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1. Introduction

Both the Donaldson and the Seiberg-Witten invariants of smooth four-manifolds are

closely related to the N = 2 supersymmetric Yang-Mills (SYM) theory [1].

The cohomological description of the Donaldson theory [2] (for review, see [3]) is rep-

resented by the twisted version of N = 2 SYM theory [4], called the topological Yang-Mills

(TYM) theory (for reviews and references, see [5][6]). The semi-classical analysis of the

TYM theory, based on the ultraviolet weak coupling limit of the underlying physical the-

ory, was used to reformulate the Donaldson theory in a concrete way. Those cohomological

descriptions, however, turned out to be surprisingly difficult to obtain explicit results .

On the other hand, the physical interpretation of Witten opened the door to an entirely

different formulation of the Donaldson theory. This is due to the asymptotic freedom of

the underlying physical theory. In the infrared or the large scaling limit, the physical

theory is strongly coupled and the semi-classical description is not valid. Since the TYM

theory is metric independent, the Donaldson theory can be reformulated in terms of the

new degrees of freedom that may appear in the strong coupling vacua. In a seminal paper

[7], Seiberg and Witten determined the exact infrared behavior of the N = 2 SYM theory.

The celebrated Seiberg-Witten invariant originates from the resulting low-energy effective

theory [1], which is a simple and powerful new tool for the study of differential-topology

of four-manifold [8][9].

For an oriented simply connected compact Riemann four-manifold X of simple type

[10] with b+2 ≥ 3, Witten conjectured a precise formula relating the SU(2) Donaldson

invariants with the Seiberg-Witten invariants[1]

〈exp (v̂ + τ û)〉 =21+ 1
4 (7χ+11σ)

(
exp

(v · v
2

+ 2τ
)∑

x

nxe
v·x

+ i(χ+σ)/4 exp
(
−v · v

2
− 2τ

)∑

x

nxe
−iv·x

)
,

(1.1)

where x is the Seiberg-Witten basic class, nx is the algebraic sum of the number of the

solutions of the Seiberg-Witten equation and v ∈ H2(X ; Z). The above formula agrees

with the structure formula of Kronheimer-Mrowka for the simple type manifold as well as

with the results of the paper [11] where the Donaldson invariants on Kähler surface was

determined almost completely using the known vacuum structure of N = 1 SYM theory.

Some progress in a mathematical proof has been announced by Pidstrigach and Tyurin [12].

More recently, Witten explained the appearance of the spinc in the low energy effective

theory [13].
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In our previous paper [14], we showed that the N = 2 SYM theory coupled with

hypermultiplet (SQCD) can be twisted after picking a spinc structure c to define a global

supersymmetric theory called topological QCD (TQCD) on an arbitrary oriented Riemann

four-manifold X . TQCD is a generalization of the TYM theory. TQCD shares many of

the properties of the TYM theory as a cohomological field theory in which a suitable path

integral defines differential-topological invariants of smooth four-manifold. The topological

amplitudes of TQCD are the intersection pairings, analogous to the Donaldson invariants,

in the moduli space M(k, c) of the non-abelian version of the Seiberg-Witten monopoles.

We note that the twisting of the general N = 2 hypermultiplets including gravity

was previously studied by Anselmi and Fré using the σ-model interpretation [15]. On K3

surface, their theory is equivalent to TQCD with the choice of trivial spinc strucuture.

Based on the Mathai-Quillen formalism, Labastida and Mariño constructed a topological

theory on spin manifold [16] which is equivalent to TQCD with the choice of the trivial

spinc structure.

At first sight, TQCD looks like just a clone of the TYM theory after replacing the

moduli space M(k) of anti-self-dual (ASD) connections with the moduli space M(k, c).

The cohomological interpretation of the invariants is also based on the weak coupling

limit of the underlying physical theory. The theory also shares the notorious difficulty

for explicit computations with the TYM theory. Furthermore, those invariants defined

by TQCD appear not to contain any information beyond the Donaldson and the Seiberg-

Witten invariants.

However, TQCD has an interesting property. By introducing the N = 2 supersymmet-

ric bare mass term to the hypermultiplet, we will show that the resulting TQCD (massive

TQCD) interpolates the Donaldson and the Seiberg-Witten theories. Our picture rather

contrasts with the approach of Seiberg and Witten in that the genuine quantum scaling

behavior of the underlying N = 2 SYM theory interpolates the above two limits [7]. On

the other hand, we consider a weak coupling limit of a different asymptotically free theory

after turning on the bare mass for the additional matter-multiplet. Our computation does

not use any known structures of the vacua or the electro-magnetic duality of the underlying

physical N = 2 supersymmetric theories.

