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Abstract

The free energy for QCD at high temperature T is calculated to order g5 using

e�ective-�eld-theory methods to separate the contributions from the momentum scales

T and gT . The e�ects of the scale T enter through the coe�cients in the e�ective

lagrangian for the 3-dimensional e�ective theory obtained by dimensional reduction.

The perturbation series for these coe�cients seem to be well-behaved if the running

coupling constant is su�ciently small: �s(2�T )� 1. For the contribution to the free

energy from the scale gT , the perturbation series is well-behaved only if �s(2�T ) is an

order of magnitude smaller. The implication for applications of perturbative QCD to

the quark-gluon plasma are brie
y discussed.
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One of the most dramatic predictions of quantum chromodynamics (QCD) is that when

hadronic matter is raised to a su�ciently high temperature or density, it will undergo a

phase transition to a quark-gluon plasma. One of the major thrusts of nuclear physics

in the next decade will be the e�ort to study the quark-gluon plasma through relativistic

heavy-ion collisions. For this e�ort to be successful, it will be important to understand

the properties of the plasma as accurately as possible. The two major theoretical tools for

studying the quark-gluon plasma are lattice gauge theory and perturbative QCD. Lattice

gauge theory has the advantage that it is a nonperturbative method and applies equally

well to the hadronic phase. It is an e�ective method for calculating the static equilibrium

properties of a plasma with 0 baryon density, but it can not be easily applied to problems

involving dynamical properties or to a plasma that is away from equilibrium or has nonzero

baryon density. These problems can however be studied using perturbative QCD, provided

that the temperature T of the plasma is su�ciently high. As the temperature decreases, the

running coupling constant g of QCD increases, causing perturbation theory to break down

at some temperature above the critical temperature Tc for the phase transition. One of the

basic questions in the theory of the quark-gluon plasma is how large must T be in order

for perturbative QCD to be applicable. Is this method useful at temperatures that may be

achievable in heavy-ion collisions, which are at most several times Tc?

In order to answer this question, it is necessary to understand the structure of the pertur-

bation series to all orders and also to carry out explicit higher-order calculations. The �rst

step has been carried out for the free energy [1]. The structure of the perturbation series

is nontrivial, because a strict perturbation expansion in g2 has severe infrared divergences

associated with the exchange of static gluons. Physically, these divergences are screened

by plasma e�ects. The screening of electrostatic gluons can be taken into account by a

resummation of perturbation theory, but the screening of magnetostatic gluons can only be

treated using nonperturbative methods. Once the structure of the perturbation expansion is

understood, it is still necessary to carry out explicit perturbative calculations to determine
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quantitatively how high the temperature must be in order for perturbative QCD to be ac-

curate. Only recently has the calculational technology of thermal �eld theory progressed to

the point where it is possible to carry out perturbative calculations to a high enough order

that the running of the coupling constant comes into play [2{8]. The �rst such calculation

for the quark-gluon plasma was the calculation of the free energy to order g4 by Arnold and

Zhai in 1994 [4]. This calculation has recently been extended to order g5 by Kastening and

Zhai [5] and by the authors [6]. In this Letter, we summarize the calculations of Ref. [6] and

discuss implications for the application of perturbative QCD to the quark-gluon plasma.

The static equilibrium properties of a quark-gluon plasma at temperature T are governed

by the free energy density F = �(T=V ) logZQCD, where V is the volume of space. The

partition function ZQCD is given by a functional integral over quark and gluon �elds on a

4-dimensional Euclidean space-time, with the Euclidean time � taking its values on a circle

with circumference 1=T . In the limit in which the quarks are massless, the free energy is a

function of T and �s = g2=(4�) only.

