
Polynomial-Time Algorithms for Prime Factorization

and Discrete Logarithms on a Quantum Computer�

Peter W. Shor

Room 2D-149

AT&T Bell Labs

600 Mountain Avenue

Murray Hill, NJ 07974, USA

email: shor@research.att.com

Abstract

A digital computer is generally believed to be an e�cient universal computing

device; that is, it is believed able to simulate any physical computing device with

an increase in computation time of at most a polynomial factor. This may not be

true when quantum mechanics is taken into consideration. This paper considers

factoring integers and �nding discrete logarithms, two problems which are generally

thought to be hard on a classical computer and have been used as the basis of

several proposed cryptosystems. E�cient randomized algorithms are given for

these two problems on a hypothetical quantum computer. These algorithms take

a number of steps polynomial in the input size, e.g., the number of digits of the

integer to be factored.

AMS subject classi�cations: 82P10, 11Y05, 68Q10.

1 Introduction

One of the �rst results in the mathematics of computation, which underlies the subse-
quent development of much of theoretical computer science, was the distinction between
computable and non-computable functions shown in papers of Church [1936] and Tur-
ing [1936]. Central to this result is Church's thesis, which says that all computing
devices can be simulated by a Turing machine. This thesis greatly simpli�es the study
of computation, since it reduces the potential �eld of study from any of an in�nite
number of potential computing devices to Turing machines. Church's thesis is not a
mathematical theorem; to make it one would require a precise mathematical description
of a computing device. Such a description, however, would leave open the possibility
of some practical computing device which did not satisfy this precise mathematical

�A preliminary version of this paper appeared in the Proceedings of the 35th Annual Symposium

on Foundations of Computer Science, Santa Fe, NM, Nov. 20{22, 1994, IEEE Computer Society Press,

pp. 124{134.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25183859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

description, and thus would make the resulting mathematical theorem weaker than
Church's original thesis.

With the development of practical computers, it has become apparent that the dis-
tinction between computable and non-computable functions is much too coarse; com-
puter scientists are now interested in the exact e�ciency with which speci�c functions
can be computed. This exact e�ciency, on the other hand, is too precise a quantity
to work with easily. A compromise between coarseness and precision has been reached
with the distinction between e�ciently and ine�ciently computable functions being
informally delineated by whether the length of the computation scales polynomially or
superpolynomially with the input size. The class of problems which can be solved by al-
gorithms having a number of steps polynomial in the input size is known as P. For this
classi�cation to make sense, we need to know that whether a function is computable in
polynomial time is independent of the kind of computing device used. This corresponds
to a quantitative version of Church's thesis, which Vergis et al. [1986] have called the
\Strong Church's Thesis" and which makes up half of the \Invariance Thesis" of van
Emde Boas [1990]. This quantitative Church's thesis is:

Any physical computing device can be simulated by a Turing machine in a

number of steps polynomial in the resources used by the computing device.

In this thesis, the Turing machine is sometimes augmented with a random number
generator, as it has not been proved that there are pseudorandom number generators
which can e�ciently simulate truly random number generators for all purposes. Readers
who are not comfortable with Turing machines may think instead of digital computers
having an amount of memory that grows linearly with the length of the computation,
as these two classes of computing machines can e�ciently simulate each other.

There are two escape clauses in the above thesis. One of these is the word \physi-
cal." Researchers have produced machine models that violate the quantitative Church's
thesis, but most of these have been ruled out with some reason for why they are not
\physical," in other words, why they could not be built and made to work. The other
escape clause in the above thesis is the word \resources," which are not completely
speci�ed above. There are generally two resources which limit the ability of digital
computers to solve large problems: time (computation steps) and space (memory).
There are more resources pertinent to analog computation; some proposed analog ma-
chines that seem able to solve NP-complete problems in polynomial time have required
the machining of exponentially precise parts, or an exponential amount of energy. (See
Vergis et al. [1986] and Steiglitz [1988]; this issue is also implicit in the papers of Canny
and Reif [1987] and Choi et al. [1995] on three-dimensional shortest paths.)

For quantum computation, in addition to \space" and \time," there is also a third
potential resource, \accuracy." For a quantum computer to work, at least in any
currently envisioned implementation, it will need to make changes in the quantum
states of objects (e.g., atoms, photons, or atomic nuclei). These changes can clearly
not be perfectly accurate, but must have some small amount of inherent imprecision.
If this imprecision is constant, then it is not known how to compute any functions in
polynomial time on a quantum computer that cannot also be computed in polynomial

2

time on a classical computer with a random number generator. However, if we let the
precision grow polynomially in the input size (that is, we let the number of bits of
precision grow logarithmically in the input size), we appear to obtain a more powerful
type of computer. Allowing the same polynomial growth in precision does not appear
to confer extra computing power to classical mechanics, although allowing exponential
growth in precision does [Hartmanis and Simon 1974, Vergis et al. 1986]. As far as
we know, what precision is possible in quantum state manipulation is dictated not by
fundamental physical laws but by the properties of the materials and the architecture
with which a quantum computer is built. If the accuracy of a quantum computer is
large enough to make it more powerful than a classical computer, then in order to
understand its potential it is important to think of precision as a resource that can
vary. Considering the precision as a large constant (even though it is almost certain
to be constant for any given machine) would be comparable to considering a classical
digital computer as a �nite automaton: since any given computer has a �xed amount
of memory, this view is technically correct; however, it is not particularly useful.

Because of the remarkable e�ectiveness of our mathematicalmodels of computation,
computer scientists have tended to forget that computation is dependent on the laws
of physics. This can be seen in the statement of the quantitative Church's thesis in van
Emde Boas [1990], where the word \physical" in the above phrasing is replaced with
the word \reasonable." It is di�cult to imagine any de�nition of \reasonable" in this
context which does not mean \physically realizable," i.e., that this computing device
could actually be built and would work. Computer scientists have become convinced
of the truth of the quantitative Church's thesis through the failure of all proposed
counter-examples. Most of these proposed counter-examples have been based on the
laws of classical mechanics; however, the universe is in reality quantum mechanical.
Quantum mechanical objects often behave quite di�erently from how our intuition,
based on classical mechanics, tells us they should. It thus seems plausible that while
the natural computing power of classical mechanics corresponds to Turing machines,1

the natural computing power of quantum mechanics could be more powerful.
The �rst person to look at the interaction between computation and quantum me-

chanics appears to have been Benio� [1980, 1982a, 1982b]. Although he did not ask
whether quantum mechanics conferred extra power to computation, he showed that re-
versible unitary evolution was su�cient to realize the computational power of a Turing
machine, thus showing that quantum mechanics is at least as powerful computation-
ally as a classical computer. Feynman [1982,1986] seems to have been the �rst to
suggest that quantum mechanics might be more powerful computationally than a Tur-
ing machine. He gave arguments as to why quantum mechanics might be intrinsically
computationally expensive to simulate on a classical computer. He also raised the
possibility of using a computer based on quantum mechanical principles to avoid this
problem, thus implicitly asking the converse question: by using quantum mechanics in

1I believe that this question has not yet been settled and is worthy of further investigation. See

[Vergis et al. 1986, Steiglitz 1988, Rubel 1989]. In particular, turbulence seems a good candidate for a

counterexample to the quantitative Church's thesis because the non-trivial dynamics on many length

scales may make it di�cult to simulate on a classical computer.

3

a computer can you compute more e�ciently than on a classical computer? Deutsch
[1985, 1989] was the �rst to ask this question explicitly. In order to study this question,
he de�ned both quantum Turing machines and quantum circuits and investigated some
of their properties.

The question of whether using quantum mechanics in a computer allows one to
obtain more computational power was more recently addressed by Deutsch and Jozsa
[1992] and Berthiaume and Brassard [1992a, 1992b], but these papers did not show
how to solve any problem in quantum polynomial time that was not already known to
be solvable in polynomial time with the aid of a random number generator, allowing
a small probability of error (this is the characterization of the complexity class BPP,
which is widely viewed as the class of e�ciently solvable problems). Further work
on this problem was stimulated by Bernstein and Vazirani [1993]. One of the results
contained in their paper was an oracle problem (that is, a problem involving a \black
box" subroutine that the computer is allowed to perform, but for which no code is
accessible) which can be done in polynomial time on a quantum Turing machine but
which requires super-polynomial time on a classical computer. This result was improved
by Simon [1994], who gave a much simpler construction of an oracle problemwhich takes
polynomial time on a quantum computer but requires exponential time on a classical
computer. Indeed, while Bernstein and Vaziarni's problem appears quite contrived,
Simon's problem looks quite natural; Simon's algorithm inspired the work presented in
this paper.

Two number theory problems which have been studied extensively but for which
no polynomial-time algorithms have yet been discovered are �nding discrete logarithms
and factoring integers [Pomerance 1987, Gordon 1993, Lenstra and Lenstra 1993, Adle-
man and McCurley 1995]. These problems are so widely believed to be hard that several
cryptosystems based on their di�culty have been proposed, including the widely used
RSA public key cryptosystem developed by Rivest, Shamir and Adleman [1978]. We
show that these problems can be solved in polynomial time on a quantum computer
with a small probability of error.

