbitrary function * W (z; z�) on STEM:N de�nes (m:n) density of rank 1

AW

�
zA;

@zA

@�B

�
=

Z
W

�
zA; z�A = �B

@zA

@�B

�
d�n+m (3:1:18)

* The function W have to obey the conditions on in�nity by even variables for (3.1.18)

being correct
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where �B have reversed parity to �B

p(�B) = p(�B) + 1: (3:1:19)

Indeed it is easy to check using (3.1.19) that (3.1.18) obeys to condition (3.1.2)

AW

�
zA;KB

B1

@zA

@�B

�
=

Z
W

�
zA; �B

0

KB
B0

@zA

@�B

�
d�n+m =

Z
W

�
zA; ~�B

@zA

@�B

�
d�n+m = Ber(KB

B0 )

Z
W

�
zA; ~�B

@zA

@�B

�
d~�n+m (3:1:20)

One can easy check by direct computation that the density AW in (3.1.18) obeys to con-

dition (3.1.13).

We say that the function W is BS representation of the pseudodi�erential form A.

One can see by straightforward calculations that to the exterior di�erential d of the

pseudodi�erential form A (See (3.1.14)) corresponds the operator

d̂ = z�A
@

@zA
(3:1:23)

in BS representation. Namely it can be checked using (3.1.14) and (3.1.18) that

A
d̂W

= �d(AW ) (3:1:24)

if AW is (m:n) density and A
d̂W

is (m+ 1:n) density.

Example 3.1.2

Let us consider the function

W =
1p
�
e�(x

1�)2�1� (3:1:25)

on the STEM:N

(zA = (x1; : : : ; xM ; �1; : : : ; �N ), z�A = (x�1; : : : ; x�M ; ��1; : : : ; ��N ).)

The (1.1) density corresponding to (3.1.25) by (3.1.18)

A

�
z;
@z

@�
;
@z

@�

�
=

1p
�

Z
e�(�x

1
�+tx

1
�)

2 �
��1� + t�1�

�
d�dt =

x1�

�1�
�

x1��
1
�

(�1�)
2

(3:1:26)

coincides with the density (3.1.17). To generate the density (3.1.15) from Example 3.1.1 by

the construction (3.1.18)one can consider instead (3.1.25) the following formal expression

W =

Z
ez

�ALBAcBdc (3:1:27)

where p(cB) = p(�B) + 1. (Compare with (2.3.3))
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It is easy to see that formally (3.1.27) gives (3.1.15). But it have sense only in the

case where LBA = 0 if p(B) = 1 .(See footnote before eq. (3.1.18)).

For us it is most interesting the case where pseudodi�erential form is closed|i.e. the

density obeys to condition (3.1.13) and

dA = 0 i:e:
@A

@zA
�
@zA0

@�B
@2A

@zA0@zAB
(�1)p(A)p(B) = 0 (3:1:28a)

or in BS representation

d̂WA = z�A
@W

@zA
= 0 (3:1:28b)

In other words condition of closeness means that Euler{Lagrange equations of the func-

tional (3.1.1) are trivial [64].

It is these densities which arise when we reduce the partition function integral (2.2.2)

to the integral over the surfaces in the space of �eld con�gurations de�ned by gauge

conditions. The gauge independence of this integral means that the corresponding density

is closed. But in �eld theory this surface is de�ned not by parametrization but by equations

("gauge conditions") We need to consider corresponding integration objects.

3.2 Dual densities and closed pseudointegral forms

The surfaces in the superspace can be de�ned not by parametrization, but by dual

construction|by equations.

Let 
(m:n) be a (m:n) dimensional supersurface in the superspace EM:N: de�ned by

equations

F a(zA) = 0 (3:2:1)

Where F a = (f1; : : : ; fM�m; '1; : : : ; 'N�n) are coordinates of the superspace EM�m:N�n

(f are even, ' are odd).

Let

dv = �(z)dz1 : : : dzn (3:2:2)

be a volume form on EM:N Then (3.1.1) can be replaced by the functional:

� ~A(
) =

Z
~A

�
zA;

@F a(z)

@zA
; : : : ;

@kF (z)

@zA1 : : : @zAk

�Y
a

�(F a)dv: (3:2:3)

where ~A is obeyed to the condition

~A

�
zA;

@F 0
c

(z)

@zA
; : : : ;

@kF 0c(z)

@zA1 : : : @zAk

�
= Ber (�cd)

~A

�
zA;

@F c(z)

@zA
; : : : ;

@kF c(z)

@zA1 : : : @zAk

�
(3:2:4)

(F 0c(z) = �cdF
d(z) determine the same surface 
m:n).
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~A is called (m:n) D{density (dual density) of rank k [28]. It is easy to see that in the

same way like for usual densities, if conditions (3.2.4) hold then (3.2.3) does not depend

on the choice of the functions fF a(z)g de�ning the surface 
 by the equation (3.2.1).