The structure of the weak-coupling expansion for the free energy to all orders was deduced

in Ref. [1]. The free energy can be expressed as the sum of three contributions coming from

the momentum scales T , gT , and g2T :

F = [fE(�E) + fM (�E;�M) + fG(�M)]T ; (1)

where �E is an arbitrary factorization scale that separates the scales T and gT , while �M

separates the scales gT and g2T . The contributions from the three momentum scales can

be unraveled by constructing a sequence of two e�ective �eld theories. The �rst e�ective

theory, electrostatic QCD (EQCD), is a 3-dimensional Euclidean �eld theory involving the

electrostatic gauge �eld Aa
0
(x) and the magnetostatic gauge �eld Aa

i (x). The lagrangian for

EQCD is

LEQCD =
1

4
Ga
ijG

a
ij +

1

2
(DiA0)

a(DiA0)
a +

1

2
m2

EA
a
0
Aa
0
+ �LEQCD; (2)

where Di is the covariant derivative for the adjoint representation with coupling constant gE
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and Ga
ij is the magnetostatic �eld strength. The term �LEQCD in (2) includes all other local

gauge-invariant operators that can be constructed out of A0 and Ai, including nonrenor-

malizable interactions. Static gauge-invariant correlation functions in thermal QCD can be

reproduced at long distances by tuning gE, m
2

E, and the parameters in �LEQCD as functions

of g, T , and the ultraviolet cuto� �E of EQCD. In physical quantities, the �E-dependence

of the parameters cancels the �E-dependence from loop integrals in EQCD. Since the pa-

rameters of EQCD take into account e�ects from the scale T , they can be calculated as

perturbation series in the running coupling constant �s(�) with � of order T .

Since the free energy is a static quantity, it can be calculated using EQCD. The free

energy can be written

F = T

 
fE �

logZEQCD

V

!
; (3)

where ZEQCD is the partition function for EQCD and fE is the coe�cient of the unit operator,

which was omitted from the e�ective lagrangian (2). This coe�cient gives the contribution

to the free energy (1) from the momentum scale T . The logarithm of ZEQCD in (3) includes

the contributions fM and fG from the scales gT and g2T , respectively. These contribu-

tions can be separated by constructing a second e�ective �eld theory, magnetostatic QCD

(MQCD), which involves only the magnetostatic gauge �eld Aa
i (x). The term fM in (1) is

the coe�cient of the unit operator in the lagrangian for MQCD. It can be computed using

perturbative methods as an expansion in powers of g starting at order g3. The term fG

in (1) is proportional to the logarithm of the partition function of MQCD. It can only be

calculated using nonperturbative methods. Surprisingly, it can be expanded in powers of g

beginning at order g6, with coe�cients that can be calculated using lattice simulations of

MQCD [1]. Since we only calculate the free energy to order g5, we do not consider the term

fG any further.

To calculate the free energy to order g5, the only parameters of EQCD that are required

are g2E to leading order in g2 and m2

E and fE to order g4. The gauge coupling constant gE for

EQCD is determined at leading order simply by comparing the lagrangians for EQCD and full
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QCD: g2E = g2T . The other two parameters can be determined by computing static quantities

in both full QCD and EQCD, and demanding that they match. It is convenient to carry

out these matching calculations using a strict perturbation expansion in g2. This expansion

is a�icted with infrared divergences due to long-range forces mediated by static gluons,

and an infrared cuto� is therefore required. Physically, these divergences are screened by

plasma e�ects, but screening is not taken into account in the strict perturbation expansion.

Nevertheless, this expansion can be used as a device for determining the parameters of

EQCD, since they depend only on short distances of order 1=T .

The parameter mE can be determined by matching the strict perturbation expansions

for the electric screening mass mel in full QCD and in EQCD. Beyond leading order in g, mel

becomes sensitive to magnetostatic screening and requires a nonperturbative de�nition [7].

However, in the presence of an infrared cuto�, the electric screening mass can be de�ned in

perturbation theory by the location of the pole in the propagator for A0(�;x) at spacelike

momentum (k0 = 0;k). Denoting the appropriate component of the gluon self-energy tensor

by �(k2) where k2 = k
2, we must solve the equation k2 + �(k2) = 0 at k2 = �m2

el
.

Since the solution m2

el
is of order g2, we can expand �(k2) as a Taylor series around k2 = 0.

To determine m2

el
to order g4, we must calculate �(0) to two-loop accuracy and �0(0) to

one-loop accuracy. We use dimensional regularization with 3 � 2� spacial dimensions to

cut o� both infrared and ultraviolet divergences. The sums and integrals can be evaluated

analytically using methods developed by Arnold and Zhai [4]. The resulting expression for

m2

el
is an expansion in integral powers of �s. There is no �

3=2
s term, unlike in the expression

for m2

el
that correctly incorporates the e�ects of electrostatic screening [8]. This g3 term

arises because the g4 correction includes a linear infrared divergence that is cut o� at the

scale gT . Since we use dimensional regularization as an infrared cuto�, this power infrared

divergence is set equal to 0.

