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1. Introduction.

Recently a good deal of work has been dedicated to the canonical formulation

of the spherically symmetric gravity and to its quantization [1-3]. In Ref. [3]
(hereafter referred as I) we developed a canonical approach to the study of the

spherically symmetric metric by proposing a foliation in the radial parameter r

and considering the Lagrangian coordinates as functions only of r. Thus this leads

to a structure of minisuperspace. The theory is of course endowed with a gauge
invariance (reparametrization in r) and a constraint. In I we have developed the

theory and shown a number of points that we recall brie
y.

We expressed the Einstein equations as a canonical system in a �nite, 2� 2

dimensional phase space. The gauge transformation is integrable; in particular

the solution of the equations of motion is the Schwarzschild solution. This prop-

erty allows the identi�cation of the canonical quantity that corresponds to the
Schwarzschild mass. There is an interesting algebraic structure of three gauge

invariant canonical quantities, whose physical meaning was clari�ed, that form

an a�ne algebra.

We also started to investigate the Dirac { Wheeler{De Witt (WDW) quan-
tization discussing the general form of the solutions and showed that they are
oscillating in the classically allowed regions and exponentially decreasing in the
forbidden regions. We brie
y discussed the form of the eigenfunctions of the
mass operator and of the generator of dilatations. We noted that a set of so-
lutions coincides with that of Kantowski-Sachs (KS) wormholes [4,5]. This is
hardly surprising. The geometry inside the horizon of a black hole coincides with
the KS geometry, and further the foliation parameter r is timelike inside the hori-
zon, so what we expose here is, for the part internal to the horizon, isomorphic
to the theory of the KS spacetime. This property enforces the much discussed
possibility that a black hole can be connected to a KS wormhole [6].

What remained to be done was the determination of the measure in the inner
product and the gauge �xing with the consequent establishment of a positive
de�nite Hilbert space. This is essentially the content of the present paper.

We start by introducing the classical Lagrangian and Hamiltonian and in-
tegrate the gauge transformations and rigid symmetries. Then we carry on the

construction of the quantum theory. We start with the Dirac method and estab-

lish the WDW equation.

The request of preserving at the quantum level both the gauge invariance and
the classical rigid symmetries, together with the support properties of the vari-
ables used as quantum coordinates, determines completely the quantum measure

and �xes the representation of the quantum operators. We identify the solutions

of the WDW equation that are eigenfunctions of the operators corresponding to
the most important invariants of the classical theory. A Fourier transform gives
the solutions in the con�guration space already found in I using the covariant

measure.
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Up to this point there has been no gauge �xing nor de�nition of a norm.

We then �x the gauge by de�ning the inner product by the Faddeev{Popov (FP)
procedure [7] and prove the existence of a class of gauges. This leads to a positive

de�nite Hilbert space.

We may also start by �rst �xing the gauge in the classical frame by a suitable

canonical gauge �xing identity that contains the coordinate r (for the method,

see e.g. [8]); the results coincide with those obtained by the Dirac method.

Having a positive de�nite Hilbert space, we are able to prove that, due to the

support properties of its conjugate variable, the hermitian operator corresponding
to the Schwarzschild mass in the gauge �xed, positive norm, Hilbert space is not

self{adjoint, while its square is a self{adjoint operator with positive eigenvalues,

analogously to what happens for the radial momentum in ordinary quantum

mechanics.

Of course in the classical theory the mass is perfectly de�ned. Again take the
example of the radial momentum: although it is not a self{adjoint operator in

the Hilbert space, a classical radial momentum is de�ned, namely pr = m _r, and
its square is self{adjoint. This di�erence between classical and quantum behavior
is due to the fact that a classical canonical quantity is a purely local entity while
the de�nition of a self{adjoint operator conveys general informations about the
Hilbert space. Alternatively, one may think that the operator corresponding to
the mass of the black hole should be de�ned in a di�erent way.

No quantization of the mass is required by the quantum theory as it stands.
Quantization of the mass can be surely achieved by a modi�cation of the bound-
ary conditions and/or of the original Hamiltonian, and we point in the conclusions
how it could be carried on in a gauge invariant way. It would be worth exploring
this weird and fascinating possibility. It would also be interesting to introduce
matter degrees of freedom with the aim of summing over degrees of freedom in or-
der to compute entropy (hopefully, this may allow us to de�ne a more satisfactory
operator for the mass of the black hole).

2. Classical Theory.

In this section we summarize the main classical results obtained in I with some
minor changes in notation and some added considerations about the symmetries
of the action.

The spherically symmetric line element can be written in the following con-
venient form

ds2 = �4a(r)dt2 + 4n(r)dr2 + b2(r)d
2
2 ; (2:1)

where a, n, and b only depend on the radial coordinate r and d
2
2 is the line

element of the two-sphere.

We allow in principle for changes of signs in the metric tensor. Depending
on the sign of a and n, the coordinates t and r may be timelike and spacelike
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or vice versa. n(r) plays essentially the role of the r-lapse function and it is

just a Lagrange multiplier in the action enforcing the constraint that generates
reparametrizations of r.