D{density ~A corresponds to density A if for arbitrary surface 


� ~A(
) = �A(
) (3:2:5)

More precisely if the surface 
m:n is given by equation

F a
0 (z

A) = ya � ra(sB)

and its parametrization by

zA0 (�) : ya(�B) = ra(�B); sB(�) = �B (zA = (ya; sB)) (3:2:6)

then the ~A corresponds to A if

~A

�
zA;

@F a
0

@zA
; : : : ;

@kF a
0

@zA1 : : : @zAk

�
= A

�
zA0 (�);

@zA0
@�B

; : : : ;
@kzA0

@zB1 : : : @�Bk

�
(3:2:7)

in the case � = 1 in the (3.2.2).

In the next section we consider the examples of D{densities arising in odd symplectic

geometry.

If the density A corresponds to di�erential form wi1:::ikdx
i1 ^ : : : ^ dxik in the space

En (in bosonic case) then it is easy to see that dual density ~A corresponds to integral form

W i1:::in�k
@

@xi1
^ : : : ^

@

@xin�k

such that W i1:::in�k = 1
�
�i1:::in�kj1:::jk!j1:::jk and

~A =W i1:::in�k
@f1

@xi1
; : : : ;

@fn�k

@xin�k
(3:2:8)

where � is given by volume form (3.2.2).

To construct D{densities which are dual to pseudodi�erential forms (so called pseu-

dointegral forms) one have to check the eq. (3.1.8) on the language of D {densities.

We represent only the �nal results of these calculations:

Let A(zA; @F
a

@zA
) be a D{density of rank 1.

A

�
zA;Ka

b

@F b

@zA

�
= BerK �A

�
zA;

@F a

@zA

�
(3:2:9)

This density is closed if

@2A

@F a
A@F

b
B

= �(�1)p(A)p(B)+(p(A)+p(B))p(a) @2A

@F a
B@F

b
A

(3:2:10)
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(Compare with (3.1.13)) and

(�1)p(a)p(A)
1

�

@

@zA

�
�
@A

@F a
A

�
= 0: (3:2:11)

One can come to (3.2.10), (3.2.11) considering the variation of functional (3.2.3) under the

in�nitesimal variation of surface 
 (Compare with (3.1.12)).

Analogously to (3.1.18) one can develop Baranov{Schwarz procedure for pseudointe-

gral forms [40].

For (M:N) dimensional superspace EM:N let ST �EM:N be a superspace associated

with cotangent bundle T �EM:N of the superspace EM:N . (zA; z�A) are the coordinates of

T �EM:N , z�A transform as @
@zA

and have reversed parity

p(z�A) = p(zA) + 1:

Then the arbitrary functionW (z; z�) on T �EM:N (see the footnote before (3.1.18)) de�nes

D{density of rank 1:

A

�
zA;

@F a

@zA

�
=

Z
W

�
zA; z�A = �a

@F a

@zA

�Y
a

d�a; (3:2:12)

p(�a) = p(F a) + 1:

(Compare with (3.1.18)).

A indeed is density (The condition (3.2.9) is evidently satis�ed for (3.2.12) as in

(3.1.20)). The conditions (3.2.10) can checked by direct computation.

Comparing (3.2.11) with (3.2.12) one can see that the density (3.2.12) is closed if

1

�

@�

@zA
@W

@z�A
+

@2W

@zA@z�A
= 0: (3:2:13)

In the 4{th Section we give the interpretation of (3.2.13) in the terms of odd symplectic

geometry.|Indeed this formula is strictly connected with BV master|equation.

Now let us consider example which we will use later:

Example 3.2.1

Let fRA
a g be a set of vector �elds on EM:N . One can consider D{density| pseudo-

integral form:

~A

�
@F a

@zA

�
= Ber

�
@F a

@zA
RA
b

�
: (3:2:14)

(Compare with (3.1.15)).

It is the density which arise in (2.3.2).

One have to note that (m:N) D{density (of maximal odd dimension) are polynomial

by @Fa

@zA
. It is just Bernstein|Leites integral forms [19,20] (see also [28]).

The D{density (3.2.14) formally generates by the function

W
�
zA; zA�

�
=

Z
ec

aRAa z
�

Adc (3:2:15)
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(p(ca) = p(a) + 1)

The equation (3.2.15) is correct in the case if all vector �elds RA
a

@
@zA

are even.

ca in (3.2.15) are nothing that usual ghosts in Faddeev|Popov trick (Compare with

(2.3.3))

4 Odd Symplectic Geometry

4.1 Basic De�nitions

Let M2n be an 2n{dimensional manifold provided with closed non{degenerated two

form w:

dw = 0 ; Detwij 6= 0 ; (4:1:1)

where w = wijdx
i ^ dxj in the local coordinates (x1; : : : ; x2n).

The pair (M2n; w) is called symplectic manifold.