Currently, nobody knows how to build a quantum computer, although it seems as
though it might be possible within the laws of quantum mechanics. Some suggestions
have been made as to possible designs for such computers [Teich et al. 1988, Lloyd
1993, 1994a, Cirac and Zoller 1995, DiVincenzo 1995, Sleator and Weinfurter 1995,
Barenco et al. 1995b, Chuang and Yamomoto 1995], but there will be substantial
di�culty in building any of these [Landauer 1995, Unruh 1995, Chuang et al. 1995,
Palma et al. 1995]. The most di�cult obstacles appear to involve the decoherence of
quantum superpositions through the interaction of the computer with the environment,
and the implementation of quantum state transformations with enough precision to give
accurate results after many computation steps. Both of these obstacles become more
di�cult as the size of the computer grows, so it may turn out to be possible to build
small quantum computers, while scaling up to machines large enough to do interesting
computations may present fundamental di�culties.

Even if no useful quantum computer is ever built, this research does illuminate
the problem of simulating quantum mechanics on a classical computer. Any method of

4

doing this for an arbitrary Hamiltonianwould necessarily be able to simulate a quantum
computer. Thus, any general method for simulating quantum mechanics with at most
a polynomial slowdown would lead to a polynomial-time algorithm for factoring.

The rest of this paper is organized as follows. In the second section, we introduce
the model of quantum computation, the quantum gate array, that we use in the rest of
the paper. In the third and fourth sections, we explain two subroutines that are used
in our algorithms: reversible modular exponentiation and quantum Fourier transforms.
In the �fth section, we give our algorithm for prime factorization, and in the sixth
section, we give our algorithm for extracting discrete logarithms. In the last section,
we give a brief discussion of the practicality of quantum computation and suggest
possible directions for further work.

2 Quantum Computation

In this section we give a brief introduction to quantum computation, emphasizing the
properties that we will use. We will describe only quantum gate arrays, or quantum

acyclic circuits, which are analogous to acyclic circuits in classical computer science.
For other models of quantum computers, see references on quantum Turing machines
[Deutsch 1989, Bernstein and Vazirani 1993, Yao 1993] and quantum cellular automata
[Feynman 1986, Margolus 1986, 1990, Lloyd 1993, Biafore 1994]. If they are allowed
a small probability of error, quantum Turing machines and quantum gate arrays can
compute the same functions in polynomial time [Yao 1993]. This may also be true for
the various models of quantum cellular automata, but it has not yet been proved. This
gives evidence that the class of functions computable in quantum polynomial time
with a small probability of error is robust, in that it does not depend on the exact
architecture of a quantum computer. By analogy with the classical class BPP, this
class is called BQP.

Consider a system with n components, each of which can have two states. Whereas
in classical physics, a complete description of the state of this system requires only n

bits, in quantum physics, a complete description of the state of this system requires
2n � 1 complex numbers. To be more precise, the state of the quantum system is a
point in a 2n-dimensional vector space. For each of the 2n possible classical positions
of the components, there is a basis state of this vector space which we represent, for
example, by j011 � � �0i meaning that the �rst bit is 0, the second bit is 1, and so on.
Here, the ket notation jxi means that x is a (pure) quantum state. (Mixed states will
not be discussed in this paper, and thus we do not de�ne them; see a quantum theory
book such as Peres [1993] for this de�nition.) The Hilbert space associated with this
quantum system is the complex vector space with these 2n states as basis vectors, and
the state of the system at any time is represented by a unit-length vector in this Hilbert
space. As multiplying this state vector by a unit-length complex phase does not change
any behavior of the state, we need only 2n�1 complex numbers to completely describe

5

the state. We represent this superposition of states asX
i

ai jSii ; (2.1)

where the amplitudes ai are complex numbers such that
P

i jaij2 = 1 and each jSii
is a basis vector of the Hilbert space. If the machine is measured (with respect to
this basis) at any particular step, the probability of seeing basis state jSii is jaij2;
however, measuring the state of the machine projects this state to the observed basis
vector jSii. Thus, looking at the machine during the computation will invalidate the
rest of the computation. In this paper, we only consider measurements with respect
to the canonical basis. This does not greatly restrict our model of computation, since
measurements in other reasonable bases could be simulated by �rst using quantum
computation to perform a change of basis and then performing a measurement in the
canonical basis.

In order to use a physical system for computation, we must be able to change
the state of the system. The laws of quantum mechanics permit only unitary trans-
formations of state vectors. A unitary matrix is one whose conjugate transpose is
equal to its inverse, and requiring state transformations to be represented by uni-
tary matrices ensures that summing the probabilities of obtaining every possible out-
come will result in 1. The de�nition of quantum circuits (and quantum Turing ma-
chines) only allows local unitary transformations; that is, unitary transformations on
a �xed number of bits. This is physically justi�ed because, given a general uni-
tary transformation on n bits, it is not at all clear how one would e�ciently imple-
ment it physically, whereas two-bit transformations can at least in theory be imple-
mented by relatively simple physical systems [Cirac and Zoller 1995, DiVincenzo 1995,
Sleator and Weinfurter 1995, Chuang and Yamomoto 1995]. While general n-bit trans-
formations can always be built out of two-bit transformations [DiVincenzo 1995, Sleator
and Weinfurter 1995, Lloyd 1994b, Deutsch et al. 1995], the number required will often
be exponential in n [Barenco et al. 1995a]. Thus, the set of two-bit transformations
form a set of building blocks for quantum circuits in a manner analogous to the way
a universal set of classical gates (such as the AND, OR and NOT gates) form a set of
building blocks for classical circuits. In fact, for a universal set of quantum gates, it
is su�cient to take all one-bit gates and a single type of two-bit gate, the controlled
NOT, which negates the second bit if and only if the �rst bit is 1.

Perhaps an example will be informative at this point. A quantum gate can be
expressed as a truth table: for each input basis vector we need to give the output of
the gate. One such gate is:

j00i ! j00i
j01i ! j01i (2.2)

j10i ! 1p
2
(j10i+ j11i)

j11i ! 1p
2
(j10i � j11i):

6

Not all truth tables correspond to physically feasible quantum gates, as many truth
tables will not give rise to unitary transformations.

The same gate can also be represented as a matrix. The rows correspond to input
basis vectors. The columns correspond to output basis vectors. The (i; j) entry gives,
when the ith basis vector is input to the gate, the coe�cient of the jth basis vector in
the corresponding output of the gate. The truth table above would then correspond to
the following matrix:

j00i j01i j10i j11i
j00i 1 0 0 0

j01i 0 1 0 0

j10i 0 0 1p
2

1p
2

j11i 0 0 1p
2

� 1p
2

:

(2.3)

A quantum gate is feasible if and only if the corresponding matrix is unitary, i.e., its
inverse is its conjugate transpose.

Suppose our machine is in the superposition of states

1p
2
j10i � 1p

2
j11i (2.4)

and we apply the unitary transformation represented by (2.2) and (2.3) to this state.
The resulting output will be the result of multiplying the vector (2.4) by the matrix
(2.3). The machine will thus go to the superposition of states

1
2
(j10i+ j11i)� 1

2
(j10i � j11i) = j11i : (2.5)

This example shows the potential e�ects of interference on quantum computation. Had
we started with either the state j10i or the state j11i, there would have been a chance
of observing the state j10i after the application of the gate (2.3). However, when we
start with a superposition of these two states, the probability amplitudes for the state
j10i cancel, and we have no possibility of observing j10i after the application of the
gate. Notice that the output of the gate would have been j10i instead of j11i had we
started with the superposition of states

1p
2
j10i+ 1p

2
j11i (2.6)

which has the same probabilities of being in any particular con�guration if it is observed
as does the superposition (2.4).

If we apply a gate to only two bits of a longer basis vector (now our circuit must
have more than two wires), we multiply the gate matrix by the two bits to which the
gate is applied, and leave the other bits alone. This corresponds to multiplying the
whole state by the tensor product of the gate matrix on those two bits with the identity
matrix on the remaining bits.

A quantum gate array is a set of quantum gates with logical \wires" connecting
their inputs and outputs. The input to the gate array, possibly along with extra work

7

bits that are initially set to 0, is fed through a sequence of quantum gates. The values
of the bits are observed after the last quantum gate, and these values are the output.
To compare gate arrays with quantum Turing machines, we need to add conditions that
make gate arrays a uniform complexity class. In other words, because there is a di�erent
gate array for each size of input, we need to keep the designer of the gate arrays from
hiding non-computable (or hard to compute) information in the arrangement of the
gates. To make quantum gate arrays uniform, we must add two things to the de�nition
of gate arrays. The �rst is the standard requirement that the design of the gate array
be produced by a polynomial-time (classical) computation. The second requirement
should be a standard part of the de�nition of analog complexity classes, although since
analog complexity classes have not been widely studied, this requirement is much less
widely known. This requirement is that the entries in the unitary matrices describing
the gates must be computable numbers. Speci�cally, the �rst logn bits of each entry
should be classically computable in time polynomial in n [Solovay 1995]. This keeps
non-computable (or hard to compute) information from being hidden in the bits of the
amplitudes of the quantum gates.

3 Reversible Logic and Modular Exponentiation

The de�nition of quantum gate arrays gives rise to completely reversible computation.
That is, knowing the quantum state on the wires leading out of a gate tells uniquely
what the quantum state must have been on the wires leading into that gate. This is a
reection of the fact that, despite the macroscopic arrow of time, the laws of physics
appear to be completely reversible. This would seem to imply that anything built with
the laws of physics must be completely reversible; however, classical computers get
around this fact by dissipating energy and thus making their computations thermody-
namically irreversible. This appears impossible to do for quantum computers because
superpositions of quantum states need to be maintained throughout the computation.
Thus, quantum computers necessarily have to use reversible computation. This im-
poses extra costs when doing classical computations on a quantum computer, as is
sometimes necessary in subroutines of quantum computations.