We start from the action

S =
1

16�G

Z
V4

d4x
p�g (R + 2�) � 1

8�G

Z
@V4

d3x
p
h K : (2:2)

Introducing the Ansatz (2.1) one obtains

S =

Z t2

t1

dt

Z r2

r1

dr L(a; b; l) ; (2:3)

where the Lagrangian L is

L = 2l

 
_ab_b

l2
+
a_b2

l2
+
1 + �b2

4

!
: (2:4)

In Eq. (2.4), dots denote di�erentiation with respect to r and we have set G = 1.
The Lagrangian multiplier l is given by

l(r) = 4
p
an : (2:5)

Note that in I the Lagrangian multiplier was chosen as l(r) =
p
an=2b2. Also

(2.1) and (2.4) are di�erent. We have preferred the present de�nitions as they
lead to some simpli�cation in the Hamiltonian treatment. All the results of the
present paper, both classical and quantum, are of course identical.

As already pointed in I, the Lagrangian must be real, so a and n have the
same sign and thus the line element (2.1) has lorentzian signature everywhere: as
we will see in a moment, on the classical solutions positive values of a represent
the exterior of the black hole and negative values of a represent the region inside
the horizon.

The Hamiltonian H can be calculated in the usual way by de�ning canonical
r{momenta as

pa =
2b_b

l
; (2.6a)

pb =
2

l
( _ab+ 2a_b) : (2.6b)

We have:

H = lH ; (2.7a)

H =
1

2b2
[pa(bpb � apa)]� 1

2
(1 + �b2) ; (2.7b)
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where H is the generator of r-reparametrizations (gauge transformations) that

we will simply call the \Hamiltonian" of the system. As a consequence of the
form of H we have the constraint

H = 0 ; (2:8)

which expresses the invariance under r{reparametrization.

Let us set from now on � = 0; the case of non zero cosmological constant will

be examined in Appendix B. The Hamiltonian (2.7b) has very interesting invari-
ance transformations; �rst, the gauge transformations generated by H (denoted

as Hh)

�qi = �
@H

@pi
= �
�
qi;H

�
P
; (2.9a)

�pi = ��@H
@qi

= �
�
pi;H

�
P
; (2.9b)

�l =
d�

dr
; (2.9c)

can be integrated explicitly. For H = 0 the result is:

b! �b = b+ h(r)
pa

2b
; (2.10a)

pa ! �pa = pa + h(r)
p2a
2b2

; (2.10b)

a! �a = a+
N

b2
h(r)=2

1 + h(r)pa=2b2
; (2.10c)

pb ! �pb = pb +
J

b2
h(r)=2

1 + h(r)pa=2b2
; (2.10d)

l(r)! �l(r) = l(r) +
dh

dr
; (2.10e)

where J and N are gauge invariant quantities de�ned below. Note the simplicity

of the gauge transformations of b and pa. This fact will be exploited later.

We have three gauge invariant canonical quantities, namely

I = b=pa ; (2.11a)

J = 2b� papb + 4bH ; (2.11b)

N = IJ = bpb � 2apa : (2.11c)
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I, J , N play a fundamental role in the theory. The algebra of H; I; J;N is:

�
I;H

�
P
= 0 ;

�
J;H

�
P
= 0 ;

�
J; I
�
P

= 1 ;

�
N;H

�
P
= 0 ;

�
N; I

�
P
= I ;

�
N;J

�
P
= �J :

(2:12)

We write also the unconstrained solution of the equations of motion; for H = 0

they have of course the same content as the gauge equations (2.10). We have

b =
�

2I
; (2.13a)

pa =
b

I
; (2.13b)

a = I2
�
2H + 1� J

b

�
; (2.13c)

pb = I

�
4H + 2� J

b

�
; (2.13d)

� =

Z r

r0

l(r) dr ; l(r) > 0 : (2.13e)

� will be chosen positive without loss of generality.

Eq. (2.13c) corresponds to the Schwarzschild solution if we set H = 0. Then
a vanishes for b = J and so J=2 � M is the classical canonical expression of
the Schwarzschild mass M. Again from (2.13c), remembering (2.1), we see that
T � 2I is the ratio between proper and coordinate time in the asymptotic region
b!1.

There is a very important point concerning the support of the variables b
and pa. b is positive de�nite as it is natural since it is classically a radial variable.
Then from the positivity of � it follows from (2.13a) that I > 0. Also, pa is
positive. These properties will be essential in the following.

Let us call rigid those symmetries generated by I, J and N . Any gauge
invariant function of the canonical variables can be written as F (H; I; J). The

requests that it be N and I invariant, or N and J , or I and J , are equivalent
as they leave us with F (H), so we need only consider two of the three rigid

transformations.

Invariance under rigid transformations will be used in the next chapter to
investigate the quantum measure. For the moment let us write down these trans-

formations.

5



The �nite transformations generated by I (denoted as If ) are:
b! �b = b ;

pa ! �pa = pa ;

a! �a = a � fbp�2a ;

pb ! �bb = pb � fp�1a :

(2:14)

The �nite transformations generated by J (denoted as Jq) are:

b! �b =
b

1� q=I
;

pa ! �pa =
pa

(1� q=I)
2
;

a! �a = a (1� q=I)
2
+
N

b
q (1� q=I)

2
;

pb ! �pb = pb (1� q=I) +
J

b
q (1� q=I) :

(2:15)

The �nite transformations generated by N (denoted as Ng) on the canonical
variables are dilatations, due to the form of N :

b! �b = egb ;

pa ! �pa = e2gpa ;

a! �a = e�2ga ;

pb ! �pb = e�gpb :

(2:16)

Now looking at these three sets of transformations and at the gauge trans-
formations (2.10) we see that the canonical variables b; pa transform separately
under all transformations. These variables will be most appropriate as coordi-
nates in the quantum case. We also note that the J transformations may change
the sign of b, in contrast with our assumption that b > 0. Thus we consider as
fundamental symmetriesNg and If . The analysis of the consequences of relaxing
the condition b > 0 (unfolding of b) will be carried on elsewhere.