The non{degenerated two{form (4.1.1) establishes one{one correspondence between

TM and T �M :

8u 2 TmM (m 2M)! one formwm 2 T �mM : 8� 2 TmM wm(�) = w(�;u) : (4:1:2)

According to (4.1.2) to every function f on M corresponds a vector �eld Df which in

coordinates is

Di
f@i = (w�1)ij@jf@i : (4:1:3)

(To vector �eld Df corresponds one form df by (4.1.2)).

The Poisson bracket of two functions f and g is equal

ff; gg = w(Df ;Dg) =
@f

@xi
(w�1)ij

@g

@xj
: (4:1:4)

It obeys to Jacoby identity

fff; gg; hg+ cyclic permutation = 0 (4:1:5)

which follows from (4.1.1).

The group Gcan of the symplectomorphisms (canonical transformations) of (M2n ; w)

i.e. the di�eomorphisms preserving the two form w is in�nite{dimensional.| To every

function (Hamiltonian) H corresponds in�nitesimal transformation DH

dxi

dt
= Di

H = fH;xig ; LDH
w = 0 : (4:1:6)

There exists unique (up to multiplication on constant) 2k density which is Gcan{invariant.

(We say that a densityA on E is invariant under the action of a groupG of transformations

of E if in (3.1.1)

8g 2 G ; �A(

g) = �A(
) :) (4:1:7)
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It is closed density which corresponds to k{times wedged product of the form w :

�A(
) =

Z



w ^ : : : ^ w (4:1:8)

It is a well{known Poincare{Cartan integral invariant of canonical transformations [1].

The integrand in (4.1.8) is Gcan invariant closed 2k{density of rank 1

A(xi;
@xi

@��
) =

s
Det

�
@xi

@��
wij

@xi

@��

�
(4:1:9)

where xi(��) is the parametrization of surface 
.

The dual D{density ~A corresponding to A is

~A(xi;
@fa

@xi
) =

q
Det (ffa; fbg) (4:1:1:9a)

where the equations fa = 0 de�ne the surface 
 .

In the case k = n the density (4.1.9) is Gcan{invariant volume form corresponding to

the symplectic structure.

Locally there exist coordinates in which the form w (4.1.1) de�ning symplectic struc-

ture have canonical form (Darboux Theorem):

w =

nX
i=1

dxi ^ dxi+n : (4:1:10)

Remark. Indeed one can prove more : By suitable canonical transformation one can

make "
at" a surface in a vicinity of arbitrary point (for any �0 the derivatives
@kxi

@�[k]
j�0 for

k � 2 can be cancelled by suitable canonical transformation). From this fact in particularly

follows that the density (4.1.9) is a unique Gcan{invariant density in the class of densities

of arbitrary rank k [41].

The symplectic geometry in pure bosonic case in contrary to Riemannian one is

"poor" because the group of transformations is "rich" . In Riemannian geometry there are

the invariant densities of higher degrees constructed via the curvature and its covariant

derivatives.| The analogue of (4.1.9) which is a volume form of the surface (wij ! gij in

(4.1.9)) is not unique invariant density.

Now we represent the superizations of the constructions above.

Let

w = wABdz
AdzB (4:1:11)

be closed non{degenerated two form on the superspace EM:N with coordinates

zA = (x1; : : : ; xM ; �1; � � � ; �N ).
w is a linear superantisymmetric function on tangent vectors:

w(u;v�) = w(u;v)� ; if � 2 R

w(u;v) = �w(v;u)(�1)p(u)p(v):
(4:1:12)
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In coordinates

wAB = (�1)1+p(A)p(B)wBA ;

w(uA@A; v
B@B) = uAwABv

B(�1)(p(u)+p(A))p(w)+(p(v)+p(B))p(B):
(4:1:13)

The closeness condition dw = 0 is

(�1)p(A)p(C)@AwBC + cyclic permutation = 0 : (4:1:14)

The non{degeneracy of w (i.e. the matrix wAB is invertible) on EM:N means that M

is even if w is even and M = N if w is odd.

The analogue of Darboux Theorem [57] states that there exist coordinates (Darboux

coordinates) in which the two form w0 de�ning an even symplectic structure on E2M:N

have the following canonical form:

w0 =

MX
i=1

dxi ^ dxi+M +

NX
�=1

��(d�
�)2 ; (�� = �1) (4:1:15)

and the two form w1 de�ning an odd symplectic structure on EM:M have the following

canonical form:

w1 =

MX
i=1

dxi ^ d�i : (4:1:16)

(On E2M:2M one can consider two simplectic structures of the di�erent grading simulta-

neously ( see [34,37,38,47])).