Because of the reversibility of quantum computation, a deterministic computation
is performable on a quantum computer only if it is reversible. Luckily, it has already
been shown that any deterministic computation can be made reversible [Lecerf 1963,
Bennett 1973]. In fact, reversible classical gate arrays have been studied. Much like
the result that any classical computation can be done using NAND gates, there are also
universal gates for reversible computation. Two of these are To�oli gates [To�oli 1980]
and Fredkin gates [Fredkin and To�oli 1982]; these are illustrated in Table 3.1. The
To�oli gate is just a controlled controlled NOT, i.e., the last bit is negated if and only
if the �rst two bits are 1. In a To�oli gate, if the third input bit is set to 1, then the
third output bit is the NAND of the �rst two input bits. Since NAND is a universal
gate for classical gate arrays, this shows that the To�oli gate is universal. In a Fredkin
gate, the last two bits are swapped if the �rst bit is 0, and left untouched if the �rst

8

INPUT OUTPUT

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

To�oli Gate

INPUT OUTPUT

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

Fredkin Gate

Table 3.1: Truth tables for To�oli and Fredkin gates.

bit is 1. For a Fredkin gate, if the third input bit is set to 0, the second output bit is
the AND of the �rst two input bits; and if the last two input bits are set to 0 and 1
respectively, the second output bit is the NOT of the �rst input bit. Thus, both AND
and NOT gates are realizable using Fredkin gates, showing that the Fredkin gate is
universal.

From results on reversible computation [Lecerf 1963, Bennett 1973], we can com-
pute any polynomial time function F (x) as long as we keep the input x in the
computer. We do this by adapting the method for computing the function F non-
reversibly. These results can easily be extended to work for gate arrays [To�oli 1980,
Fredkin and To�oli 1982]. When AND, OR or NOT gates are changed to Fredkin or
To�oli gates, one obtains both additional input bits, which must be preset to speci�ed
values, and additional output bits, which contain the information needed to reverse the
computation. While the additional input bits do not present di�culties in designing
quantum computers, the additional output bits do, because unless they are all reset
to 0, they will a�ect the interference patterns in quantum computation. Bennett's
method for resetting these bits to 0 is shown in the top half of Table 3.2. A non-
reversible gate array may thus be turned into a reversible gate array as follows. First,
duplicate the input bits as many times as necessary (since each input bit could be used
more than once by the gate array). Next, keeping one copy of the input around, use
To�oli and Fredkin gates to simulate non-reversible gates, putting the extra output
bits into the RECORD register. These extra output bits preserve enough of a record
of the operations to enable the computation of the gate array to be reversed. Once
the output F (x) has been computed, copy it into a register that has been preset to
zero, and then undo the computation to erase both the �rst OUTPUT register and the
RECORD register.

To erase x and replace it with F (x), in addition to a polynomial-time algorithm for
F , we also need a polynomial-time algorithm for computing x from F (x); i.e., we need
that F is one-to-one and that both F and F�1 are polynomial-time computable. The
method for this computation is given in the whole of Table 3.2. There are two stages

9

INPUT - - - - - - - - - - - - - - - - - -
INPUT OUTPUT RECORD(F) - - - - - -
INPUT OUTPUT RECORD(F) OUTPUT
INPUT - - - - - - - - - - - - OUTPUT

INPUT INPUT RECORD(F�1) OUTPUT
- - - - - - INPUT RECORD(F�1) OUTPUT
- - - - - - - - - - - - - - - - - - OUTPUT

Table 3.2: Bennett's method for making computation reversible.

to this computation. The �rst is the same as before, taking x to (x; F (x)). For the
second stage, shown in the bottom half of Table 3.2, note that if we have a method
to compute F�1 non-reversibly in polynomial time, we can use the same technique
to reversibly map F (x) to (F (x); F�1(F (x))) = (F (x); x). However, since this is a
reversible computation, we can reverse it to go from (x; F (x)) to F (x). Put together,
these two pieces take x to F (x).

The above discussion shows that computations can be made reversible for only a
constant factor cost in time, but the above method uses as much space as it does time. If
the classical computation requires much less space than time, then making it reversible
in this manner will result in a large increase in the space required. There are methods
that do not use as much space, but use more time, to make computations reversible
[Bennett 1989, Levine and Sherman 1990]. While there is no general method that does
not cause an increase in either space or time, speci�c algorithms can sometimes be
made reversible without paying a large penalty in either space or time; at the end
of this section we will show how to do this for modular exponentiation, which is a
subroutine necessary for quantum factoring.

The bottleneck in the quantum factoring algorithm; i.e., the piece of the fac-
toring algorithm that consumes the most time and space, is modular exponentia-
tion. The modular exponentiation problem is, given n, x, and r, �nd xr (mod n).
The best classical method for doing this is to repeatedly square of x (mod n) to
get x2

i
(mod n) for i � log2 r, and then multiply a subset of these powers (mod n)

to get xr (mod n). If we are working with l-bit numbers, this requires O(l) squar-
ings and multiplications of l-bit numbers (mod n). Asymptotically, the best clas-
sical result for gate arrays for multiplication is the Sch�onhage{Strassen algorithm
[Sch�onhage and Strassen 1971, Knuth 1981, Sch�onhage 1982]. This gives a gate ar-
ray for integer multiplication that uses O(l log l log log l) gates to multiply two l-bit
numbers. Thus, asymptotically, modular exponentiation requires O(l2 log l log log l)
time. Making this reversible would na��vely cost the same amount in space; however,
one can reuse the space used in the repeated squaring part of the algorithm, and thus
reduce the amount of space needed to essentially that required for multiplying two l-bit
numbers; one simple method for reducing this space (although not the most versatile
one) will be given later in this section. Thus, modular exponentiation can be done in

10

O(l2 log l log log l) time and O(l log l log log l) space.
While the Sch�onhage{Strassen algorithm is the best multiplication algorithm dis-

covered to date for large l, it does not scale well for small l. For small numbers, the best
gate arrays for multiplication essentially use elementary-school longhand multiplication
in binary. This method requires O(l2) time to multiply two l-bit numbers, and thus
modular exponentiation requires O(l3) time with this method. These gate arrays can
be made reversible, however, using only O(l) space.

We will now give the method for constructing a reversible gate array that takes only
O(l) space and O(l3) time to compute (a; xa (mod n)) from a, where a, x, and n are
l-bit numbers. The basic building block used is a gate array that takes b as input and
outputs b+ c (mod n). Note that here b is the gate array's input but c and n are built
into the structure of the gate array. Since addition (mod n) is computable in O(logn)
time classically, this reversible gate array can be made with only O(logn) gates and
O(logn) work bits using the techniques explained earlier in this section.

The technique we use for computing xa (mod n) is essentially the same as the
classical method. First, by repeated squaring we compute x2

i
(mod n) for all i < l.

Then, to obtain xa (mod n) we multiply the powers x2
i
(mod n) where 2i appears in

the binary expansion of a. In our algorithm for factoring n, we only need to compute
xa (mod n) where a is in a superposition of states, but x is some �xed integer. This
makes things much easier, because we can use a reversible gate array where a is treated
as input, but where x and n are built into the structure of the gate array. Thus, we
can use the algorithm described by the following pseudocode; here, ai represents the
ith bit of a in binary, where the bits are indexed from right to left and the rightmost
bit of a is a0.

power := 1

for i = 0 to l�1
if (ai == 1) then

power := power � x 2
i

(mod n)
endif

endfor

Here, the variable a is left unchanged by the code and xa (mod n) is output as the
variable power . Thus, this code takes the pair of values (a; 1) to (a; xa (mod n)).

This pseudocode can easily be turned into a gate array; the only hard part of this
is the fourth line, where we multiply the variable power by x2

i
(mod n); to do this we

need to use a fairly complicated gate array as a subroutine. Recall that x2
i
(mod n)

can be computed classically and then built into the structure of the gate array. Thus,
to implement this line, we need a reversible gate array that takes b as input and gives
bc (mod n) as output, where the structure of the gate array can depend on c and n.
Of course, this step can only be reversible if gcd(c; n) = 1, i.e., if c and n have no
common factors, as otherwise two distinct values of b will be mapped to the same value
of bc (mod n); this case is fortunately all we need for the factoring algorithm. We will
show how to build this gate array in two stages. The �rst stage is directly analogous

11

to exponentiation by repeated multiplication; we obtain multiplication from repeated
addition (mod n). Pseudocode for this stage is as follows.

result := 0

for i = 0 to l�1
if (bi == 1) then

result := result + 2
ic (mod n)

endif

endfor

Again, 2ic (mod n) can be precomputed and built into the structure of the gate array.
The above pseudocode takes b as input, and gives (b; bc (mod n)) as output. To

get the desired result, we now need to erase b. Recall that gcd(c; n) = 1, so there is
a c�1 (mod n) with c c�1 � 1 (mod n). Multiplication by this c�1 could be used to
reversibly take bc (mod n) to (bc (mod n); bcc�1 (mod n)) = (bc (mod n); b). This is
just the reverse of the operation we want, and since we are working with reversible
computing, we can turn this operation around to erase b. The pseudocode for this
follows.

for i = 0 to l�1
if (result i == 1) then

b := b � 2ic�1 (mod n)
endif

endfor

As before, result i is the ith bit of result.
Note that at this stage of the computation, b should be 0. However, we did not set

b directly to zero, as this would not have been a reversible operation and thus impos-
sible on a quantum computer, but instead we did a relatively complicated sequence of
operations which ended with b = 0 and which in fact depended on multiplication being
a group (mod n). At this point, then, we could do something somewhat sneaky: we
could measure b to see if it actually is 0. If it is not, we know that there has been an
error somewhere in the quantum computation, i.e., that the results are worthless and
we should stop the computer and start over again. However, if we do �nd that b is 0,
then we know (because we just observed it) that it is now exactly 0. This measurement
thus may bring the quantum computation back on track in that any amplitude that
b had for being non-zero has been eliminated. Further, because the probability that
we observe a state is proportional to the square of the amplitude of that state, doing
the modular exponentiation and measuring b every time that we know that it should
be 0 may have a higher probability of overall success than the same computation done
without the repeated measurements of b; this is the quantum watchdog (or quantum

Zeno) e�ect [Peres 1993]. The argument above does not actually show that repeated
measurement of b is indeed bene�cial, because there is a cost (in time, if nothing else)
of measuring b. Before this is implemented, then, it should be checked with analysis

12

or experiment that the bene�t of such measurements exceeds their cost. However, I
believe that partial measurements such as this one are a promising way of trying to
stabilize quantum computations.