In EQCD with an infrared cuto�, the electric screening mass mel can be de�ned in

perturbation theory by the location of the pole in the propagator for the �eld A0(x).
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Denoting the self-energy function for A0(x) by �E(k
2), the screening mass mel satis�es

k2 + m2

E + �E(k
2) = 0 at k2 = �m2

el
. In the strict perturbation expansion for EQCD, we

treat m2

E as a perturbation parameter of order g2. After Taylor-expanding �E(k
2) around

k2 = 0, there is no scale in the loop integrals, so they all vanish with dimensional regular-

ization. The solution for the screening mass is therefore trivial: m2

el
= m2

E. Matching this

result with the strict perturbation expansion from the full theory and taking the limit �! 0,

we �nd

m2

E

�����
�=0

= 4� �s(�) T
2

(
1 + 1

6
nF +

"
0:612 � 0:488nF � 0:0428n2F

+
11

2

�
1 + 1

6
nF
� �

1� 2

33
nF
�
log

�

2�T

#
�s

�

)
; (4)

where nF is the number of 
avors of quarks and � is the renormalization scale for the QCD

coupling constant. The order{� terms in m2

E are also required in the calculation of the free

energy. These terms are given by

@m2

E

@�

�����
�=0

= g2T 2

(
3:97 + 2 log

�E

4�T
+

�
0:597 +

1

3
log

�E

4�T

�
nF

)
; (5)

where the infrared cuto� �E is the scale introduced by dimensional regularization.

The coe�cient fE can be determined by matching the strict perturbation expansions for

the free energy in full QCD and in EQCD. In full QCD, the free energy F is calculated to order

g4 by evaluating the sum of vacuum diagrams through three-loop order, using dimensional

regularization to cut o� both infrared and ultraviolet divergences. The resulting expression

for F is an expansion in integral powers of �s. There is no �3=2s term, in contrast to the

expression for the free energy that correctly includes the e�ects of electrostatic screening

[9, 10]. This g3 term arises because the g4 correction includes a linear infrared divergence

that is cut o� at the scale gT . In the strict perturbation expansion, this term appears as a

power infrared divergence that is set to zero in dimensional regularization.

In EQCD, the free energy is given by (3). All the loop diagrams in the strict perturbation

expansion for logZEQCD vanish with dimensional regularization, since there is no scale for
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the integrals. The only contribution to logZEQCD comes from the counterterm �fE which

cancels logarithmic ultraviolet divergences proportional to the unit operator. The resulting

expression for the free energy is simply F = (fE + �fE)T . The counterterm is determined

by calculating the ultraviolet divergent terms in logZEQCD. If we use dimensional regular-

ization together with a minimal subtraction renormalization scheme in EQCD, then �fE is a

polynomial in g2E , m
2

E, and the other parameters in the EQCD lagrangian. The leading term

in �fE is proportional to g2Em
2

E, and its coe�cient can be determined by a simple 2-loop

calculation:

�fE = � 3

8�2�
g2Em

2

E: (6)

When this counterterm is expressed in terms of the parameters g and T of the full theory,

we must take into account the fact that m2

E in (6) multiplies a pole in �. Thus, in addition

to the expression for m2

E given in (4), we must also include the terms of order � which are

given by (5). Matching F = (fE + �fE)T with the strict perturbation expansion for F in

the full theory, we obtain

fE(�E) = �8�
2

45
T 3

(
1 + 21

32
nF �

15

4

�
1 + 5

12
nF
� �s(�)

�
+

"
244:9 � 17:24nF � 0:415n2F

� 165

8

�
1 + 5

12
nF
� �

1 � 2

33
nF
�
log

�

2�T
� 135

�
1 + 1

6
nF
�
log

�E

2�T

#�
�s

�

�
2

)
: (7)

This expression di�ers from that given in Ref. [1], where the counterterm (6) was not taken

into account.