Di�erent sets of canonical pairs will be used in what follows. We may perform
a canonical transformation to the new canonical variables fJ; I; Y; PY g, where

Y =
2b2

pa
; PY = H : (2:17)

This choice is motivated by their invariance properties: I; J;H are gauge invari-
ant and Y behaves in the simplest way under gauge transformations Hh. For

completeness we give the generating function of the canonical transformation:

F =
2ab2

Y
� Y J

2b
+
1

2
Y : (2:18)
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We can use alternatively N = IJ and pN = ln I instead of J and I. Using the

canonical variables fJ; I; Y; PY g, the Hamiltonian reads simply

H = lPY : (2:19)

We list their transformation properties under gauge and rigid transformations:

� If :
I ! �I = I ;

J ! �J = J + f ;

Y ! �Y = Y ;

PY ! �PY = PY ;

(2.20)

� Jq:
I ! �I = I � q ;

J ! �J = J ;

Y ! �Y = Y ;

PY ! �PY = PY ;

(2.21)

� Ng:

I ! �I = e�gI ;

J ! �J = egJ ;

Y ! �Y = Y ;

PY ! �PY = PY ;

(2.22)

� Hh:
I ! �I = I ;

J ! �J = J ;

Y ! �Y = Y + h(r) ;

PY ! �PY = PY :

(2:23)

These formulas will be important for the discussion in the next section.

Finally, let us write another set of canonical variables that will be used in
section 4:

� = ln jaj ;
c = 2

p
jajb ;

p� = �N
2
;

pc =
pb

2
pjaj :

(2:24)

In this case there are two di�erent canonical transformations, for positive
and negative a; the Hamiltonian (2.7b) becomes

H =
1

2

�
�

�
p2c � 4

p2�
c2

�
� 1

�
; (2:25)
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where � = a=jaj. The gauge transformation laws of these canonical coordinates

are not simple:
�p� = 0 ;

�� = �4�� p�
c2
;

�pc = �4�� p
2
�

c3
;

�c = ��pc :

(2:26)

Let us remark that these canonical variables become useless in the case of non

vanishing cosmological constant.

3. Quantization.

There are two approaches to the quantization of gauge systems [7]. The �rst
is the Dirac method that leads in our case to the WDW equation and needs

gauge �xing before being interpreted. This method has the problem of the choice

of the measure and the related problem of the representation of the operators.

This di�culty is usually overcome by the de�nition of an invariant measure in
superspace.

The second approach is the canonical gauge �xing method leading to a clas-
sical reduced phase space where quantization can be carried on as usual and wave
functions have the customary interpretation.

In our treatment of the quantization of the black hole one may carry on both
methods and we will be able to show that they lead to the same results for correct
gauge �xing conditions, thus proving the equivalence of the two approaches. Most
of this section is dedicated to the Dirac method, devoting the �nal part to the
discussion of the canonical gauge �xing.

In order to implement the Dirac procedure, the �rst main problem we meet
is the choice of the measure in superspace and, as consequence, the choice of the
variables to be used for the wave functions. We start with the formal commutation
relations �

a; pa
�
= i ; (3.1a)�

b; pb
�
= i : (3.1b)

In order to represent them as di�erential operators we must �rst choose a pair

of commuting variables as coordinates and establish the form of the (non gauge
�xed) measure d�. The measure d� can be determined by the requirement that it

be invariant under the symmetry transformations of H, namely rigid and gauge
transformations.

We shall see in section 4 that the wave functions obtained with this measure
are connected by a Fourier transform to the solutions of the WDW equation that

uses the covariant measure in the a; b space.
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Let us come back to the algebra of I, J , N and H. This is a powerful

inspiration for physical consequences to be found in the structure of the gauge
�xed positive de�nite Hilbert space. The I, J , N algebra is a dilatation algebra,

so it is useful to recall some important points about the self{adjointness of the

dilatation operator [9].

Let us consider a realization of the dilatation algebra on di�erentiable func-

tions of a single variable �. If the support of the eigenvalues of both �̂ and p̂�

extends from �1 to 1, then �̂ and p̂� are self{adjoint while the dilatation op-

erator D̂ = (�p� + p��)=2 is not self{adjoint. If instead for instance � � 0, then

(as typical for radial variables) the dilatation generator is self{adjoint and the

conjugate momentum p̂� is not. So we expect that the support of the variables

in the present problem will be the key to the properties of the Hilbert space.

In order to determine the quantum measure, we require that the measure be
invariant under rigid and gauge transformations. We choose the Ng and If form

of the rigid symmetries, (2.14,16), because they preserve the sign of b. Then the

measure is (we denote by x; j; y the continuous eigenvalues of Î, Ĵ, Ŷ ):

d�(x; y) =
dx

x
dy : (3:2)

This measure makes sense as we have seen that classically I > 0 since both
pa; b > 0. We cannot use the Ng and Jq form of the rigid symmetries, as they
change the sign of b (and of I). The choice of implementing the rigid symmetries
Ng, Jq implies that b becomes negative, for which there is no basis. In that case
the invariant measure would be

d�(j; y) =
dj

j
dy ; (3:3)

that requires j > 0. Of course one could argue that j > 0 because we have to
exclude negative masses, but this choice would introduce an external criterion
into the discussion. As we will see in a moment, the measure (3.2) implies that
the operator Ĵ is not self{adjoint.