Using (4.1.13) and (4.1.14) one can establish a superversion of the equations (4.1.3)

and (4.1.4):

DA
f @A = (w�1)AB@Bf(�1)(p(f)+p(w)+p(B))p(B)@A (4:1:17)

and formulae for Poisson bracket:

ff; gg = @f

@zA
(w�1)AB

@g

@zB
(�1)(p(f)+p(w))p(A) : (4:1:17a)

For computing (4.1.17a) we have to note that the inverse matrix in the superspace has the

inverse parity:

(w�1)AB = (�1)(p(A)+1)(p(B)+1)(w�1)BA:

(Compare with (4.1.13)). In Darboux coordinates on E2M:N the even Poisson bracket

corresponding to (4.1.15) have the form:

ff; gg =
MX
i=1

�
@f

@xi
@g

@xi+M
�

@f

@xi+M
@g

@xi

�
+

NX
�=1

��(�1)p(f)
@f

@��
@g

@��
(4:1:18)
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and in Darboux coordinates on EM:M the odd Poisson bracket corresponding to

(4.1.16) have the form:

ff; gg1 =
MX
i=1

�
@f

@xi
@g

@�i
+ (�1)p(f) @f

@�i
@g

@xi

�
: (4:1:19)

The Hamiltonian mechanics can be formulated in the terms of even as well as odd sym-

plectic structures [43,60,36].

The formulae above are similar for even and odd structures. But there is essential

di�erence between these structures.

An even symplectic structure is nothing but natural lifting on E2M:N of the symplectic

structure of the underlying spaceE2M . And it is natural that it is very similar to symplectic

structure in pure bosonic case.

For example the changing Det! Ber in (4.1.9,4.1.9a) leads to straightforward gene

ralization of Poincare{Cartan invariant on the supercase (if the structure is even) [41]:

A(zA;
@zA

@��
) =

s
Ber

�
@zA

@��
wAB

@zA

@��

�
(4:1:20)

and corresponding D{density:

~A(zA;
@F a

@zA
) =

q
Ber (fF a; F bg): (4:1:21)

Of course in the supercase the invariant density cannot be anymore represented as

integrand in (4.1.8) because form is not anymore integration object.(See section 3.1). But

one can show that as well as in bosonic case (4.1.8) the density (4.1.20) is closed and there

is no invariants in higher derivatives [41,2,3]. (The Remark above is valid in this case too.)

It is not the case for odd symplectic geometry. At �rst its ancestor in pure bosonic

case is Lie derivative construction, not the symplectic geometry:

Example 4.1.1

Let EM:M = ST �EM be a superspace associated with cotangent bundle of the space

EM . (See subsection 3.2).

ST �EM is naturally provided with odd symplectic structure

w1 = dxid�i; (�i = x�i ): (4:1:22)

Then to vector �eld R = Ri(x)@i on EM corresponds the function R = Ri(x)�i and

LRf = Ri(x)
@f

@xi
= ff;Rg: (4:1:23)

More generally to every polyvectorial �eld T = TA1:::An@A1 ^ : : : ^ @An corresponds the

function

�(T) =WT(x; �) == TA1:::An�1 : : : �n (4:1:24)
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and

�([T1;T2]) = f�(T1); �(T2)g (4:1:25)

where [ ; ] is Schouten bracket.

We see from this example that odd symplectic geometry is strictly connected with

classical geometrical objects. And it is not surprising that in the terms of odd bracket

some classical geometrical constructions can be formulated in a elegant way ([38,47{49]).

In the next subsections we will consider the geometrical constructions in odd sym-

plectic geometry which have no analogues for even one and which play a crucial role in

the formulating BV formalism. The essential di�erence of odd symplectic geometry from

even one is that the transformations preserving odd bracket do not preserve any volume

form. (The formulae (4.1.20,4.1.21) have not sense in the case if w is odd.) To consider the

integration theory we provide an odd symplectic space with additional structure|volume

form.

4.2 �{operator in odd symplectic geometry.

Let EM:M be provided with odd symplectic structure and with volume form dv

dv = �(x; �)dx1 : : : dxMd�1 : : : �M (4:2:1)

We suppose zA = (xi; �j ) be Darboux coordinates (4.1.16) on EM:M . We consider

EM:M provided with a structure de�ned by a pair (dv; f ; g) where f ; g is the odd
Poisson bracket (4.1.19). Gcan

dv � Gcan is the group of the transformations preserving

the pair (dv; f ; g). From here and later we call the structure de�ned by the pair

(dv; f ; g) the odd symplectic structure.

We de�ne the Gcan
dv {invariant second order di�erential operator �{operator [34] cor-

responding to the structure (dv; f ; g) in the following way

�f =
1

2

LDf
dv

dv
= divdvDf : (4:2:2)

One can see by direct computation that

�f =
1

2�

@

@zA

�
(�1)p(A)�fzA; fg

�
(4:2:3)

where � de�nes volume form dv by (4.2.1).

�f =
1

2
flog �; fg +

@2f

@xi@�i
(4:2:3a)

in Darboux coordinates.

(In the case where f ; g is even Poisson bracket it is easy to see that the corresponding
operator (4.2.2) is trivial: it is a �rst order di�erential operator which vanishes if a volume

form corresponds to even symplectic structure by (4.1.20)).
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Example 4.2.1 � = 1 in (4.2.1) then

� = �0 =
@2

@xi@�i
(4:2:4)

In this form this operator was introduced by Batalin and Vilkovisky for formulatingmaster{

equation [11,12] (see (2.2.6)).