Currently, Sch�onhage{Strassen is the algorithm of choice for multiplying very large
numbers, and longhand multiplication is the algorithm of choice for small numbers.
There are also multiplication algorithms which have e�ciencies between these two al-
gorithms, and which are the best algorithms to use for intermediate length numbers
[Karatsuba and Ofman 1962, Knuth 1981, Sch�onhage et al. 1994] It is not clear which
algorithms are best for which size numbers. While this may be known to some extent
for classical computation [Sch�onhage et al. 1994], using data on which algorithms work
better on classical computers could be misleading for two reasons: First, classical com-
puters need not be reversible, and the cost of making an algorithm reversible depends
on the algorithm. Second, existing computers generally have multiplication for 32- or
64-bit numbers built into their hardware, and this will increase the optimal changeover
points to asymptotically faster algorithms; further, some multiplication algorithms can
take better advantage of this hardwired multiplication than others. Thus, in order
to program quantum computers most e�ciently, work needs to be done on the best
way of implementing elementary arithmetic operations on quantum computers. One
tantalizing fact is that the Sch�onhage{Strassen fast multiplication algorithm uses the
fast Fourier transform, which is also the basis for all the fast algorithms on quantum
computers discovered to date; it is tempting to speculate that integer multiplication
itself might be speeded up by a quantum algorithm; if possible, this would result in a
somewhat faster asymptotic bound for factoring on a quantum computer, and indeed
could even make breaking RSA on a quantum computer asymptotically faster than
encrypting with RSA on a classical computer.

4 Quantum Fourier Transforms

Since quantum computation deals with unitary transformations, it is helpful to be able
to build certain useful unitary transformations. In this section we give a technique
for constructing in polynomial time on quantum computers one particular unitary
transformation, which is essentially a discrete Fourier transform. This transformation
will be given as a matrix, with both rows and columns indexed by states. These states
correspond to binary representations of integers on the computer; in particular, the
rows and columns will be indexed beginning with 0 unless otherwise speci�ed.

This transformations is as follows. Consider a number a with 0 � a < q for some q
where the number of bits of q is polynomial. We will perform the transformation that
takes the state jai to the state

1

q1=2

q�1X
c=0

jci exp(2�iac=q): (4.1)

That is, we apply the unitary matrix whose (a; c) entry is 1

q1=2
exp(2�iac=q). This

Fourier transform is at the heart of our algorithms, and we call this matrix Aq.

13

Since we will use Aq for q of exponential size, we must show how this transformation
can be done in polynomial time. In this paper, we will give a simple construction for Aq

when q is a power of 2 that was discovered independently by Coppersmith [1994] and
Deutsch [see Ekert and Jozsa 1995]. This construction is essentially the standard fast
Fourier transform (FFT) algorithm [Knuth 1981] adapted for a quantum computer;
the following description of it follows that of Ekert and Jozsa [1995]. In the earlier
version of this paper [Shor 1994], we gave a construction for Aq when q was in the
special class of smooth numbers with small prime power factors. In fact, Cleve [1994]
has shown how to construct Aq for all smooth numbers q whose prime factors are at
most O(logn).

Take q = 2l, and let us represent an integer a in binary as jal�1al�2 : : : a0i. For
the quantum Fourier transform Aq, we only need to use two types of quantum gates.
These gates are Rj , which operates on the jth bit of the quantum computer as follows:

Rj =

j0i j1i
j0i 1p

2

1p
2

j1i 1p
2

� 1p
2

;

(4.2)

and Sj;k , which operates on the bits in positions j and k with j < k as follows:

Sj;k =

j00i j01i j10i j11i
j00i 1 0 0 0

j01i 0 1 0 0

j10i 0 0 1 0

j11i 0 0 0 ei�k�j ;

(4.3)

where �k�j = �=2k�j . To perform a quantum Fourier transform, we apply the matrices
in the order (reading from left to right)

Rl�1 Sl�2;l�1Rl�2 Sl�3;l�1 Sl�3;l�2Rl�3 : : :R1 S0;l�1 S0;l�2 : : :S0;2 S0;1R0 ; (4.4)

that is, we apply the gates Rj in reverse order from Rl�1 to R0, and between Rj+1 and
Rj we apply all the gates Sj;k where k > j. For example, on 3 bits, the matrices would
be applied in the order R2S1;2R1S0;2S0;1R0. Thus, to take the Fourier transform Aq

when q = 2l, we need to use l(l� 1)=2 quantum gates.
Applying this sequence of transformations will result in a quantum state

1

q1=2

P
b exp(2�iac=q) jbi, where c is the bit-reversal of b, i.e. the binary number ob-

tained by reading the bits of b from right to left. Thus, to obtain the actual quantum
Fourier transform, we need either to do further computation to reverse the bits of jbi to
obtain jci, or to leave the bits in place and read them in reverse order; either alternative
is easy to implement.

To show that this operation actually performs a quantum Fourier transform, con-
sider the amplitude of going from jai = jal�1 : : : a0i to jbi = jbl�1 : : : b0i. First, the
factors of 1=

p
2 in the R matrices multiply to produce a factor of 1=q1=2 overall; thus

14

we need only worry about the exp(2�iac=q) phase factor in the expression (4.1). The
matrices Sj;k do not change the values of any bits, but merely change their phases.
There is thus only one way to switch the jth bit from aj to bj , and that is to use the
appropriate entry in the matrix Rj . This entry adds � to the phase if the bits aj and bj
are both 1, and leaves it unchanged otherwise. Further, the matrix Sj;k adds �=2

k�j to
the phase if aj and bk are both 1 and leaves it unchanged otherwise. Thus, the phase
on the path from jai to jbi is

X
0�j<l

�ajbj +
X

0�j<k<l

�

2k�j
ajbk: (4.5)

This expression can be rewritten as

X
0�j�k<l

�

2k�j
ajbk: (4.6)

Since c is the bit-reversal of b, this expression can be further rewritten as

X
0�j�k<l

�

2k�j
ajcl�1�k : (4.7)

Making the substitution l � k � 1 for k in this sum, we get

X
0�j+k<l

2�
2j2k

2l
ajck (4.8)

Now, since adding multiples of 2� do not a�ect the phase, we obtain the same phase if
we sum over all j and k less than l, obtaining

l�1X
j;k=0

2�
2j2k

2l
ajck =

2�

2l

l�1X
j=0

2jaj

l�1X
k=0

2kck; (4.9)

where the last equality follows from the distributive law of multiplication. Now, q = 2l,
a =

Pl�1
j=0 2

jaj , and similarly for c, so the above expression is equal to 2�ac=q, which
is the phase for the amplitude of jai ! jci in the transformation (4.1).

When k � j is large in the gate Sj;k in (4.3), we are multiplying by a very small
phase factor. This would be very di�cult to do accurately physically, and thus it would
be somewhat disturbing if this were necessary for quantum computation. Luckily,
Coppersmith [1994] has shown that one can de�ne an approximate Fourier transform
that ignores these tiny phase factors, but which approximates the Fourier transform
closely enough that it can also be used for factoring. In fact, this technique reduces the
number of quantum gates needed for the (approximate) Fourier transform considerably,
as it leaves out most of the gates Sj;k.

15

5 Prime Factorization

It has been known since before Euclid that every integer n is uniquely decomposable
into a product of primes. Mathematicians have been interested in the question of how
to factor a number into this product of primes for nearly as long. It was only in the
1970's, however, that people applied the paradigms of theoretical computer science to
number theory, and looked at the asymptotic running times of factoring algorithms
[Adleman 1994]. This has resulted in a great improvement in the e�ciency of factoring
algorithms. The best factoring algorithm asymptotically is currently the number �eld
sieve [Lenstra et al. 1990, Lenstra and Lenstra 1993], which in order to factor an inte-
ger n takes asymptotic running time exp(c(logn)1=3(log logn)2=3) for some constant c.
Since the input, n, is only logn bits in length, this algorithm is an exponential-time
algorithm. Our quantum factoring algorithm takes asymptoticallyO((logn)2(log logn)
(log log logn)) steps on a quantum computer, along with a polynomial (in logn) amount
of post-processing time on a classical computer that is used to convert the output of
the quantum computer to factors of n. While this post-processing could in principle
be done on a quantum computer, if classical computers are more e�cient in practice,
there is no reason to use a quantum computer for this part of the algorithm.