The measure (3.2) can be obtained through di�erent considerations, i.e. using

as variables the pair fb; pag whose behaviour is simple under both rigid and

gauge transformations. This pair of non conjugate variables is a basis for a
representation of the gauge group and therefore b and pa are good candidates as
coordinates in the wave functions. It is straightforward to determine the form of
the invariant measure in this representation. Let

d�(b; pa) = F (b; pa) dbdpa ; d��(�b; �pa) = F (�b; �pa) d�bd�pa : (3:4)

We have:
d�� � d� (1 + �+ fb�b+ fpa�pa) dbdpa ; (3:5)
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where

f = lnF ; fk = @kf ;
@(�b; �pa)

@(b; pa)
� 1 � � ; (3:6)

and

� = 3g +
hpa

2b2
: (3:7)

The condition of invariance determines completely F :

F =
b

p2a
: (3:8)

The measure invariant under the continuous transformations Ng, If that leave

H invariant is thus

d�(b; pa) =
bdb dpa

p2a
: (3:9)

It is immediate to see that it coincides with (3.2).

Let us consider for a moment the set of rigid transformations Ng and Jq.
In spite of the simple transformation properties of b; pa under them, it is easy to
see by the above method that an invariant measure of the form (3.4) cannot be
determined. Furthermore, the measure (3.3) is invariant under Jq, Ng and Hh

but cannot be transformed back to the canonical variables fb; pag.
So let us go back to the measure (3.9) or (3.2). We can de�ne the operators

Ĥ; N̂ ; Ĵ both in the fb; pag and in the fx; yg representation. Using the �rst pair
of coordinates we have the hermitian operators

â = i pa@pap
�1
a ; (3.10a)

p̂b = �i b�1=2@b b1=2 : (3.10b)

Note that Ĥ is �rst order in derivatives, as well as N̂ and Ĵ. Using the Weyl
ordering we obtain:

Ĥ = �i pa
2b2

(b@b + pa@pa) �
1

2
; (3.11a)

N̂ = �i (b@b + 2pa@pa) ; (3.11b)

Ĵ = �ipa
b

�
b@b + 2pa@pa +

1

2

�
: (3.11c)

Let us �rst discuss the eigenfunctions of N̂ . The solution of

Ĥ	 = 0; N̂	 = �	 ; (3:12)
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is

	�(b; pa) = c(�) b�i� pi�a eib
2=pa ; (3.13a)

or, in terms of x, y:

	�(x; y) = c(�) x�i�eiy=2 : (3.13b)

The eigenfunctions of the mass operator Ĵ are the solution of the equations:

Ĥ	 = 0; Ĵ	 = j	 ; (3:14)

namely,

	j(b; pa) = c(j)

s
b

pa
eib(b�j)=pa ; (3.15a)

or, in the fx; yg representation:

	j(x; y) = c(j)
p
x ei(y=2�jx) : (3.15b)

For sake of completeness, let us obtain from the di�erential representation (3.11)
the form of the operators Ĥ, Ĵ, N̂ in the fx; yg representation:

Ĥ = Py = �i@y � 1

2
; (3.16a)

Ĵ = i
p
x@x

1p
x
; (3.16b)

N̂ = i
@

@ lnx
; (3.16c)

Now in order to progress we have to introduce the gauge �xing via the FP method
[7]. We will prove that there is a class of viable gauges for which there are no
Gribov copies and the FP determinant �FP is invariant under gauge transfor-
mations. Indeed, let us suppose that the gauge be enforced by

�(x; y) = 0 ; (3:17)

and let � have the form

�(x; y) =  (x; y)
Y
i

�
y � �i(x)

�
; (3:18)

where  
�
x; �i(x)

� 6= 0 and �i(x) 6= �j(x) for any x. Then

�(�) =
X
i

� (y � �i(x))  i(x) ; (3:19)

where
 i(x) =  

�
x; �i(x)

�Y
j 6=i

�
�i(x) � �j(x)

�
: (3:20)
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So, �nally,

��1FP =

Z
dh �

�
�(h)

�
=
X
i

�
 i(x)

��1
: (3:21)

Note that since x is gauge invariant, so is �FP . The gauge �xed invariant measure

is then Z
d�(x; y) �

�
�(x; y)

�
�FP =

Z
dx

x
dy �

�
�(x; y)

�
�FP : (3:22)

In our case the most convenient gauge (3.17) is:

�(x; y) = y � 1 =
2b2

pa
� 1 : (3:23)

This gauge �xing implies obviously �FP = 1 and it determines uniquely the

gauge. Indeed,
2�b2

�pa
= 1 (3:24)

de�nes uniquely h = 1� 2b2=pa.