Example 4.2.2 Let EM:M = ST �EM be provided with natural symplectic structure

(See Example 4.1.1). Let

dv = �(x1; : : : ; xM )dx1 : : : dxM (4:2:5)

be volume form on EM . We consider the pair (dv̂; f ; g) on ST �EM where

dv̂ = �2(x1; : : : ; xM )dx1 : : : dxMd�1 : : : d�M (4:2:6)

is the volume form on ST �EM and f ; g is the Poisson bracket (4.1.19) which corresponds
to natural symplectic structure (4.1.22.). Then using (4.2.3a), (4.2.6) and (4.1.24) we see

that �{operator on ST �EM corresponds to divergence on EM :

�dv̂�(T) =
1

�

@�

@xi
@WT

@�i
+

@2WT

@xi@�i
= �(divdvT): (4:2:7)

where �(T) =WT is given by (4.1.24).

Moreover comparing (4.1.24) (3.2.8) and (3.2.12) one can see that �(T) = WT is

BS representation (3.2.12) of the D{density ~AT corresponded to polyvectorial �eld T

by (3.2.8). Then comparing (3.2.13) and (4.2.7) we see that closeness condition can be

expressed in the terms of corresponding �{operator [56], [40].

T is closed , ��(T) = 0: (4:2:7a)

This example where �{operator corresponds to divergence describes an important but

special case of the �{operator (4.2.2).(See Theorem below).

(In the examples 4.2.2 as well as in the examples 4.1.1 and 4.2.1 it was considered

a case where EM:M = ST �EM (zA ! xi and z�A ! �i). By the slight modi�cation of

the considerations above one can consider in these examples EM:M = ST �EM�k:k where

k 6= 0.)

Using (4.2.3) one can see that �{operator in general case obeys to conditions

�dv0f = �dvf +
1

2
flog�; fg (4:2:8)

and

�2
dv0f = �2

dvf + f��
1
2�dv�

1
2 ; fg (4:2:9)

where dv0 = �dv.
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Following to A.S.Schwarz [56] we call the structure (dv; f ; g) SP structure if there

exist Darboux coordinates in which

� = �0 (4:2:10)

i.e. � = 1 in (4.2.1) (see eq.(4.2.4) in the Example (4.2.1)).

Theorem The following statements are equivalent:

i) (dv; f ; g) structure is SP structure

ii) The �{operator corresponding to (dv; f ; g) structure is nilpotent:

�2
dv = 0 (4:2:11)

iii) the function � corresponding to volume form dv by (4.2.1) obeys to equation:

�0
p
� = 0: (4:2:11a)

(This Theorem is stated in [56], [39], [30]. The complete proof belongs to A.S.Schwarz

[56])

For example for the structure (dv̂; f ; g) from the Example (4.2.2) we come to i)

if we choose coordinates on EM in which volume form (4.2.5) is trivial on EM (dv =

dx1 : : : dxM ). (The corresponding transformation of �i = x�i preserves symplectic struc-

ture.) The nilpotency condition ii) follows from the fact that �dv̂ corresponds to divergence

(4.2.7), The equation iii) is evidently obeyed.

In general case ii),iii) follows from (4.2.8, 4.2.9) and i))ii) is evident from invariant

de�nition (4.2.2). The ii))i) needs a more detailed analysis.

Remark In the paper [Kh] where was �rst introduced the structure (dv; f ; g) for
arbitrary volume form dv, was done the false statement that every (dv; f ; g) structure
is SP structure.

4.3 Invariant densities in odd symplectic geometry.

In contrary to even symplectic geometry where the invariant densities are exhausted by

the density (4.1.20) depended on �rst derivatives, in odd symplectic geometry the situation

is more non{trivial.

On one hand as it was mentioned above there are no Gcan {invariant densities, because

the group of transformations preserving odd symplectic structure does not preserve any

volume form. In the class of densities which are invariant under canonical transformations

preserving a �xed volume form dv the �rst non{trivial density (except the volume form

itself) appears in a second derivatives [35].

In spite of this fact one can consider the density of rank 1 which is naturally de�ned

on Langrangian surfaces and does not change under in�nitesimal transformations in the

class of Lagrangian surfaces in the case if (dv; f ; g){structure is SP structure [55,56,40].

We consider now this density.

Let a superspace EN:N be provided with a structure (dv; f ; g) de�ned in previous

subsection.

28



Let �{be Lagrangian surface in it (i.e the form w de�ning simplectic structure vanishes

on it )

wj� = 0 (4:3:1)

and � is (N � k; k){dimensional.

For example if EN:N = ST �EN then to every odd function 	(x) on EN corresponds

(N:0){Lagrangian surface in ST �EN de�ned by the equation

�i =
@	(x)

@xi
(4:3:2)

We consider later only the case k = 0. (The case 0 < k � n can be received by slight

modi�cations of corresponding formulae. For example in (4.3.2) we come to (N � k:k)

dimensional Lagrangian surface if we consider instead EN:N ST �EN�k:k, (xi ! zi,�i !
z�i ).