Instead of giving a quantum computer algorithm to factor n directly, we give a
quantum computer algorithm for �nding the order of an element x in the multiplicative
group (mod n); that is, the least integer r such that xr � 1 (mod n). It is known that
using randomization, factorization can be reduced to �nding the order of an element
[Miller 1976]; we now briey give this reduction.

To �nd a factor of an odd number n, given a method for computing the order r of
x, choose a random x (mod n), �nd its order r, and compute gcd(xr=2 � 1; n). Here,
gcd(a; b) is the greatest common divisor of a and b, i.e., the largest integer that divides
both a and b; this can be computed in polynomial time using the Euclidean algorithm
[Knuth 1981]. Since (xr=2 � 1)(xr=2 + 1) = xr � 1 � 0 (mod n), the gcd(xr=2 � 1; n)
fails to be a non-trivial divisor of n only if r is odd or if xr=2 � �1 (mod n). Using this
criterion, it can be shown that this procedure, when applied to a random x (mod n),
yields a factor of n with probability at least 1 � 1=2k�1, where k is the number of
distinct odd prime factors of n. A brief sketch of the proof of this result follows.
Suppose that n =

Qk
i=1 p

ai
i . Let ri be the order of x (mod paii). Then r is the least

common multiple of all the ri. Consider the largest power of 2 dividing each ri. The
algorithm only fails if all of these powers of 2 agree: if they are all 1, then r is odd
and r=2 does not exist; if they are all equal and larger than 1, then xr=2 � �1 (mod n)
since xr=2 � �1 (mod p�i

i) for every i. By the Chinese remainder theorem [Knuth 1981,
Hardy and Wright 1979: Theorem 121], choosing an x (mod n) at random is the same
as choosing for each i a number xi (mod p

ai
i) at random, where p

ai
i is the ith prime

power factor of n. The multiplicative group (mod p�i
i) for any odd prime power p�i

i

is cyclic [Knuth 1981], so for any odd prime power paii , the probability is at most 1=2
of choosing an xi having any particular power of two as the largest divisor of its order
ri. Thus each of these powers of 2 has at most a 50% probability of agreeing with the
previous ones, so all k of them agree with probability at most 1=2k�1, and there is at

16

least a 1� 1=2k�1 chance that the x we choose is good. This scheme will thus work as
long as n is odd and not a prime power; �nding factors of prime powers can be done
e�ciently with classical methods.

We now describe the algorithm for �nding the order of x (mod n) on a quantum
computer. This algorithm will use two quantum registers which hold integers repre-
sented in binary. There will also be some amount of workspace. This workspace gets
reset to 0 after each subroutine of our algorithm, so we will not include it when we
write down the state of our machine.

Given x and n, to �nd the order of x, i.e., the least r such that xr � 1 (mod n),
we do the following. First, we �nd q, the power of 2 with n2 � q < 2n2. We will
not include n, x, or q when we write down the state of our machine, because we never
change these values. In a quantum gate array we need not even keep these values in
memory, as they can be built into the structure of the gate array.

Next, we put the �rst register in the uniform superposition of states representing
numbers a (mod q). This leaves our machine in state

1

q1=2

q�1X
a=0

jai j0i : (5.1)

This step is relatively easy, since all it entails is putting each bit in the �rst register
into the superposition 1p

2
(j0i+ j1i).

Next, we compute xa (mod n) in the second register as described in Section 3. Since
we keep a in the �rst register this can be done reversibly. This leaves our machine in
the state

1

q1=2

q�1X
a=0

jai jxa (mod n)i : (5.2)

We then perform our Fourier transform Aq on the �rst register, as described in
Section 4, mapping jai to

1

q1=2

q�1X
c=0

exp(2�iac=q) jci : (5.3)

That is, we apply the unitary matrix with the (a; c) entry equal to 1

q1=2
exp(2�iac=q).

This leaves our machine in state

1

q

q�1X
a=0

q�1X
c=0

exp(2�iac=q) jci jxa (mod n)i : (5.4)

Finally, we observe the machine. It would be su�cient to observe solely the value
of jci in the �rst register, but for clarity we will assume that we observe both jci and
jxa (mod n)i. We now compute the probability that our machine ends in a particular

state
���c; xk (mod n)

E
, where we may assume 0 � k < r. Summing over all possible

17

ways to reach the state
���c; xk (mod n)

E
, we �nd that this probability is

������
1

q

X
a:xa�xk

exp(2�iac=q)

������
2

: (5.5)

where the sum is over all a, 0 � a < q, such that xa � xk (mod n). Because the order
of x is r, this sum is over all a satisfying a � k (mod r). Writing a = br + k, we �nd
that the above probability is

������
1

q

b(q�k�1)=rcX
b=0

exp(2�i(br+ k)c=q)

������
2

: (5.6)

We can ignore the term of exp(2�ikc=q), as it can be factored out of the sum and has
magnitude 1. We can also replace rc with frcgq, where frcgq is the residue which is
congruent to rc (mod q) and is in the range �q=2 < frcgq � q=2. This leaves us with
the expression ������

1

q

b(q�k�1)=rcX
b=0

exp(2�ibfrcgq=q)
������
2

: (5.7)

We will now show that if frcgq is small enough, all the amplitudes in this sum will be
in nearly the same direction (i.e., have close to the same phase), and thus make the
sum large. Turning the sum into an integral, we obtain

1

q

Z b(q�k�1)=rc

0

exp(2�ibfrcgq=q)db+ O
�
b(q�k�1)=rc

q
(exp(2�ifrcgq=q)� 1)

�
: (5.8)

If jfrcgqj � r=2, the error term in the above expression is easily seen to be bounded
by O(1=q). We now show that if jfrcgqj � r=2, the above integral is large, so the

probability of obtaining a state
���c; xk (mod n)

E
is large. Note that this condition

depends only on c and is independent of k. Substituting u = rb=q in the above integral,
we get

1

r

Z r
qb q�k�1

r c
0

exp
�
2�ifrcgq

r
u
�
du: (5.9)

Since k < r, approximating the upper limit of integration by 1 results in only a O(1=q)
error in the above expression. If we do this, we obtain the integral

1

r

Z 1

0
exp

�
2�ifrcgqr u

�
du: (5.10)

Letting frcgq=r vary between �1
2
and 1

2
, the absolute magnitude of the integral (5.10)

is easily seen to be minimized when frcgq=r = �1
2
, in which case the absolute value

of expression (5.10) is 2=(�r). The square of this quantity is a lower bound on the

probability that we see any particular state
���c; xk (mod n)

E
with frcgq � r=2; this

18

0

0.02

0.04

0.06

0.08

0.10

0.12

0 32 64 96 128 160 192 224 256

P

c

Figure 5.1: The probability P of observing values of c between 0 and 255, given q = 256
and r = 10.

probability is thus asymptotically bounded below by 4=(�2r2), and so is at least 1=3r2

for su�ciently large n.

The probability of seeing a given state
���c; xk (mod n)

E
will thus be at least 1=3r2 if

�r
2

� frcgq � r

2
; (5.11)

i.e., if there is a d such that �r
2

� rc� dq � r

2
: (5.12)

Dividing by rq and rearranging the terms gives����cq � d

r

���� � 1

2q
: (5.13)

We know c and q. Because q > n2, there is at most one fraction d=r with r < n that
satis�es the above inequality. Thus, we can obtain the fraction d=r in lowest terms
by rounding c=q to the nearest fraction having a denominator smaller than n. This
fraction can be found in polynomial time by using a continued fraction expansion of
c=q, which �nds all the best approximations of c=q by fractions [Hardy and Wright
1979: Chapter X, Knuth 1981].

The exact probabilities as given by Equation (5.7) for an example case with r = 10
and q = 256 are plotted in Figure 5.1. The value r = 10 could occur when factoring

19

33 if x were chosen to be 5, for example. Here q is taken smaller than 332 so as to
make the values of c in the plot distinguishable; this does not change the functional
structure of P(c). Note that with high probability the observed value of c is near an
integral multiple of q=r = 256=10.

If we have the fraction d=r in lowest terms, and if d happens to be relatively prime

to r, this will give us r. We will now count the number of states
���c; xk (mod n)

E
which

enable us to compute r in this way. There are �(r) possible values of d relatively prime
to r, where � is Euler's totient function [Knuth 1981, Hardy and Wright 1979: Section
5.5]. Each of these fractions d=r is close to one fraction c=q with jc=q � d=rj � 1=2q.
There are also r possible values for xk, since r is the order of x. Thus, there are r�(r)

states
���c; xk (mod n)

E
which would enable us to obtain r. Since each of these states

occurs with probability at least 1=3r2, we obtain r with probability at least �(r)=3r.
Using the theorem that �(r)=r > �= log log r for some constant � [Hardy and Wright
1979: Theorem 328], this shows that we �nd r at least a �= log log r fraction of the
time, so by repeating this experiment only O(log log r) times, we are assured of a high
probability of success.