Now we may discuss the form of the wave functions in the gauge (3.23).
Denote by lower case greek letters the wave functions in the gauge �xed repre-
sentation and start from the eigenfunctions of N̂ . Choosing c(�) = (2�)�1=2, the
gauge �xed eigenfunctions of N̂ are

 �(x) =
1p
2�

x�i� : (3:25)

They are of course orthonormal in the gauge �xed measure:

( �2 ;  �1 ) =

Z 1

0

dx

x
 ?
�2
(x) �1 (x) = �(�1 � �2) : (3:26)

Now consider the gauge �xed eigenfunctions of Ĵ :

 j(x) = c0(j)
p
x e�ixj : (3:27)

This makes clear the important point already stressed. It is indeed immediate

to verify that Ĵ is not self{adjoint in that space. As already remarked, the
situation is similar to the familiar case of the radial coordinate r in 
at space:
its conjugate pr is not a self{adjoint operator on the Hilbert space of the Laplace

operator, although it is of course a well de�ned classical quantity.

If, as it is suggested by the classical correspondence, we identify Ĵ with the
mass operator, we must conclude that there is no self{adjoint mass operator in
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this reduced theory. In other words, with this de�nition the mass operator is not

an observable.

To conclude this section, let us now investigate the operator Ĵ2. In order to

be a self{adjoint operator, the eigenfunctions of Ĵ2 with eigenvalue j2 must meet

one of the two conditions:

lim
x!0

 
(1)

j2 (x)p
x

= 0 ; (3.28a)

or

lim
x!0

"
 
(2)

j2
(x)p
x

#0
= 0 : (3.28b)

The two separate sets are given of course by (j > 0)

 
(1)

j2
(x) =

1p
�j

p
x sin jx ; (3.29a)

 
(2)

j2
(x) =

1p
�j

p
x cos jx : (3.29b)

Either the set (3.29a) or the set (3.29b) must be chosen. The eigenfunctions of
each set are orthonormal�

 
(k)

j2
2

;  
(k)

j2
1

�
=

Z 1

0

dx

x
 
(k)?

j2
2

(x)  
(k)

j2
1

(x) = �(j22 � j21) ; k = 1; 2 : (3:30)

Thus the operator Ĵ2 is self{adjoint. The e�ect of the non self{adjoint operator
Ĵ is to transform the set (1) into the set (2) and viceversa.

The same results can be obtained by the canonical gauge �xing method (see
[8]) using the gauge �xing condition

Y = r : (3:31)

This gauge �xing (3.31) corresponds to the \area gauge" b = const � r since
Y = 2bI. Indeed, we have l = 1. The e�ective Hamiltonian on the physical shell
is

He� = �PY � �H = 0 : (3:32)

So the functions do not depend on r. Diagonalizing N̂ or Ĵ using (3.16b,c)
one obtains the gauge �xed wave functions (3.25) and (3.27). This proves the

equivalence of the Dirac{WDW and reduced canonical quantization methods for
the gauge �xings that we have implemented.

4. WDW solutions in the fa;bg representation.
We now follow the traditional path of determining the measure by de�ning the
kinetic part of the Hamiltonian as a Laplace{Beltrami operator. We use the

couple of variables a; b. From (2.4) we read the covariant measure in superspace

d�(a; b) = b da db : (4:1)
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The representation for p̂a and p̂b is thus:

p̂a = �i@a; p̂b = �i(@b + 1=2b) : (4:2)

In the f�; cg representation the covariant measure is c d�dc and we have:

p̂� = �i@�; p̂c = �i(@c + 1=2c) : (4:3)

Using the covariant Laplace{Beltrami ordering for the Hamiltonian (note that it

coincides with the Weyl ordering) the WDW equation becomes:

[ab@a@b � (a@a)
2 + ab2]	 = 0 ; (4:4)

or, in terms of � and c:

[�(c@c)2 + 4@2� � �c2]	 = 0 ; (4:5)

where � = a=jaj. The representations for the operators Ĵ and N̂ are

Ĵ = @a@b + 2b � 1

2b
@a ; (4:6)

N̂ = �i(b@b � 2a@a) : (4:7)

It is easy to check that, using a di�erent de�nition of the Lagrange multiplier,
the WDW di�erential equation (4.4) and the di�erential expressions for Ĵ and N̂
(4.6,7) remain unchanged.

Now let us discuss the diagonalization of N̂ . We have to discuss separately
the cases a > 0 and a < 0. The solutions are:

	�(a; b) = c(�)(�a)�i�=2Ki�(2b
p�a) ; (4.8a)

for a < 0, where Ki� is the modi�ed Bessel function of order i� [10] (we have
chosen this solution because of its asymptotic properties for large argument). For
a > 0, we have

	�(a; b) = c0(�)a�i�=2Ci�

�
2b
p
a
�
; (4.8b)

where the function Ci� is any combination of Hankel functions. For the Ĵ oper-
ator, the solutions with eigenvalue j are

	j(a; b) =
K(j)pjb� jje

�2i
p

ab(b�j) ; (4.9a)

in the classically allowed region (a(b � j) > 0, oscillating behavior), and

	j(a; b) =
K(j)pjb� jje

�2
p

ab(j�b) ; (4.9b)
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in the classically forbidden region a(b � j) < 0, where we have chosen the de-

creasing exponential behavior, analogously to (4.8a).