If ft1; : : : ; tng are the vectors tangent to Lagrangian manifold � in the point �0 2 �

then we consider arbitrary vectors fu1; : : : ;ung such that

w(ti;uk) = �ik (4:3:3)

and de�ne a density A by equation [56]:

A (�0; t1; : : : tn) =
p
dv(�0; t1; : : : ; tn) (4:3:4)

(The volume form dv is (N:N) density of rank 1 on EN:N : (see Section 3.)

It can be proved that (4.3.4) is a density which does not depend on the choice of

the vectors fuig obeying to (4.3.3) and this density (more exactly the functional (3.1.1))

is invariant under in�nitesimal variation of the Lagrangian surface � if the (dv; f ; g){
structure is SP structure [56]. We prove it later.

Instead (4.3.4) we consider D{density which is de�ned on all (N:0){dimensional sur-

faces and corresponds to the density (4.3.4) in the case if the surface is Lagrangian [40].

Let a (N:0)-dimensional surface 
 be de�ned in EN:N by equations

F a = 0; (a = 1; : : : ;N); (F a are odd): (4:3:5)

One can consider [40]

~A

�
zA;

@F a

@zA

�
=

1
p
�

q
Ber

@(G;F )
@(x;�)p

DetfGa; F bg
(4:3:6)

where zA = (x1; : : : xN ; �1; : : : �N ), are the coordinates in EN:N = ST �EN , � de�nes

the volume form

dv = �(x1; : : : xN ; �1; : : : ; �N )dx1 : : : dxNd�1 : : : d�N

and fGag(a = 1; : : : ;N) are arbitrary even functions.

One can see that (4.3.6) is indeed (N:0) D{density. (F a are odd so Det�1 � Ber).
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Moreover the D{density (4.3.6) on the surface (4.3.5) and corresponding to it func-

tional (3.2.3) �A(
) does not depend on the choice of the functions fGag if 
 is Lan-

grangian surface. Indeed in this case the functions F a de�ning 
 by (4.3.5) obey to

equation

fF a; F bgjFa=0 = 0 (4:3:7)

(Compare with (4.3.1)).

Let
~Ga = ~Ga(G1; : : : ; GN ; F 1; : : : FN) (4:3:8)

be another set of even functions f ~Gag.
Then it is easy to see that under the transformation Ga ! ~Ga the numerator and

denumerator in (4.3.6) are multiplied by the Det@
~G

@G
in the case if (4.3.5) and (4.3.7) hold.

It is easy to see (see for details Section 3, eq.(3.2.5){(3.2.7)) that (4.3.6) corresponds to

(4.3.4) on Lagrangian surfaces if we put

Fi = �i �
@	(x)

@xi
(4:3:10)

(Compare with (4.3.2))

In this case the functional (3.2.3) on Langrangian surface (4.3.10) is equal to

� ~A(�) =

Z
p
�
Y
a

�(F a)dx1 : : : dxNd�1 : : : d�N (4:3:11)

(We come immediately from (4.3.6) to (4.3.11) choosing Gi = xi in (4.3.6).)

To prove that this functional is invariant under in�nitesimal variation of Lagrangian

surface � ! � + �� in the case if (dv; f ; g) is SP structure we note that under the

in�nitesimal transformation 	(x)! 	(x) + �	(x) in (4.3.10)

�� ~A =

Z
@
p
�

@�i
@�	

@xi

Y
a

�(Fa)dx
1 : : : dxNd�1 : : : d�N : (4:3:12)

If (dv; f ; g) is SP structure then from Theorem follows that

�0
p
� = 0 so �� ~A = 0 : (4:3:13)

Remark. In the case if Langrangian surface is (n � k:k) dimensional surface in the

superspace ST �EN�k:k (for arbitrary 1 � k � n) one have consider instead (4.3.6) a

density.

A

�
zA;

@F a

@zA
;
@F a

@z�A

�
=

1
p
�

s
Ber

@(G;F )

@(z; z�)

q
BerfG~a; F bg (4:3:14)

where index ~a have a reversed parity to index a.
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The density studied above is very essential for our considerations but even in the

case of SP structure it is not Gcan
dv {invariant density on all surfaces. We present here the

example of non{trivial Gcan
dv {invariant density of a second rank.