In practice, assuming that quantum computation is more expensive than classical
computation, it would be worthwhile to alter the above algorithm so as to perform less
quantum computation and more postprocessing. First, if the observed state is jci, it
would be wise to also try numbers close to c such as c � 1, c � 2, : : :, since these also
have a reasonable chance of being close to a fraction qd=r. Second, if c=q � d=r, and
d and r have a common factor, it is likely to be small. Thus, if the observed value of
c=q is rounded o� to d0=r0 in lowest terms, for a candidate r one should consider not
only r0 but also its small multiples 2r0, 3r0, . . . , to see if these are the actual order of
x. Although the �rst technique will only reduce the expected number of trials required
to �nd r by a constant factor, the second technique will reduce the expected number
of trials for the hardest n from O(log logn) to O(1) if the �rst (logn)1+� multiples of
r0 are considered [Odylzko 1995]. A third technique is, if two candidate r's have been
found, say r1 and r2, to test the least common multiple of r1 and r2 as a candidate r.
This third technique is also able to reduce the expected number of trials to a constant
[Krill 1995], and will also work in some cases where the �rst two techniques fail.

Note that in the algorithm for order, we did not use many of the properties
of multiplication (mod n). In fact, if we have a permutation f mapping the set
f0; 1; 2; : : : ; n � 1g into itself such that its kth iterate, f (k)(a), is computable in time
polynomial in logn and logk, the same algorithm will be able to �nd the order of an
element a under f , i.e., the minimum r such that f (r)(a) = a.

6 Discrete Logarithms

For every prime p, the multiplicative group (mod p) is cyclic, that is, there are gener-
ators g such that 1, g, g2, . . . , gp�2 comprise all the non-zero residues (mod p) [Hardy
and Wright 1979: Theorem 111, Knuth 1981]. Suppose we are given a prime p and
such a generator g. The discrete logarithm of a number x with respect to p and g is the

20

integer r with 0 � r < p�1 such that gr � x (mod p). The fastest algorithm known for
�nding discrete logarithms modulo arbitrary primes p is Gordon's [1993] adaptation of
the number �eld sieve, which runs in time exp(O(log p)1=3(log log p)2=3)). We show how
to �nd discrete logarithms on a quantum computer with two modular exponentiations
and two quantum Fourier transforms.

This algorithm will use three quantum registers. We �rst �nd q a power of 2 such
that q is close to p, i.e., with p < q < 2p. Next, we put the �rst two registers in our
quantum computer in the uniform superposition of all jai and jbi (mod p � 1), and
compute gax�b (mod p) in the third register. This leaves our machine in the state

1

p� 1

p�2X
a=0

p�2X
b=0

���a; b; gax�b (mod p)
E
: (6.1)

As before, we use the Fourier transform Aq to send jai ! jci and jbi ! jdi with
probability amplitude 1

q
exp(2�i(ac + bd)=q). This is, we take the state ja; bi to the

state
1

q

q�1X
c=0

q�1X
d=0

exp (2�i
q
(ac+ bd)) jc; di : (6.2)

This leaves our quantum computer in the state

1

(p� 1)q

p�2X
a;b=0

q�1X
c;d=0

exp (2�i
q
(ac+ bd))

���c; d; gax�b (mod p)
E
: (6.3)

Finally, we observe the state of the quantum computer.
The probability of observing a state jc; d; yi with y � gk (mod p) is

�������
1

(p� 1)q

X
a;b

a�rb�k

exp
�
2�i
q (ac+ bd)

� �������
2

(6.4)

where the sum is over all (a; b) such that a � rb � k (mod p � 1). Note that we now
have two moduli to deal with, p� 1 and q. While this makes keeping track of things
more confusing, it does not pose serious problems. We now use the relation

a = br + k � (p� 1)
j
br+k
p�1

k
(6.5)

and substitute (6.5) in the expression (6.4) to obtain the amplitude on���c; d; gk (mod p)
E
, which is

1

(p� 1)q

p�2X
b=0

exp
�
2�i
q (brc+ kc+ bd� c(p� 1)

j
br+k
p�1

k
)
�
: (6.6)

The absolute value of the square of this amplitude is the probability of observing the

state
���c; d; gk (mod p)

E
. We will now analyze the expression (6.6). First, a factor of

21

exp(2�ikc=q) can be taken out of all the terms and ignored, because it does not change
the probability. Next, we split the exponent into two parts and factor out b to obtain

1

(p� 1)q

p�2X
b=0

exp
�
2�i
q
bT
�
exp

�
2�i
q
V
�
; (6.7)

where

T = rc+ d� r
p�1fc(p� 1)gq; (6.8)

and

V =
�

br
p�1 �

j
br+k
p�1

k�
fc(p� 1)gq: (6.9)

Here by fzgq we mean the residue of z (mod q) with �q=2 < fzgq � q=2, as in Eq.
(5.7).

We next classify possible outputs (observed states) of the quantum computer into
\good" and \bad." We will show that if we get enough \good" outputs, then we will
likely be able to deduce r, and that furthermore, the chance of getting a \good" output
is constant. The idea is that if

jfTgqj = jrc+ d� r
p�1fc(p� 1)gq � jqj � 1

2
; (6.10)

where j is the closest integer to T=q, then as b varies between 0 and p� 2, the phase of
the �rst exponential term in Eq. (6.7) only varies over at most half of the unit circle.
Further, if

jfc(p� 1)gqj � q=12; (6.11)

then jV j is always at most q=12, so the phase of the second exponential term in Eq. (6.7)
never is farther than exp(�i=6) from 1. If conditions (6.10) and (6.11) both hold, we
will say that an output is \good." We will show that if both conditions hold, then the
contribution to the probability from the corresponding term is signi�cant. Furthermore,
both conditions will hold with constant probability, and a reasonable sample of c's for
which Condition (6.10) holds will allow us to deduce r.

We now give a lower bound on the probability of each good output, i.e., an output
that satis�es Conditions (6.10) and (6.11). We know that as b ranges from 0 to p� 2,
the phase of exp(2�ibT=q) ranges from 0 to 2�iW where

W =
p� 2

q

�
rc+ d� r

p� 1
fc(p� 1)gq � jq

�
(6.12)

and j is as in Eq. (6.10). Thus, the component of the amplitude of the �rst exponential
in the summand of (6.7) in the direction

exp (�iW) (6.13)

is at least cos(2� jW=2�Wb=(p� 2)j). By Condition (6.11), the phase can vary by
at most �i=6 due to the second exponential exp(2�iV=q). Applying this variation in

22

the manner that minimizes the component in the direction (6.13), we get that the
component in this direction is at least

cos(2� jW=2�Wb=(p� 2)j+ �
6
): (6.14)

Thus we get that the absolute value of the amplitude (6.7) is at least

1

(p� 1)q

p�2X
b=0

cos
�
2� jW=2�Wb=(p� 2)j+ �

6

�
: (6.15)

Replacing this sum with an integral, we get that the absolute value of this amplitude
is at least

2

q

Z 1=2

0
cos(�

6
+ 2�jW ju)du + O

�
W
pq

�
: (6.16)

From Condition (6.10), jW j � 1
2
, so the error term is O(1

pq
). As W varies between

�1
2
and 1

2
, the integral (6.16) is minimized when jW j = 1

2
. Thus, the probability of

arriving at a state jc; d; yi that satis�es both Conditions (6.10) and (6.11) is at least

1

q

2

�

Z 2�=3

�=6
cos u du

!2

; (6.17)

or at least :054=q2 > 1=(20q2).
We will now count the number of pairs (c; d) satisfying Conditions (6.10) and (6.11).

The number of pairs (c; d) such that (6.10) holds is exactly the number of possible c's,
since for every c there is exactly one d such that (6.10) holds. Unless gcd(p � 1; q)
is large, the number of c's for which (6.11) holds is approximately q=6, and even if
it is large, this number is at least q=12. Thus, there are at least q=12 pairs (c; d)
satisfying both conditions. Multiplying by p� 1, which is the number of possible y's,
gives approximately pq=12 good states jc; d; yi. Combining this calculation with the
lower bound 1=(20q2) on the probability of observing each good state gives us that the
probability of observing some good state is at least p=(240q), or at least 1=480 (since
q < 2p). Note that each good c has a probability of at least (p � 1)=(20q2) � 1=(40q)
of being observed, since there p � 1 values of y and one value of d with which c can
make a good state jc; d; yi.

We now want to recover r from a pair c; d such that

� 1

2q
� d

q
+ r

�
c(p� 1)� fc(p� 1)gq

(p� 1)q

�
� 1

2q
(mod 1); (6.18)

where this equation was obtained from Condition (6.10) by dividing by q. The �rst
thing to notice is that the multiplier on r is a fraction with denominator p� 1, since q
evenly divides c(p� 1)� fc(p� 1)gq. Thus, we need only round d=q o� to the nearest
multiple of 1=(p� 1) and divide (mod p� 1) by the integer

c0 =
c(p� 1)� fc(p� 1)gq

q
(6.19)

23

to �nd a candidate r. To show that the quantum calculation need only be repeated a
polynomial number of times to �nd the correct r requires only a few more details. The
problem is that we cannot divide by a number c0 which is not relatively prime to p� 1.

For the discrete log algorithm, we do not know that all possible values of c0 are
generated with reasonable likelihood; we only know this about one-twelfth of them.
This additional di�culty makes the next step harder than the corresponding step in
the algorithm for factoring. If we knew the remainder of r modulo all prime powers
dividing p� 1, we could use the Chinese remainder theorem to recover r in polynomial
time. We will only be able to prove that we can �nd this remainder for primes larger
than 18, but with a little extra work we will still be able to recover r.

