
he
p-

la
t/9

50
80

29

29
 A

ug
 1

99
5

1

Xtoys: cellular automata on xwindows

Michael Creutza �

aPhysics Department, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000, USA

creutz@wind.phy.bnl.gov

Xtoys is a collection of xwindow programs for demonstrating simulations of various statistical models. Included

are xising, for the two dimensional Ising model, xpotts, for the q-state Potts model, xautomalab, for a fairly general

class of totalistic cellular automata, xsand, for the Bak-Tang-Wiesen�eld model of self organized criticality, and

x�res, a simple forest �re simulation. The programs should compile on any machine supporting xwindows.

1. INTRODUCTION

The URL \http://penguin.phy.bnl.gov/www/

xtoys/xtoys.html"on the WorldWideWeb points

to a set of cellular automata simulators for Xwin-

dows. Included are: xising, an Ising model sim-

ulator, xpotts, for the Potts model, xautomalab,

for cellular automata, xsand, an sandpile model,

and x�res, a simple forest �re automaton.

To run these on your workstation, get the �le

\xtoys.tar.Z," do \uncompress xtoys.tar.Z", then

\tar -xvf xtoys.tar" and �nally \make". The pro-

grams are freely distributable.

These should all compile under generic X; if

something does not work on your machine sup-

porting X, let me know so I can �x it. If you

encounter di�culties compiling, possibly the X11

include �les are not being found. Then you need

to compile with a -I option to where they are and

possibly change the -lX11 to help the linker. As

with any Xwindow program, you need to have

\xhost" and \DISPLAY" set up properly.

The remaining sections summarize some exper-

iments with these programs. You maywish to run

them concurrently with reading the remainder of

this document. The xautomalab display is shown

in Fig. (1).

�This manuscript has been authored under contract num-

ber DE-AC02-76CH00016 with the U.S. Department of

Energy. Accordingly, the U.S. Government retains a non-

exclusive, royalty-free license to publish or reproduce the

published form of this contribution, or allow others to

do so, for U.S. Government purposes. Report no. BNL-

62123.

Figure 1. The user interface for xautomalab.

2. XISING

Xising illustrates a Monte Carlo simulation of

the two dimensional Ising model. This exhibits a

second order phase transition from a disordered

state at high temperature to an ordered state

when cool. The Xwindow display shows the sys-

tem in the image labeled \spins." This appears

above another bit map labeled \changes," repre-

senting the spins being changed under the current

algorithm. A thermometer indicates the temper-

ature. The known critical temperature is marked

on the thermometer. Resizing the window adjusts

the lattice dimensions correspondingly.

The program starts with the \local" micro-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25183788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

canonical algorithmof Ref. [1]. A set of \demons"

circulates around the lattice trying to ip spins.

Each carries a two bit sack of energy ranging from

0 to 16 units in steps of 4. Any energy change

associated with a spin ip is compensated by a

change in this sack. If the demon's sack cannot

accommodate the change, the ip is rejected. The

behavior under this algorithm is quite close to

that of a conventional Metropolis et al. simula-

tion. The program attains its speed by updating

spins one word at a time using multi-spin coding

and bit manipulation.

The alternative algorithm constructs a large

\cluster" of spins and ips them in unison. This is

based on the approach of [2], as adapted to a sin-

gle cluster by [3]. The particular implementation

here is the micro-canonical variation of Ref. [4].

After starting the program, press the heat but-

ton and observe how the domains get small and

the acceptance, as shown in the \changes" dis-

play, gets large. Then press the cool button until

the temperature, as displayed in the thermome-

ter, is a couple of tic marks below the critical

value. Watch the domains grow as the system

magnetizes. Note how the acceptance is largest

at the domain boundaries.

At low temperatures a single domain should

dominate the system. If, however, bands of dif-

ferent phases wrap around the lattice in either

a horizontal or vertical direction, then the sys-

tem can have di�culty deciding which phase will

dominate and can remain meta-stable for a long

time. Switching the boundary conditions to anti-

periodic forces the system to have at least one

domain wall, no matter how cold.

Returning to near the critical temperature,

switch to the cluster algorithm. Note how quickly

con�gurations become independent. Heat the

system and observe how the typical cluster size

becomes quite small. Cooling the system below

the critical temperature gives single clusters cov-

ering most of the system, which then ashes be-

tween dominantly black or white.

To illustrate the power of the cluster algorithm,

use the local algorithm to heat the system to a

high temperature and then rapidly quench it to

somewhat below the critical value. Before the lo-

cal approach has had time to have the smaller

domains dissolve in the dominant one, change to

the cluster approach. Note how quickly the clus-

ter sweeps anneal out the included domains.