Let a (N � 1:N � 1){dimensional surface in the superspace EN:N is de�ned by the

equations

f = 0; ' = 0 (f is even' is odd): (4:3:15)

EN:Nis provided with (dv; f ; g) structure.
One can consider [35]:

~A =
1p
ff; 'g

�
�f �

ff; fg
2ff; 'g

�'�
ff; ff; 'gg
ff; 'g

�
ff; fg
2ff; 'g2

f'; ff; 'gg
�
: (4:3:16)

(4.3.16) is Gcan
dv {invariant semidensity|density of weight � = 1

2
(A density have weight

� if it multiplies by the �{th power of Ber in (3.2.4)). For example if in the point z0
the functions f and ' de�ning surface by the equations (4.3.15) obey to normalization

conditions:

ff; fgjz0 = ff; ff; 'ggjz0 = 0 (4:3:17)

then

Ajz0 =
�fp
ff; 'g

(4:3:18)

and under the transformation f ! �f , ' ! �' which does not change (4.3.17), (4.3.18)

multiplies by the (�
�
)�

1
2|the square root of the Berezinian of this transformation. ((4.3.16)

can be directly computed from (4.3.18) and (4.3.17)).

One can show that the density (4.3.16) is unique (up to multiplication on a constant)

in the class of the densities of the rank k � 2 de�ned on the surfaces of the dimension (p:p)

which are invariant under the transformations preserving (dv; f ; g) structure (except the
volume form itself) [35]. The semidensity (4.3.16) takes odd values. It is exotic analogue

of Poincare{Cartan invariant.| ~A2 = 0 so it cannot be integrated over surfaces.

4.4. SP{structure and Batalin{Vilkovisky Formalism

In this subsection we again return to considerations of the section 2 on the basis of

odd symplectic geometry.

The space of �elds and anti�elds described in a 2-nd section can be naturally provided

with odd symplectic structures (dv; f ; g) which in fact are SP structures.

We recall that E is the space of initial �elds f'Ag, Eemin is a space of �elds f'Aming =
f'A; c�g (the "ghosts" c� have the parity opposite to R�) and Ee is a space of �elds

f�Ag = f'A; c�; ��; ��g; (p(c�) = p(��) = p(R�) + 1 = p(��) + 1): The space

of �elds-anti�elds is nothing but a superspace associated to cotangent bundle of a corre-

sponding space of �elds (see Section 3). The superspace ST �E have coordinates 'A; '�A.

Analogously

ST �Eemin � f�A
min;�

�

Amin = 'A; c�; '�A; c
�

�g and

ST �Ee � f�A;��

A = 'A; c�; ��; ��; '
�

A; c
�

�; �
��; ���g:
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On the space E of initial �elds f'Ag one can consider two volume forms:

dV0 =
Y
A

d'A (4:4:1)

(canonical one) and

dV = eS(')dV0 (4:4:2)

related with the action S(') of theory.

The canonical form (4.4.1) is naturally prolonged on Eemin and Ee:

dV e
0min =

Y
A;�

d'Adc�

dV e
0 =

Y
A;�

d'Adc�d��d��:
(4:4:3)

Using the construction of example 4.2.2 one can consider the lifting of volume forms (4.4.1)-

(4.4.3) on the corresponding spaces of �elds-anti�elds

dV̂0jST�E =
Y
A

d'Ad'�A;

dV̂ e
0 jST�Eemin

=
Y
A

d�A
mind�

�

minA;

dV̂ e
0 jST�Ee =

Y
A

d�Ad��

A

(4:4:4)

and correspondingly:

dV̂ jST�E = e2S(')dV̂0jST�E
dV̂ ejST�Ee

min
= e2S(')dV̂0jST�Ee

min

dV̂ ejST�Ee = e2S(')dV̂0jST�Ee

(4:4:5)

On the space ST �Ee (ST �Eemin) of �elds-anti�elds there is a third possibility to consider

a volume form

dV̂ m = e2S(�;�
�)dV̂ e

0 (4:4:6)

where S(�;��) = S(') + c�RA
�'

�

A + : : : is master-action obeying to equation (2.2.7).

The symplectic structure on ST �E, ST �Ee, (ST �Eemin) can be naturally de�ned by the

construction of example (4.1.1) (xi ! �A; �i = x�i ! ��

A). The (2.2.5) is the corresponding

Poisson bracket.

Using a volume forms (4.4.4) { (4.4.6) and the odd symplectic structures we come to

di�erent structures (dV̂ e
0 ; f ; g), (dV̂ e; f ; g), (dV̂ m; f ; g) on the space of �elds-anti�elds.

The �rst two structures are SP structures. (See example 4.2.2 and the statements i),

ii) of Theorem.)

From the master-equation (2.2.7) and Theorem (statement iii)) follows that the struc-

ture

(dV̂ m ; f ; g) (4:4:7)
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constructed via master-action by (4.4.6) is SP{structure too. So using the Theorem one

can interpret the master{ equation in the following way:

To �nd a volume form dV̂ m in ST �Ee such that it obeys to initial conditions

dV̂ m =
�
ec

�RA�'
�

A+:::
�
dV̂ (4:4:8)

and there are Darboux coordinates (of course non-local) in which

dV̂ m = 1 � dV̂0 (4:4:9)

(Action "dissolves".)

The basic formula (2.2.10) for reduced partition function is interpreted in a following

way.