Now we may see that these solutions are the Fourier transforms of the solu-

tions in the fb; pag space obtained in the previous section. The Fourier transform
is de�ned as:

	(a; b) =

Z 1

0

dpa

p2a
	(pa; b) pae

iapa : (4:10)

Introducing in (4.10) 	�(pa; b) given in (3.13a) and using Ref. [11] (Vol. I, p.
313, formula (17)), one obtains (4.8a); (4.8b) is obtained by elementary analytic

continuations. Analogously, introducing (3.15a) one obtains (4.9a) or (4.9b). This

proves the equivalence of the invariant measure (3.9) and of the representations

(3.10) with the covariant measure (4.1) and representation (4.2).

Possibly there is no gauge �xing in the Dirac method leading to a positive

de�nite Hilbert space of states 	(a; b), analogously to what happens in the very

similar Klein{Gordon (KG) case. Note that if we use the KG light cone variables

p+ and x+=p+ (p+ = p0+p, x+ = x0+x, see below Eqs. (4.11,12)), we may apply
the procedures of the previous section to the KG case. This fact follows from the
canonical equivalence of the classical black hole to the classical KG theory. This
equivalence will be discussed in a forthcoming publication.

Let us now discuss the gauge �xing by the canonical method, i.e. by a canon-
ical identity and quantizing in the reduced phase space. In connection with this
it will be interesting to recall a few interesting facts about the KG theory. Let
us consider the relativistic particle in two dimensions. The Hamiltonian is

H = l(t)H ; H =
1

2

�
p2 +m2 � p20

�
: (4:11)

The equations of motion are:

_x = lp ; _p = 0 ; _x0 = �lp0 ; _p0 = 0 ; (4.12a)

H = 0 : (4.12b)

The gauge can be �xed via the canonical method imposing the identity

x0 + t = 0 : (4:13)

As a consequence, (4.12b) and (4.13) become second class and the system can be
reduced. Eq. (4.13) gives the Lagrangian multiplier l = 1=p0. Using (4.12b) and
(4.13) we �nd

He� = p0 = �
p
p2 + m2: (4:14)

In order to have a positive Lagrange multiplier and a sensible quantum mechanics
of a single particle, we have to choose the positive sign in (4.14). So we end with
the reduced space Hamiltonian

He� =
p
p2 + m2 : (4:15)
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This is the gauge �xed Hamiltonian of the relativistic particle. The choice of the

� sign in (4.14) would be wrong in quantum mechanics of a single particle (see
e.g. [12]). The Schr�odinger equation is (+ stands for l > 0)

i
@

@t
 +(x; t) = Ĥe�  + ; (4:16)

and the eigenfunctions of p̂ are

 +(k;x; t) = (2�)�1=2 exp[�it! + ikx] ; (4:17)

where of course ! =
p
k2 +m2. This is obviously a positive de�nite Hilbert

space since the Hamiltonian is positive de�nite and hermitian. Usual quantum

mechanics applies.

Now go back to our problem and discuss the canonical gauge �xing for the

black hole. The discussion parallels that of the KG, as (4.5) is essentially a KG

system in the f�; cg representation.
Using the variables � and c and the Hamiltonian (2.25), the equations of

motion are

_c = l�pc ; _� = �4l�p�=c2 _p� = 0 ; _pc = �4l�p2�=c3 ; (4.18a)

H = 0 : (4.18b)

It is convenient to choose the gauge �xing canonical identity (analogous to (4.13)):

� = r ; (4:19)

(of course with the gauge above r is not the area coordinate). The e�ective
Hamiltonian is thus:

He� = �p� = N=2 ; (4:20)

where p� can be obtained from H = 0. Hence

He� = �1

2

p
c2(p2c � �) : (4:21)

Note that in the classical motion the argument in the square root never becomes
negative. This is obvious for a < 0. For a > 0 it can be seen as follows: from

(2.13c,d) we have the relation pb = a=I + I and using the de�nition of pc in Eqs.
(2.24) it follows that p2c = p2b=4a = (a=I + I)2=4a � 1.

Let us look at the value of the Lagrange multiplier. From (4.19) and from

the equations of motion (4.18) we have

l = � c
2�

4p�
: (4:22)
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Now, as in the KG case, we impose that l > 0, that is �p� < 0. This means that

for a > 0 we must choose the + sign in (4.21), while for a < 0 we have to choose
the � sign. Let us use (4.3) and the covariant ordering. First discuss a < 0. The

eigenstates of He� with eigenvalue E = ��=2; � > 0 are obtained by solving the

equation

[�(c@c)2 + c2]  �(c) = �2  �(c) : (4:23)

The solution is

 �(c) =

r
2� sinh��

�2
Ki�(c) : (4:24)

For the case a > 0 we look for eigenstates of He�

[�(c@c)2 � c2] ��(c) = �2 ��(c) ; (4:25)

with solution (� > 0)

��(c) = i

s
� sinh(��=2)

4 cosh(��=2)

h
e���=2H

(1)

i� (c) � e��=2H
(2)

i� (c)
i
: (4:26)

The above solutions of the Hamiltonian are orthonormal (see Appendix A):

( �1 ;  �2) =

Z 1

0

dc

c
 ?
�1
(c)  �2 (c) = �(�1 � �2) ; (4.27a)

(��1 ; ��2) =

Z 1

0

dc

c
�?�1(c) ��2(c) = �(�1 � �2) : (4.27b)

These eigenfunctions span positive norm Hilbert spaces.