3. XPOTTS

This program illustrates Monte Carlo simula-

tion of the Potts model with q states allowed per

site, where q can run from 2 to 255. It is sim-

ilar to xising except it does not use multi-spin

coding. It does add the ability to adjust an ap-

plied �eld using a sack of magnetization carried

by the demon. For q larger than 4, the model

has a �rst order phase transition. For large q this

is easily observed via a phase separation in the

simulations. For more information and suggested

experiments, see the text �le accompanying the

source.

4. XAUTOMALAB

Play God over your own universe. With xau-

tomalab you control the micro-physics of a dis-

crete world of cellular automata. This two-

dimensional land is an array of colored cells on

the screen. Each cell can be alive or empty, with

evolution occurring in discrete time steps. Empty

cells are grey, newborn ones are red, older liv-

ing ones are blue, and cells that have just died

are green. When the tracer is turned on, old life

leaves a legacy by shading the background color.

In one time step, the fate of each cell depends

on the number of living neighbors. Using Boolean

gadgets, you control when a new live cell will be

born on an empty site and when a living one will

survive. Another set of buttons determines which

neighbors, up to the eight nearest, are included.

When the system is paused, a click outside the

play �eld or any speci�c gadget will update the

system a single step. Finally, you can toggle indi-

vidual cells on and o� by pressing a mouse button

and sketching over your world.

The save button writes \xautomalab.gif," a

standard gif �le that you can print or manipulate

with any graphics program that likes gif �les. The

restore gadget will reload a previously stored con-

�guration. The rule used to create a stored con-

�guration is not itself stored or restored. (Any

3

valid GIF87A �le can be loaded, but the color

information is not used.)

Since sketching when the cells are small is

rather imprecise, the save/restore buttons are

useful for creating special initial con�gurations.

Using the big block size, sketch your fancy space-

ship con�guration while the system is paused.

Save it, and then switch to a smaller block size.

Finally reload the picture at this new resolution.

With an eight cell neighborhood there are 18

birth/survivor buttons. This gives 218 = 262; 144

possible rules. Other neighborhoods give many

more, all selectable with the mouse. Indeed, it is

unlikely that you will be able to try them all.

In addition, the number of possible universes

is further doubled using the \xor past" gadget.

When this is activated, the new state is �nally

XOR'ed with the history one time step back.

Thus if a cell was alive in the past, the new

state is the opposite of what the birth and sur-

vivor gadgets want. The purpose in this is to

produce reversible rules. If the history and cur-

rent states are interchanged, the system will go

backwards through the sequence of con�gurations

from which it came. An analogy is reversing all

the momenta of a bunch of atoms. This inter-

change is accomplished by the \reverse" gadget,

which interchanges young and moribund cells. If

the xor past button is not selected, the reverse

gadget does not appear.

If this seems confusing, try this: With the xor

past gadget set, clear the screen, draw some small

picture, select a random rule from the birth and

survivor gadgets, and let the system evolve un-

til the screen becomes a mess. Then hit the re-

verse button and watch the initial picture reap-

pear. Try repeating this experiment, but alter

a single pixel with the mouse at the time of the

reversal.

A particularly well known rule is Conway's clas-

sic cellular automaton model \life." Here a new

cell is born for exactly three neighbors, while a

living cell dies with less than 2 (lonely) or more

than 4 (overcrowding) neighbors.

Another well-known rule is Fredkin's modulo

two model which uses the 4 cell neighborhood.

Here a state ips if it has an odd number of active

neighbors and is unchanged otherwise. Start with

some small picture and observe how the initial

state is replicated.

If you want to try a rule running from a random

start, run for a while with some chaotic rule (i.e.

most rules with births on one neighbor) and then

switch to your rule of choice.

Xautomalab is based on my earlier Amiga pro-

gram Automalab, which appeared on the May

1991 issue of Jumpdisk. That version used direct

access the Amiga graphics chips for speed. Com-

paring this X version to the previous illustrates

the awesome power of the Amiga Blitter.

5. XSAND

This simulates the sandpile automaton of Bak,

Tang, and Wiesenfeld [5]. The model illustrates

the concept of self organized criticality. Versions

of this program generated the pictures in several

popular books [6].

The updating rule is extremely simple. Each

cell of a two dimensional lattice contains an inte-

ger amount of sand between 0 to 7, inclusive. If

this value exceeds 3, that cell is regarded as "un-

stable" and for the next time step it takes four

of its grains of sand and places one on each of

its neighbors. The updating is simultaneous for

all cells. The total amount of sand is conserved

except at the boundary.