To SP structure (dV̂ m; f ; g) on ST �E corresponds D-density (4.3.6). To this D-

density corresponds functional (3.2.3)| integral over Lagrangian surface � in ST �E de�ned
by gauge conditions (2.2.1), (2.2.9).

	� = 0 ) � : ��

A �
@(	���)

@�A
= 0: (4:4:10)

The functional (3.2.3) with integrand (4.3.6) (with a volume form (4.4.6)) is covariant

expression for (2.2.10). The gauge independence follows from the fact that (dV̂ m; f ; g)
structure is SP structure (see (4.3.11){(4.3.13)).

What is the relation between symmetries of a theory and SP structure (4.4.7) ?

Let fR�g be basis of symmetries of Theory. (See subsection 2.1):

RA
�

@S

@'A
= 0 (4:4:11)

(symmetry condition)

(�1)p(A)
@RA

�

@'A
= 0 (4:4:12)

(preserving of canonical volume form (4.4.1)). One can consider D-density

~A = Ber

�
@	�

@'A
RA
�

�
(4:4:13)

(See example 3.2.1) and corresponding functional

� =

Z
Ber

�
@	�

@'A
RA
�

�Y
�

�(	�)dV: (4:4:14)

In the case if volume form dV in E is given by (4.4.2) dV = eSdV0, the functional (4.4.14)

is nothing but (2.3.2).
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We study the problem of gauge independence of this functional { i.e. closeness of a

density (4.4.13).

Let us consider �rst

Toy-example. The number of symmetries is one. (4.4.14) is reduced to

� =

Z
@	

@'A
RA�(	)eS

Y
A

d'A

which is nothing but 
ux of vector �eld R through a surface 
 : 	 = 0.

"Gauge" independence means that

0 = divdVR ==
@RA

@'A
+
1

�
RA @�

@'A
=

@RA

@'A
+RA @S

@'A
; (� = eS):

which follows from (4.4.11), (4.4.12).

In a general case to investigate a problem of closeness of (4.4.13) we go to BS repre-

sentation of this density:

WA =

Z
W e

A

Y
�

dc� (4:4:15)

where

W e
A = ec

�RA�'
�

A (4:4:16)

is a function on space ST �Eemin (see Example 3.2.1 and (2.3.3)).

and use the fact that the closeness condition (3.2.13) can be expressed in a terms of

corresponding � operator. (See example 4.2.2).

For this purpose following to (4.2.7) we consider �{operator de�ned on ST �Eemin by

the structure (dV̂ ; f ; g) where the volume form dV̂ corresponded to dV in (4.4.14) is given

by (4.4.5). Using that fR�g are the symmetries (4.4.11) we come to

�W e
A = c�c�

�
t



��R
A

 +EAB

��

@S

@'B

�
'�A (4:4:17)

where

[R�;R�] = t



��R
 +EAB
��

@S

@'B
: (4:4:18)

(See (2.1.21)).

In the case if symmetries are abelian (t



�� = EAB
�� = 0) then

�W e
A = 0: (4:4:19)

and evidently in the space ST �E
�WA = 0: (4:4:20)

for BS representation (4.4.15) of the density (4.4.13). So this density is closed. It means

that (4.4.14) is gauge independent. (Compare with (2.3.2),(2.3.3)).
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The equation (4.4.19) means that to the function W e
A on ST �Eemin corresponds the

closed density in the space Eemin of the �elds '
A and ghosts c� (if a volume form dV = eSdV0

in Eemin).

WA is odd function and W e
A is even one. One can see that a volume form

d ~̂V = (W e)2dV̂ e
0 = e2(S(')+c

�RA�'
�

A)dV e
0 (4:4:21)

provides ST �Eemin by SP structure because (dV̂ ; f ; g) is SP structure and W e given by

(4.4.16) obeys to equation (4.4.19) (see the statement iii) of Theorem).

We come to SP structure (4.4.6) related with master{action in the case where sym-

metries are abelian (See eq. (2.3.4)).

To transformation (2.1.23) of the basis R� corresponds canonical transformation

W e !W 0e = ec
�RA�'

�

A+:::

dv̂e ! e2(S+c
�RA�'

�

A+:::)
(4:4:22)

In the general case where initial basis of symmetries is not abelian one have to put

R� instead R� in (4.4.16) where R� is abelian (in general non{local) basis of symmetries

(2.3.11). To the transformation (4.4.22) corresponds the transformation from abelian basis

to initial one performed in a subsection 2.3. The function W e in (4.4.16) plays the role of

initial conditions. (Compare with (4.4.8)).

At the end we note that in the case where initial symmetries constitute a group

(even not{abelian) and
P

� t
�
�� = 0 one can see by direct computation using (4.4.17) that

(4.4.20) is obeyed in spite of the fact that (4.4.19) is not obeyed. So the density (4.4.13)

corresponded to (4.4.15) is closed in this case.

We come to Faddeev{Popov trick. (Compare with (2.3.2) and (2.3.3)).
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