Recall that each good (c; d) pair is generated with probability at least 1=(20q2),
and that at least a twelfth of the possible c's are in a good (c; d) pair. From Eq. (6.19),
it follows that these c's are mapped from c=q to c0=(p� 1) by rounding to the nearest
integral multiple of 1=(p� 1). Further, the good c's are exactly those in which c=q is
close to c0=(p� 1). Thus, each good c corresponds with exactly one c0. We would like
to show that for any prime power p�i

i dividing p � 1, a random good c0 is unlikely to
contain pi. If we are willing to accept a large constant for our algorithm, we can just
ignore the prime powers under 18; if we know r modulo all prime powers over 18, we
can try all possible residues for primes under 18 with only a (large) constant factor
increase in running time. Because at least one twelfth of the c's were in a good (c; d)
pair, at least one twelfth of the c0's are good. Thus, for a prime power p�i

i , a random
good c0 is divisible by p�i

i with probability at most 12=p�i
i . If we have t good c0's, the

probability of having a prime power over 18 that divides all of them is therefore at
most X

18< p
�i
i j(p�1)

12

p�i
i

!t

; (6.20)

where ajb means that a evenly divides b, so the sum is over all prime powers greater
than 18 that divide p � 1. This sum (over all integers > 18) converges for t = 2, and
goes down by at least a factor of 2=3 for each further increase of t by 1; thus for some
constant t it is less than 1=2.

Recall that each good c0 is obtained with probability at least 1=(40q) from any
experiment. Since there are q=12 good c0's, after 480t experiments, we are likely to
obtain a sample of t good c0's chosen equally likely from all good c0's. Thus, we will be
able to �nd a set of c0's such that all prime powers p�i

i > 20 dividing p�1 are relatively
prime to at least one of these c0's. To obtain a polynomial time algorithm, all one need
do is try all possible sets of c0's of size t; in practice, one would use an algorithm to
�nd sets of c0's with large common factors. This set gives the residue of r for all primes
larger than 18. For each prime pi less than 18, we have at most 18 possibilities for the
residue modulo p�i

i , where �i is the exponent on prime pi in the prime factorization
of p � 1. We can thus try all possibilities for residues modulo powers of primes less
than 18: for each possibility we can calculate the corresponding r using the Chinese
remainder theorem and then check to see whether it is the desired discrete logarithm.

If one were to actually program this algorithm there are many ways in which the

24

e�ciency could be increased over the e�ciency shown in this paper. For example,
the estimate for the number of good c0's is likely too low, especially since weaker
conditions than (6.10) and (6.11) should su�ce. This means that the number of times
the experiment need be run could be reduced. It also seems improbable that the
distribution of bad values of c0 would have any relationship to primes under 18; if this
is true, we need not treat small prime powers separately.

This algorithm does not use very many properties of Zp, so we can use the same
algorithm to �nd discrete logarithms over other �elds such as Zp� , as long as the
�eld has a cyclic multiplicative group. All we need is that we know the order of the
generator, and that we can multiply and take inverses of elements in polynomial time.
The order of the generator could in fact be computed using the quantum order-�nding
algorithm given in Section 5 of this paper. Boneh and Lipton [1995] have generalized
the algorithm so as to be able to �nd discrete logarithms when the group is abelian
but not cyclic.

7 Comments and Open Problems

It is currently believed that the most di�cult aspect of building an actual quantum com-
puter will be dealing with the problems of imprecision and decoherence. It was shown
by Bennett et al. [1994] that the quantum gates need only have precision O(1=t) in
order to have a reasonable probability of completing t steps of quantum computation;
that is, there is a c such that if the amplitudes in the unitary matrices representing the
quantum gates are all perturbed by at most c=t, the quantum computer will still have a
reasonable chance of producing the desired output. Similarly, the decoherence needs to
be only polynomially small in t in order to have a reasonable probability of completing t
steps of computation successfully. This holds not only for the simple model of decoher-
ence where each bit has a �xed probability of decohering at each time step, but also for
more complicated models of decoherence which are derived from fundamental quan-
tum mechanical considerations [Unruh 1995, Palma et al. 1995, Chuang et al. 1995].
However, building quantum computers with high enough precision and low enough de-
coherence to accurately perform long computations may present formidable di�culties
to experimental physicists. In classical computers, error probabilities can be reduced
not only though hardware but also through software, by the use of redundancy and
error-correcting codes. The most obvious method of using redundancy in quantum
computers is ruled out by the theorem that quantum bits cannot be cloned [Peres
1993: Section 9-4], but this argument does not rule out more complicated ways of
reducing inaccuracy or decoherence using software. In fact, some progress in the di-
rection of reducing inaccuracy [Berthiaume et al. 1994] has already been made. The
result of Bennett et al. [1995] that quantum bits can be faithfully transmitted over a
noisy quantum channel gives further hope that quantum computations can similarly
be faithfully carried out using noisy quantum bits and noisy quantum gates.

Discrete logarithms and factoring are not in themselves widely useful problems.
They have only become useful because they have been found to be crucial for public-

25

key cryptography, and this application is in turn possible only because they have been
presumed to be di�cult. This is also true of the generalizations of Boneh and Lipton
[1995] of these algorithms. If the only uses of quantum computation remain discrete
logarithms and factoring, it will likely become a special-purpose technique whose only
raison d'être is to thwart public key cryptosystems. However, there may be other
hard problems which could be solved asymptotically faster with quantum computers.
In particular, of interesting problems not known to be NP-complete, the problem of
�nding a short vector in a lattice [Adleman 1994, Adleman and McCurley 1995] seems
as if it might potentially be amenable to solution by a quantum computer. Most
important problems, however, have turned out to be either polynomial-time or NP-
complete; thus quantum computers will likely not become widely useful unless they
can solve NP-complete problems. Solving NP-complete problems e�ciently is a Holy
Grail of theoretical computer science which very few people expect to be possible on a
classical computer. Finding polynomial-time algorithms for solving these problems on
a quantum computer would be a momentous discovery. There are some weak indica-
tions that quantum computers are not powerful enough to solve NP-complete problems
[Bennett et al. 1994], but I do not believe that this potentiality should be ruled out as
yet.

Acknowledgements

I would like to thank Je� Lagarias for �nding and �xing a critical error in the �rst
version of the discrete log algorithm. I would also like to thank him, David Apple-
gate, Charles Bennett, Gilles Brassard, Andrew Odlyzko, Dan Simon, Bob Solovay,
Umesh Vazirani, and correspondents too numerous to list, for productive discussions,
for corrections to and improvements of early drafts of this paper, and for pointers to
the literature.

References

L. M. Adleman (1994) \Algorithmic number theory | The complexity contribution," in Pro-

ceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Computer So-

ciety Press, Los Alamitos, CA, pp. 88{113,

L. M. Adleman and K. S. McCurley (1995) \Open problems in number-theoretic complexity

II," in Proceedings of the 1994 Algorithmic Number Theory Symposium, Ithaca, NY, May

6{9, Lecture Notes in Computer Science series, (L. M. Adleman and M.-D. Huang, eds.)

Springer-Verlag, to appear.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.

Smolin and H. Weinfurter (1995a) "Elementary gates for quantum computation," Phys. Rev.

A, to appear.

A. Barenco, D. Deutsch, A. Ekert and R. Jozsa (1995b) \Conditional quantum dynamics and

logic gates," Phys. Rev. Lett. 74, 4083{4086.

26

P. Benio� (1980) \The computer as a physical system: A microscopic quantum mechanical

Hamiltonian model of computers as represented by Turing machines," J. Stat. Phys. 22, 563{

591.

P. Benio� (1982a) \Quantum mechanical Hamiltonian models of Turing machines," J. Stat.

Phys. 29, 515{546.

P. Benio� (1982b) \Quantum mechanical Hamiltonian models of Turing machines that dissi-

pate no energy," Phys. Rev. Lett. 48, 1581{1585.

C. H. Bennett (1973) \Logical reversibility of computation," IBM J. Res. Develop. 17, 525{

532.

C. H. Bennett (1989) \Time/space trade-o�s for reversible computation," SIAM J. Comput.

18, 766{776.

C. H. Bennett, E. Bernstein, G. Brassard and U. Vazirani (1994) \Strengths and weaknesses

of quantum computing," preprint.

C. H. Bennett, G. Brassard, B. Schumacher, J. Smolin and W. K. Wooters (1995) \Puri�cation

of noisy entanglement, and faithful teleportation via noisy channels," preprint.

E. Bernstein and U. Vazirani (1993) \Quantum complexity theory," in Proceedings of the 25th

Annual ACM Symposium on Theory of Computing, ACM, New York, pp. 11{20.

A. Berthiaume and G. Brassard (1992a) \The quantum challenge to structural complexity

theory," in Proceedings of the Seventh Annual Structure in Complexity Theory Conference,

IEEE Computer Society Press, Los Alamitos, CA, pp. 132{137.

A. Berthiaume and G. Brassard (1992b) \Oracle quantum computing," in Proceedings of the

Workshop on Physics of Computation: PhysComp '92, IEEE Computer Society Press, Los

Alamitos, CA, pp. 195{199.

A. Berthiaume, D. Deutsch and R. Jozsa (1994) \The stabilisation of quantum computations,"

in Proceedings of the Workshop on Physics of Computation: PhysComp '94, IEEE Computer

Society Press, Los Alamitos, CA, pp. 60{62.