The basic idea of self organized criticality is

that after lots of random addition of sand fol-

lowed by relaxation, the system will automati-

cally enter a critical state where the size of an

avalanche created by additional sand addition is

unpredictable without actually running the pro-

cess. The sizes of the ensuing avalanches statisti-

cally have a power law distribution without any

characteristic scale.

The trace buttons allow one to follow the

progress of an avalanche. When the tracer is ac-

tive those sites which \tumble" are agged and

colored \cornower blue" on attaining stability.

The \double" button doubles all heights mod-

ulo 8. This is a convenient way to quickly add

lots of sand. The \auto-d" button causes the sys-

tem to automatically double in height whenever

all sites become stable.

The color bar shows the colors representing the

4

various heights. These squares are also gadgets,

and clicking on them sets the current pen color.

If any mouse button is pressed while over the lat-

tice, you can sketch with this color. To start an

avalanche, just select a color larger than 3. The

\�ll" button sets the entire system to the current

pen color.

The save button saves the current con�gu-

ration as \xsand.gif." The restore gadget will

reload a previously stored con�guration. The \+

saved" button adds the saved con�guration to

that presently displayed, modulo 8 on each cell.

With the mouse, scribble some sand randomly

on the system. Then repeatedly hit the \dou-

ble" button to �ll the lattice with a random mess.

Wait a few minutes until the system stabilizes and

activity ceases. Now you should be in the criti-

cal ensemble. Make the active color 4, and click

the mouse over the lattice. This will start an

avalanche, which unpredictably might be large or

small. After a few avalanches, turn on the trace

button and make some more. Now you can follow

where the avalanche has passed.

Note that the avalanche regions always wind

up simply connected, with no untumbled islands

left over. This is a theorem, and is true for any

state in the critical ensemble, but not an arbitrary

state. Select height 0 or 1 for the pen, scribble

over a small region, and then go back to making

some more avalanches. Now it should be easy to

make islands, because by removing some sand you

have most likely left the critical ensemble.

Select height 0 and clear the system. Then

make the boundaries sandy until the system �lls

up and nothing changes any more. Switch back

to open boundaries to let the excess sand run o�.

Try doubling the �nal state and letting it relax

back. Note that it returns exactly to itself. This

state is the unique one in the critical ensemble

with this property. Indeed, group theoretically

this state represents the identity [7].

Clear the system. Run one or two steps with

sandy boundaries, and then go back to open

boundaries. Turn the autodouble button on, sit

back, and enjoy the show. This also yields the

identity state.

Fill the system with height 2. Now draw a pic-

ture with height 3. Put the boundaries sandy for

a few steps, and then open them up again. Note

how the original picture is eventually restored.

This is a property of any state in the critical en-

semble. Indeed, this is a way to test that a state

is critical [8]. Try drawing some more with height

0 or 1. Depending on the picture, the above ex-

periment may or may not mess up your picture.

Save the identity from the earlier experiments.

Draw a picture using only heights 2 and 3, as

in the previous experiment. Use the \+ saved"

button to add in the identity. After a while your

picture should magically reappear.

Fill the system with height 2 and go to periodic

boundaries. Sketch a while with height 4. With

enough sketching, the avalanches will no longer

stop. The resulting dynamics can be hypnotic.

6. XFIRES

This program simulates forest �res. On each

site of a lattice is either nothing, a tree, or a �re.

In one time step a �re spreads to adjacent trees

and leaves an empty space. Trees are born in

a random matter with a probability of approxi-

mately 1/32 per time step. If no �res are active,

one is started at a random location. Fires can also

be started with the mouse button. The Amiga

version of this program was published in the Dec.

1993 issue of Jumpdisk.

REFERENCES

1. M. Creutz, Phys. Rev. Letters 50 (1983) 1411.

2. R.H. Swendsen and J.-S. Wang, Phys. Rev.

Letters 58 (1987) 86.

3. U. Wolfe, Phys. Rev. Letters 62 (1989) 361.

4. M. Creutz, Phys. Rev. Letters 69 (1992) 1002.

5. P. Bak, C. Tang and K. Wiesenfeld, Phys.

Rev. Lett. 59 (1987) 381.

6. P. Bak and M. Creutz, \Fractals and self-

organized criticality," Fractals in science,

Armin Bunde and ShlomoHavlin eds., pp. 26-

47 (Springer-Verlag, 1994); J. Briggs, Fractals

{ the patterns of Chaos, p. 46, (Simon and

Schuster, NY, 1992).

7. M. Creutz, Computers in Physics 5 (1991)

198.

8. D. Dhar, Phys. Rev. Lett. 64 (1990) 1613.

