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Summary. - Recent work in the literature has shown that general relativity can be formu-

lated in terms of a jet bundle which, in local coordinates, has �ve entries: local coordinates

on Lorentzian space-time, tetrads, connection one-forms, multivelocities corresponding to

the tetrads and multivelocities corresponding to the connection one-forms. The derivatives

of the Lagrangian with respect to the latter class of multivelocities give rise to a set of

multimomenta which naturally occur in the constraint equations. Interestingly, all the

constraint equations of general relativity are linear in terms of this class of multimomenta.

This construction has been then extended to complex general relativity, where Lorentzian

space-time is replaced by a four-complex-dimensional complex-Riemannian manifold. One

then �nds a holomorphic theory where the familiar constraint equations are replaced by

a set of equations linear in the holomorphic multimomenta, providing such multimomenta

vanish on a family of two-complex-dimensional surfaces. In quantum gravity, the prob-

lem arises to quantize a real or a holomorphic theory on the extended space where the

multimomenta can be de�ned.
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Recent work by the authors [1] has shown that a constraint analysis of general rel-

ativity can be performed starting from a one-jet bundle which, in local coordinates, is

represented by
�
xa; ea
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; ! b̂ĉ

a ; V a
bĉ;W

ĉd̂
ab

�
. With our notation, xa are local coordinates on

space-time, ea
b̂
are the tetrad vectors, ! b̂ĉ

a the connection one-forms, V a
bĉ the multiveloc-

ities corresponding to ea
b̂
and W ĉd̂

ab the multivelocities corresponding to ! b̂ĉ
a . In analogy

with classical mechanics, where the momenta are the derivatives of the Lagrangian with

respect to the velocities, one can here de�ne the multimomenta (cf. ref. [1])

e� bĉ
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In general relativity, the former vanish, while the latter take the form
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where e is the determinant of the tetrad. Note that the analogy with classical mechanics

is more strict, if one thinks that in both cases one is working with a �nite number of

degrees of freedom [2]. However, since in �eld theory the base space is the whole space-

time manifold, and jet bundles have as base space a �bre bundle over space-time, one has

to introduce the multimomenta instead of the momenta. This leads to a fully covariant

formalism [3].

The main result of ref. [1] was that, on any spacelike hypersurface �, the constraint

equations are all linear in the multimomenta (3), and take the form (see ref. [1] for the

notation) Z
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providing the multimomenta (3) vanish on the boundary @� of �. The alternative possibil-

ity is to set to zero at the boundary the gauge parameters �ĉd̂, or the connection one-forms

! b̂ĉ
a , jointly with the vector �eld ua describing di�eomorphisms on space-time [1].

In complex general relativity, the �ve entries of the corresponding jet bundle (see

above) are all of holomorphic nature [4], and it is incorrect to talk about a Cauchy problem,

since the concepts of spacelike hypersurface and time evolution are meaningless. The basic

postulate of our multisymplectic approach is instead that, on evaluating the holomorphic

multimomentummap [4] on an arbitrary three-complex-dimensional surface �c, and setting

the resulting geometric object to zero, one gets all the basic equations of the theory, which

correspond to the constraint equations of the Lorentzian theory. They are the holomorphic

counterpart of these constraints, but cannot quite be called constraints themselves. The

explicit calculation [4] shows indeed that, providing the holomorphic multimomenta vanish

on the two-complex-dimensional boundary @�c of �c, the holomorphic equations still take

the forms (4) and (5), where � is replaced by �c, and all geometric objects have now a

holomorphic nature [4].

The implications for twistor theory are discussed in ref. [4]. We are instead interested

in the relevance of the multisymplectic scheme for quantum gravity. The basic problems

and properties can be described as follows.

(i) How to de�ne suitable brackets for a space-time covariant analysis.

(ii) How to build the counterpart of Dirac's map and Dirac's quantization scheme.

(iii) What are the arguments of the state vectors, and how to de�ne a Feynman path

integral with our Lagrangian [1].

(iv) Our holomorphic framework yields a theory without time, and the Lorentzian theory

cannot be recovered by imposing suitable reality conditions. In our complex base space the

complex conjugation of spinors is not invariant under holomorphic coordinate transforma-

tions [5], and hence cannot be de�ned. The unprimed and primed spin-spaces become then

independent of each other, not related by any conjugation [5]. By contrast, in the Ashtekar
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programme [6], one studies complex tetrads on a four-real-dimensional Lorentzian mani-

fold. This hybrid scheme makes it possible, in principle, to recover real general relativity.

However, it does not make full use of the holomorphic formalism (the base space remaining

real Lorentzian), and it can be quite hard to �nd a suitable set of reality conditions.

(v) If a complex Ricci-at space-time, not necessarily anti-self-dual, could be reconstructed

out of a twistor space consisting of charges for massless spin-3/2 �elds as suggested by

Penrose (see chapter 5 of ref. [5] and references therein), one might try to relate the

quantization of the classical multisymplectic formalism to the quantization of the twistor

scheme.

These exciting problems are being investigated for the �rst time within the multimo-

menta formulation. The elegance of the mathematical formalism seems to suggest that

one has to learn how to formulate physical laws and quantization schemes on the extended

spaces where multimomenta can be de�ned, instead of the original spaces, where the con-

straint equations are quadratic in the momenta [6]. The results obtained in refs. [1,4],

and the quantization programme discussed in this note, seem to point out that yet a new

formalism is available for canonical gravity and the non-perturbative quantization of the

gravitational �eld. Whether or not this can improve the current theories of classical and

quantum gravity, will depend on a deeper understanding of the mathematical structures

underlying Lagrangian �eld theory and spinor geometry.
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