M. Biafore (1994) \Can quantum computers have simple Hamiltonians," in Proceedings of the

Workshop on Physics of Computation: PhysComp '94, IEEE Computer Society Press, Los

Alamitos, CA, pp. 63{68.

D. Boneh and R. J. Lipton (1995) \Quantum cryptanalysis of hidden linear functions," Ad-

vances in Cryptology | CRYPTO '95, Proceedings of the Crypto '95 Conference, Santa

Barbara, California, Aug. 27{31, Springer-Verlag, to appear.

J. F. Canny and J. Reif (1987) \New lower bound techniques for robot motion planning

problems," in Proceedings 28th Annual Symposium on Foundations of Computer Science,

IEEE Computer Society Press, Los Alamitos, CA, pp. 49{60.

J. Choi, J. Sellen and C.-K. Yap (1995) \Precision-sensitive Euclidean shortest path in 3-

space" in Proceedings of the 11th Annual Symposium on Computational Geometry, ACM,

New York, pp. 350{359.

A. Church (1936) \An unsolvable problem of elementary number theory," Amer. J. Math. 58,

345{363.

I. L. Chuang, R. Laamme, P. W. Shor and W. H. Zurek (1995) \Quantum computers,

factoring and decoherence," preprint.

27

I. L. Chuang and Y. Yamamoto (1995) \A simple quantum computer," preprint.

J. I. Cirac and P. Zoller (1995) \Quantum computations with cold trapped ions," Phys. Rev.

Lett. 74, 4091{4094.

R. Cleve (1994) \A note on computing Fourier transforms by quantum programs," preprint..

D. Coppersmith (1994) \An approximate Fourier transform useful in quantum factoring,"

IBM Research Report RC 19642.

D. Deutsch (1985) \Quantum theory, the Church{Turing principle and the universal quantum

computer," Proc. Roy. Soc. London Ser. A 400, 96{117.

D. Deutsch (1989) \Quantum computational networks," Proc. Roy. Soc. London Ser. A 425,

73{90.

D. Deutsch, A. Barenco and A. Ekert (1995) \Universality of quantum computation," preprint.

D. Deutsch and R. Jozsa (1992) \Rapid solution of problems by quantum computation," Proc.

Roy. Soc. London Ser. A 439, 553{558.

D. P. DiVincenzo (1995) \Two-bit gates are universal for quantum computation," Phys. Rev. A

51, 1015{1022.

A. Ekert and R. Jozsa (1995) \Shor's quantum algorithm for factorising numbers," Rev. Mod.

Phys., to appear.

R. Feynman (1982) \Simulating physics with computers," Internat. J. Theoret. Phys. 21,

467{488.

R. Feynman (1986) \Quantum mechanical computers," Found. Phys. 16, 507{531; originally

appeared in Optics News (February 1985) pp. 11{20.

E. Fredkin and T. To�oli (1982) \Conservative logic," Internat. J. Theoret. Phys. 21, 219{253.

D. M. Gordon (1993) \Discrete logarithms in GF(p) using the number �eld sieve," SIAM J.

Discrete Math. 6, 124{139.

G. H. Hardy and E. M. Wright (1979) An Introduction to the Theory of Numbers, Fifth

Edition, Oxford University Press, New York.

J. Hartmanis and J. Simon (1974) \On the power of multiplication in random access machines,"

in Proceedings of the 15th Annual Symposium on Switching and Automata Theory, IEEE

Computer Society, Long Beach, CA, pp. 13{23.

A. Karatsuba and Yu. Ofman (1962) \Multiplication of multidigit numbers on automata,"

Dokl. Akad. Nauk SSSR 145, 293{294; English translation (1963) in Sov. Physics-Dokl. 7,

595{596.

D. E. Knuth (1981) The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,

Second Edition, Addison-Wesley.

E. Krill (1995), personal communication.

R. Landauer (1995) \Is quantum mechanically coherent computation useful?" in Proceedings

of the Drexel-4 Symposium on Quantum Nonintegrability | Quantum Classical Correspon-

dence (D. H. Feng and B-L. Hu, eds.) International Press, to appear.

Y. Lecerf (1963) \Machines de Turing r�eversibles. R�ecursive insolubilit�e en n 2 N de l'�equation

u = �
n
u, o�u � est un isomorphisme de codes," Comptes Rendues de l'Acad�emie Fran�caise des

Sciences 257, 2597{2600.

28

A. K. Lenstra and H. W. Lenstra, Jr., editors (1993) The Development of the Number Field

Sieve, Lecture Notes in Mathematics No. 1554, Springer-Verlag.

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard (1990) \The number �eld

sieve," in Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, ACM,

New York, pp. 564{572; an expanded version appeared in Lenstra and Lenstra (1993), pp.

11{42.

R. Y. Levine and A. T. Sherman (1990) \A note on Bennett's time-space tradeo� for reversible

computation," SIAM J. Comput. 19, 673{677.

S. Lloyd (1993) \A potentially realizable quantum computer," Science 261, 1569{1571.

S. Lloyd (1994a) \Envisioning a quantum supercomputer," Science 263, 695.

S. Lloyd (1994b) \Almost any quantum logic gate is universal," Los Alamos National Labo-

ratory preprint.

N. Margolus (1986) \Quantum computation," Annals of the New York Academy of Sciences,

480, 487{497.

N. Margolus (1990) \Parallel quantum computation," in Complexity, Entropy and the Physics

of Information, Santa Fe Institute Studies in the Sciences of Complexity, Vol. VIII (W. H.

Zurek, ed.), Addison-Wesley, pp. 273{287.

G. L. Miller (1976) \Riemann's hypothesis and tests for primality," J. Comp. Sys. Sci. 13,

300{317.

A. M. Odlyzko (1995), personal communication.

G. M. Palma, K.-A. Suominen, and A. K. Ekert (1995) \Quantum computers and dissipation,"

preprint.

A. Peres (1993) Quantum Theory: Concepts and Methods, Kluwer Academic Publishers.

C. Pomerance (1987) \Fast, rigorous factorization and discrete logarithm algorithms," in

Discrete Algorithms and Complexity, Proceedings of the Japan-US Joint Seminar, June 4{6,

1986, Kyoto (D. S. Johnson, T. Nishizeki, A. Nozaki and H. S. Wilf, eds.) Academic Press,

pp. 119{143,

R. L. Rivest, A. Shamir and L. Adleman (1978) \A method of obtaining digital signatures

and public-key cryptosystems," Comm. ACM 21, 120{126.

L. A. Rubel (1989) \Digital simulation of analog computation and Church's thesis," J. Symb.

Logic 54, 1011{1017.

A. Sch�onhage (1982) \Asymptotically fast algorithms for the numerical multiplication and

division of polynomials with complex coe�cients," in Computer Algebra EUROCAM '82,

Lecture Notes in Computer Science No. 144 (J. Calmet, ed.) Springer-Verlag, pp. 3{15.

A. Sch�onhage, A. F. W. Grotefeld and E. Vetter (1994) Fast Algorithms: A Multitape Turing

Machine Implementation, B. I. Wissenschaftsverlag, Mannheim, Germany.

A. Sch�onhage and V. Strassen (1971) \Schnelle Multiplikation grosser Zahlen," Computing 7,

281{292.

P. W. Shor (1994) \Algorithms for quantum computation: Discrete logarithms and factoring,"

in Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Computer

Society Press, Los Alamitos, CA, pp. 124{134.

29

D. Simon (1994) \On the power of quantum computation," in Proceedings 35th Annual Sym-

posium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,

CA, pp. 116{123.

T. Sleator and H. Weinfurter (1995) \Realizable universal quantum logic gates," Phys. Rev.

Lett. 74, 4087{4090.

R. Solovay (1995), personal communication.

K. Steiglitz (1988) \Two non-standard paradigms for computation: Analog machines and cel-

lular automata," in Performance Limits in Communication Theory and Practice, Proceedings

of the NATO Advanced Study Institute, Il Ciocco, Castelvecchio Pascoli, Tuscany, Italy, July

7{19, 1986, (J. K. Skwirzynski, ed.) Kluwer Academic Publishers, pp. 173{192.

W. G. Teich, K. Obermayer and G. Mahler (1988) \Structural basis of multistationary quan-

tum systems II: E�ective few-particle dynamics," Phys. Rev. B 37, 8111{8121.

T. To�oli (1980) \Reversible computing," in Automata, Languages and Programming, Seventh

Colloquium, Lecture Notes in Computer Science No. 84 (J. W. de Bakker and J. van Leeuwen,

eds.) Springer-Verlag, pp. 632{644.

A. M. Turing (1936) \On computable numbers, with an application to the Entscheidungsprob-

lem," Proc. London Math. Soc. Ser. 2 42, 230{265. Corrections (1937) 43, 544{546.

W. G. Unruh (1995) \Maintaining coherence in quantum computers," Phys. Rev. A 51, 992{

997.

P. van Emde Boas (1990) \Machine models and simulations," in Handbook of Theoretical

Computer Science, Vol. A (J. van Leeuwen, ed.) Elsevier, Amsterdam, pp. 1{66.

A. Vergis, K. Steiglitz, B. Dickinson (1986) \The complexity of analog computation," Math.

and Computers in Simulation 28, 91{113.

A. Yao (1993) \Quantum circuit complexity," in Proceedings 34th Annual Symposium on

Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp. 352{

361.

30