We have calculated two terms in the perturbation series for m2

E and three terms in the

series for fE. We can use these results to study the convergence of perturbation theory for

the parameters of EQCD. We consider the case of nF = 3 
avors of quarks, although our

conclusions will not depend sensitively on nF . The question of the convergence is complicated

by the presence of the arbitrary renormalization and factorization scales � and �E. The next-

to-leading-order (NLO) correction to fE is independent of � and �E, and is small compared to

the leading-order (LO) term provided that �s(�)� 1:1. The NLO correction to m2

E and the

next-to-next-to-leading-order (NNLO) correction to fE both depend on the renormalization
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scale �. One scale-setting scheme that is physically well-motivated is the BLM prescription

[11], in which � is adjusted to cancel the highest power of nF in the correction term. This

prescription gives � = 0:93�T when applied to m2

E and � = 4:4�T when applied to fE.

These values di�er only by about a factor of 2 from 2�T , which is the lowest Matsubara

frequency for gluons. Below, we will consider the three values � = �T , 2�T , and 4�T . For

the NLO correction to m2

E to be much smaller than the LO term, we must have �s(�)� 0:8,

3.8, and 1.4 if � = �T , 2�T , and 4�T , respectively. Based on these results, we conclude

that the perturbation series for the parameters of EQCD are well-behaved provided that

�s(2�T )� 1.

The NNLO correction for fE depends not only on �, but also on the factorization scale

�E. Because the coe�cient of log(�E=2�T ) in (7) is so much larger than that of log(�=2�T ),

the NNLO correction for fE is much more sensitive to �E than to �. It is useful intuitively to

think of the infrared cuto� �E as being much smaller than the ultraviolet cuto� �. However,

these scales can be identi�ed with momentum cuto�s only up to multiplicative constants

that may be di�erent for � and �E. Both parameters are introduced through dimensional

regularization, but � arises from ultraviolet divergences of 4-dimensional integrals, while

�E arises from infrared divergences of 3-dimensional integrals. We might be tempted to set

�E = �, but then the NNLO coe�cient in fE is large. For the choice � = 2�T , the correction

to the LO term is a multiplicative factor 1� 0:9�s + 6:46�2s. The NNLO correction can be

made small by adjusting �E. It vanishes for �E = 5:8�T , 5:1�T , and 4:5�T if � = �T ,

2�T , and 4�T , respectively. We conclude that the perturbation series for fE is well-behaved

if the factorization scale �E is chosen to be approximately 5�T . Whether this choice is

reasonable can only be determined by calculating other EQCD parameters to higher order

to see if the same choice leads to well-behaved perturbation series.

The choice of �E that makes the perturbation series for the EQCD parameters well-

behaved may be much larger than the largest mass scale mE of EQCD. Perturbative correc-

tions in EQCD will then include large logarithms of �E=mE. This problem can be avoided
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by using renormalization group equations to evolve the parameters of EQCD from the initial

scale � down to some scale �0

E of order mE. The coe�cient fE satis�es the renormalization

group equation

�E

d

d�E

fE = � 3

2�2
g2Em

2

E : (8)

The evolution of g2E andm2

E occurs only at higher order in the coupling constant and therefore

can be ignored. The solution to the renormalization group equation is therefore trivial:

fE(�
0

E) = fE(�E)�
3

2�2
g2Em

2

E log
�0

E

�E

: (9)

Having determined the parameters of EQCD to the necessary accuracy, we proceed to

calculate the free energy using (3). The contribution from the scale T is given by the

coe�cient fE in (7). The contribution from the scale gT is given by fM = � log ZEQCD=T .

In order to calculate fM using perturbation theory in EQCD, we must include the e�ects of

the mass parameter m2

E to all orders, but the gauge coupling constant gE can be treated as

a perturbation parameter. The contributions to log ZEQCD of orders g3, g4, and g5 are given

by the 1-loop, 2-loop, and 3-loop vacuum diagrams in EQCD, respectively. The integrals

can be calculated analytically using methods developed by Broadhurst [12]. The two-loop

integrals include an ultraviolet pole in � that is proportional to g2Em
2

E. This divergence is

cancelled by the counterterm �fE for the coe�cient of the unit operator, which is given in

(6). Our �nal result for the coe�cient fM in (1) is

fM (�E) = � 2

3�
m3

E

2
41 � �

0:256 � 9

4
log

�E

mE

�
g2E

2�mE

� 27:6

 
g2E

2�mE

!
2

3
5 : (10)

Note that the dependence of fM on �E cancels that of fE in (7). The expression (10) can

be expanded in powers of g by setting g2E = g2T and using the expansion (4) for m2

E.