Now let us solve the Schr�odinger equation

i
@

@�
	+(�; c; �) = He� 	+(�; c; �) (4:28)

for the stationary states. We have (remember � > 0)

	+(�; c; �) = ei��=2  �(c) (4.29a)

for E < 0; a < 0, and

	+(�; c; �) = e�i��=2 ��(c) (4.29b)

for E > 0; a > 0. On the other hand the solutions corresponding to l < 0 are

	�(�; c; �) = e�i��=2  �(c) (4.30a)
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for E > 0; a < 0, and

	�(�; c; �) = ei��=2 ��(c) (4.30b)

for E < 0; a > 0. Solutions (4.29-30) are the gauge{�xed wave functions cor-

respondent of (4.8). Analogously to the KG case the use of both positive and

negative l is appropriate if one reinterprets the wave function as a quantum op-
erator (second quantization of BH). For instance,

	BH(�; c) =

Z 1

0

d�

r
2� sinh��

�2
Ki�(c) [A

y(�)e�i��=2 +B(�)ei��=2] (4:31)

is the representation of the BH quantum �eld for a < 0.

5. Conclusions.

The quantization of the canonical approach to the black hole proposed in I shows

that, as a consequence of the positive de�niteness of the canonical variable b, Ĵ
does not have a self{adjoint extension since its conjugate variable I has positive

support. Instead, eigenfunctions of Ĵ2 can be de�ned in the Hilbert space.

This possibly signals that the identi�cation of J with the mass carried at the
classical level is not the correct one in the quantum formulation. Alternatively,
this may have something to do with the fact that in classical physics only positive
masses are present. To look into this question in the present frame one has to
construct a procedure of classical limit that yields the Schwarzschild metric and
investigate the role of eigenfunctions of Ĵ2. Maybe some light could come.

Another subject that must be explored is the introduction of matter �elds.
This could be of importance in order to specify the physical degrees of freedom
inaccessible for observation by an external observer, whose tracing out could
explain the origin of the black hole entropy (see e.g. [13]). Hopefully, this may
also shed light on the quantum de�nition of the mass of the black hole.

The set of solutions of wormholes for the KS metric coincides with the set of
Schwarzschild wave functions inside the black hole, as the KS geometry coincides
with the internal one of the black hole, and the parameter r in which we foliate
is timelike there.

Let us also remark that no quantization of the mass appears from this theory.

It is interesting to stress though that in the frame developed here quantization of

the mass squared could be achieved in a gauge invariant way by a modi�cation of
the theory. For instance a very crude way is just to set the support condition x <
x0. This is a gauge invariant cut{o� that leads to quantization of the eigenvalues

of Ĵ2. Now, this cut{o� is performed in the gauge y = 1, that is 2bx = 1.

Thus a modi�cation of the theory for large x corresponds to a gauge invariant
modi�cation for small b. It will be interesting to explore the consequences of
less crude models leading to quantization of the mass; this requires a reliable

de�nition of the quantum mass operator of course.

18



Acknowledgments

We are indebted to L.J. Garay for interesting discussions and useful suggestions.
One of the authors (A.T.F.) acknowledges a partial support for this investigation

from RFFI (grant 95-12-2a/154), ISF (grant RFF 300), and INFN.

Appendix A.

In this appendix we discuss the orthonormality of the eigenfunctions of N̂ that

we used in section 4 (Eqs. (4.27)). Let us start considering a < 0. UsingZ 1

0

dx

x
Ki�(x) Ki�(x) =

�2

2� sinh��
[�(�� �) + �(�+ �)] ; (A.1)

(see [14]) and recalling that � is positive, we obtain (4.27a).

Let us discuss now in detail the case a > 0. The most general solution of the

Eq. (4.25) has the form

��(�; c) = �1H
(1)
i� (c) + �2H

(2)
i� (c) ; (A.2)

where �1;2 have to be determined by orthonormality. We have to compute the
integrals:

I(k;l)(�; �) =

Z 1

0

dx

x
H
(k)
i� (x) H

(l)
i� (x) ; (A.3)

where k; l = 1; 2. From Bateman (see Ref. [11], Vol. I, p. 333, formulae (40) and
(48)) we have the relation:Z 1

0

dx

x
H(k)

� (x) H(k)
� (x) = � 4

�2
ei�(2k�3)(�+�)=2

Z 1

0

dx

x
K�(x) K�(x) ; (A.4)

where k = 1; 2. Setting �! i�, � ! i� in (A.4) and using (A.1) we obtain

I(1;1)(�; �) = � 2

� sinh��
e�(�+�)=2 [�(� � �) + �(�+ �)] ; (A.5a)

I(2;2)(�; �) = � 2

� sinh��
e��(�+�)=2 [�(� � �) + �(�+ �)] : (A.5b)

Now, let us calculate I(1;2). In order to do this we have to compute
R1
0
Ji�Ji�dx=x

and
R1
0
Ji�Yi�dx=x. These integrals can be easily calculated using Bateman

(see Ref. [11], Vol. I, p. 331-332, formulae (33) and (36)) and suitable analytic

continuations. We have:Z 1

0

dx

x
Ji�Ji� = �2i

�
P
sinh [�(�� �)=2]

�2 � �2
+

1

�
sinh�� �(�+ �) ; (A.6a)

Z 1

0

dx

x
Ji�Yi� =

2

�
P
cosh [�(�� �)=2]

�2 � �2
+
i

�
�(�� �)+

+
i

�
cosh�� �(�+ �) : (A.6b)
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Hence, using (A.5-6) we �nd:

I(1;2)(�; �) = �4i

�
P
e�(���)=2

�2 � �2
+

2

�
coth�� [�(� � �) + e���(�+ �)] : (A.7)

Now, we can calculate �1;2 imposing the inner product (4.27b). We have two sets

of real orthonormal functions:

�(1)� =

s
� cosh(��=2)

4 sinh(��=2)

h
e���=2H

(1)
i� (c) + e��=2H

(2)
i� (c)

i
; (A.8a)

�(2)� = i

s
� sinh(��=2)

4 cosh(��=2)

h
e���=2H

(1)
i� (c)� e��=2H

(2)
i� (c)

i
: (A.8b)

In (4.26) we have chosen the set (A.8b) because it has the same properties as
(4.24), i.e. the wave functions vanish for � ! 0. Also, the asymptotic behaviors

for c! 0 of (4.24) and (A.8b) are identical.

Appendix B.

In this Appendix we collect the main formulae of sections 2{4 when the cosmo-
logical constant � is di�erent from zero.

The system described by the Hamiltonian (2.7b) with � 6= 0 (hereafter de-
noted ~H to distinguish it from the Hamiltonian H of the previous sections) is
again completely integrable. The �nite gauge transformations are in this case:

b! �b = b + h(r)
pa

2b
;

pa ! �pa = pa + h(r)
p2a
2b2

;

a! �a = a+
~N

b2
h(r)=2

1 + h(r)pa=2b2
+

�

3

b2

pa
h(r)

�
1 +

h(r)pa

4b2

�
;

pb ! �pb = pb +
~J

b2
h(r)=2

1 + h(r)pa=2b2
+

4�

3
bh(r)

�
1 +

h(r)pa

4b2

�
;

l(r) ! �l(r) = l(r) +
dh

dr
;

(B.1)

where we have used the constraint ~H = 0. The gauge invariant quantities ~J and
~N are de�ned as:

~J = J � 2�

3
b3 = 2b� papb + 4b ~H +

4

3
�b3 ; (B.2a)

~N = N � 2�

3

b4

pa
= bpb � 2apa � 2�

3

b4

pa
: (B.2b)
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The quantities (B.2a,b), together with

~I = ~N ~J�1 =
b

pa
; (B.2c)

satisfy the algebra (2.12). Note that the gauge transformations for b and pa are

una�ected by the presence of the cosmological constant.

The rigid transformations generated by ~I are identical to the ones generated

by I when � = 0; the �nite transformations generated by the dilatation operator
~N are instead:

b! �b = egb ;

pa ! �pa = e2gpa ;

a! �a = e�2ga +
�

3

b4

p2a

�
1� e�2g

�
;

pb ! �pb = e�gpb +
8�

3

b3

pa

�
1� e�g

�
:

(B.3)

Note that the presence of the cosmological constant does not a�ect the rigid
transformations of b and pa, again as it happens for the gauge transformations
(B.1). As a consequence, the discussion about the gauge and the rigid invariant
measure of the section 3 is applicable, as well as the FP gauge �xing method
described there.

For sake of completeness, let us write the gauge invariant relation between a
and b:

a = ~I2
�
2 ~H + 1�

~J

b
+
�

3
b2
�
: (B.4)

Of course, ~I and ~J have the same physical meaning of I and J in (2.13c).

In the fb; pag representation the solutions of the WDW equation, eigenfunc-
tions of ~N , are:

	�(b; pa) = c(�)
�pa
b

�i�
exp

�
i
b2

pa

�
1 +

�

3
b2
��

: (B.5)

The eigenfunctions of the mass operator ~J are instead:

	j(b; pa) = c(j)

s
b

pa
exp

�
i
b

pa

�
b

�
1 +

�

3
b2
�
� j

��
: (B.6)

In the f ~J; ~I; ~Y � Y; ~PY � ~Hg representation (B.5) reads:

	�(~x; ~y) = c(�) ~x�i� exp

�
i
~y

2

�
1 +

�

12

~y2

~x2

��
: (B.7)

21



Fixing the gauge �(~y) = ~y� 1 = 0, and using the measure (3.2) (where of course

x! ~x, y ! ~y), the orthonormal gauge �xed wave functions are then:

 � (~x) =
1p
2�

~x�i� exp

�
i
�

24~x2

�
: (B.8)

To conclude this Appendix, let us �nd the eigenfunctions of ~N and ~J in the fa; bg
representation, using the Fourier transform (4.10). For the eigenfunctions of ~N ,

from (B.5) one obtains:

	�(a; b) = c(�)

� jaj
1 + �b2=3

��i�=2
Bi�

�
2b
p
jaj(1 + �b2=3)

�
; (B.9)

where Bi� = Ki� for a < 0 and Bi� = Ci� for a > 0. Analogously, from (B.6) the

eigenfunctions of ~J are

	j(a; b) =
K(j)pjb(1 + �b2=3)� jj exp

h
�2i

p
ab[b(1 + �b2=3) � j]

i
(B.10a)

in the classically allowed region, and

	j(a; b) =
K(j)pjb(1 + �b2=3) � jj exp

h
�2
p
ab[j � b(1 + �b2=3)])

i
(B.10b)

in the classically forbidden region. It is straightforward to verify that Eqs.
(B.9,10) satisfy the WDW equation and are respectively eigenfunctions of ~N
and ~J in the fa; bg representation.
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