We now consider the convergence of the perturbation series (10) for fM . The size of

the NLO correction depends on the choice of the factorization scale �E. It is small if �E

is chosen to be approximately mE. The NNLO correction in (10) is independent of any

arbitrary scales. If nF = 3, it is small compared to the leading order term only if �s � 0:17.
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Thus the perturbation series for fM is well-behaved only for values of �s(2�T ) that are much

smaller than those required for the parameters of EQCD to have well-behaved perturbation

series.

Adding (7) and (10) and expanding in powers of
p
�s, the complete expression for the

free energy F is

F = �8�
2

45
T 4

2
4F0 + F2

�s(�)

�
+ F3

 
�s(�)

�

!
3=2

+ F4

�
�s

�

�
2

+ F5

�
�s

�

�
5=2
3
5 ; (11)

where the truncation error is of order �3s log �s. The coe�cients in this expansion are

F0 = 1 + 21

32
nF ; (12)

F2 = �15
4

�
1 + 5

12
nF
�
; (13)

F3 = 30
�
1 + 1

6
nF
�
3=2

; (14)

F4 = 237:2 + 15:97nF � 0:413n2F +
135

2

�
1 + 1

6
nF
�
log

�
�s

�

�
1 + 1

6
nF
��

� 165

8

�
1 + 5

12
nF
� �

1 � 2

33
nF
�
log

�

2�T
; (15)

F5 =
�
1 + 1

6
nF
�
1=2
"
� 799:2 � 21:96nF � 1:926n2F

+
495

2

�
1 + 1

6
nF
� �

1� 2

33
nF
�
log

�

2�T

#
: (16)

The coe�cient F2 was �rst given by Shuryak [9], while F3 was �rst calculated correctly

by Kapusta [10]. The coe�cient F4 was computed in 1994 by Arnold and Zhai [4]. The

coe�cient F5 in (16) has been calculated independently by Kastening and Zhai using a

di�erent method [5].

We now ask how small �s must be in order for the expansion (11) to be well-behaved.

For simplicity, we consider the case nF = 3, although our conclusions are not sensitive

to nF . If we choose the renormalization scale � = 2�T motivated by the BLM criterion

[11], the correction to the LO result is a multiplicative factor 1 � 0:9�s + 3:3�3=2s + (7:1 +

3:5 log �s)�
2

s � 20:8�5=2s . The �5=2s term is the largest correction unless �s(2�T ) < 0:12. We

can make the �5=2s term small only by choosing the renormalization scale to be near the value
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� = 36:5�T for which F5 vanishes. This ridiculously large of � arises because the scale � has

been adjusted to cancel the large g5 correction to fM in (10). This contribution arises from

the momentum scale gT and has nothing to do with renormalization of �s. We conclude

that the expansion (11) for F in powers of
p
�s is well-behaved only if �s(2�T ) is an order

of magnitude smaller than the value required for the EQCD parameters to be well-behaved.

We now consider brie
y the implications for theoretical studies of the quark-gluon plasma.

We have found that the convergence of perturbation theory requires much smaller values of

�s(2�T ) for quantities at the scale gT than for quantities at the scale T . The critical

temperature Tc for formation of a quark-gluon plasma is approximately 200 MeV. It may be

possible in heavy-ion collisions to produce a quark-gluon plasma with temperatures several

times Tc. At T = 350 MeV, �s(2�T ) � 0:3, which is small enough that perturbation theory

may be reasonably convergent at the scale T , but it is certainly not convergent at the scale

gT . We conclude that at the temperatures achievable in heavy-ion collisions, perturbative

QCD may be accurate when applied to quantities that involve the scale T only. However

nonperturbative methods are required to accurately calculate quantities that involve the

scales gT and g2T associated with screening in the plasma.
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