In this paper, we study the SU(2) theory with the hypermultiplet carrying the fun-

damental representation. We determine the topological correlation functions of massive

TQCD on a simple type manifold. As the corollaries, we derive the topological correlation

functions of the theory without the bare mass as well as those of the theory without hyper-

multiplet (TYM theory). The last result is a simple and perfectly concrete path integral

proof of the formula (1.1).
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Introducing the bare mass term to the hypermultiplet, we show that the path integral

is localized to two different branches; in branch (i) the dominant contribution comes from

the moduli space of ASD connections, while in branch (ii) the dominant contribution comes

from the moduli space of the (abelian) Seiberg-Witten monopoles. To put it differently,

branch (i) is governed by the TYM theory and branch (ii) is governed by a topological QED

coupled with massless hypermultiplet. We show the above property by using Witten’s

fixed point theorem for the global supersymmetry [17] as well as by the semi-classical

analysis combined with an additional stationary phase method after adding a BRST trivial

deformation related to the bare mass term. It turns out that a key simplication occurs in

the large scale limit of the metric. Our computation is rather elementary using the simple

Gaussian integrals. In the subsequent paper, we will give the the explicit computations of

topological invariants defined by SU(Nc) TYM and TQCD with Nf = 1 hypermultiplets

carrying the fundamental representation and clarify their relations with the underlying

physical theories [18].

This paper is organized as follows. In section 2, we briefly review TQCD without the

bare mass [14]. The purpose of this section is to establish our notations and to make this

paper reasonably self-contained. We add some important remarks as well. In section 3,

we study the twisted theory after introducing the bare mass term to the hypermultiplet.

Adopting various arguments we show that the path integral of the resulting theory is

localized to two types of the branches. Then, we show that the key step is to take the

large scale limit of the Riemann metric. In section 4, the path integrals of TQCD having

the bare mass is computed in the large scale limit. As the corollaries, we prove the formula

(1.1) and obtain the precise formula for the invariants defined by TQCD with an arbitrary

spinc structure. In section 5, we briefly discuss some relations with the physical theory.

The appendix is devoted to a demonstration of the path integral method which is a

slightly simpler version of the technique we used in the actual computations.

2. The Topological QCD

In this section, we briefly review the N = 2 global (rigid) supersymmetric Yang-Mills

theory coupled with hypermultiplet (TQCD) on the general oriented compact Riemann

4-manifolds [14].
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2.1. Twisting

In the flat 4-manifold R
4, the N = 2 rigid supersymmetric theories are well-defined.

The theory contains an N = 2 vector multiplet in the adjoint representation. In addition,

one can couple N = 2 matter multiplets known as the hypermultiplets carrying a represen-

tation R and its conjugate representation R̃ of the gauge group. Those multiplets contain

various spinor fields which are well defined.

Now we consider a compact oriented simply connected Riemann four manifold X .

We want to define the supersymmetric theory on X without destroying the global (rigid)

supersymmetry or, equivalently, without introducing the dynamical gravity. Then there

are two obstructions;

(a) The non-existence of the spinor fields on the manifold X with the non-vanishing

second Stiefel-Whitney w2(X) 6= 0 class.

(b) The non-existence of the nowhere vanishing constant supersymmetry charge.

The obstruction (b) is generic since the supercharges transform as the spinor and the

rigid supersymmetry requires the existence of nowhere vanishing constant spinor. Thus,

the rigid supersymmetric theory can be defined only on the parallelizable (topologically

trivial) manifolds. On a topologically non-trivial manifold, the only quantity that can be

defined as a nowhere vanishing constant is the one which transforms as the scalar. The

twisting procedure introduced by Witten is the recipe to make the supercharge transform

as the scalar [4][11].

For the N = 2 vector multiplet, the twisting resolves obstructions (a) and (b) simul-

taneously. After twisting, there are no fields which transform as the spinor. And, the

supercharges have components which transform as the vector, the self-dual tensor and the

scalar. If we take the component which transforms as the scalar and use it as the new

global supercharge, the obstruction (b) is removed as well. One important remark is that

the resulting action functional is independent of the spin structure on X and the Riemann

curvature of the manifold.

Twisting of the hypermultiplet is slightly more subtle. Since the twisted supercharge

transforms as a scalar, the obstruction (b) does not exist. After twisting, every compo-

nent field of hypermultiplet transforms as spinor. If the manifold has spin structure, i.e.,

w2(X) = 0, the resulting theory will be well-defined. Unlike the theory without hyper-

multiplet, the twisted theory depends on the spin structure.1 If the manifold X does not

1 A simply connected spin manifold has unique spin structure.
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admit a spin structure the twisted theory may not exist. A practical way of resolving the

obstruction (a) is to regard the twisted hypermultiplet as spinc spinor which exists in any

oriented Riemann 4-manifold. Roughly speaking, the spinc spinor transforms as the spinor

with certain background U(1) charge whose connection couples with the Dirac operator.

The additional U(1) connection compensates the obstruction to define the spinor. A spinc

structure c ∈ H2(X ; Z) is an integral lift of the Stifel-Whitney class w2(X) ∈ H2(X ; Z/2),

i.e. c ≡ w2(X) mod 2 [19]. The price we should pay is that the twisted theory depends on

a particular spinc structure we choose. The space H2(X ; R) of harmonic two-forms on X

is an b2-dimensional flat space with signature (b+2 −b−2 ). The space H2(X ; Z) is the integral

lattice in H2(X ; R). Then, the set H2
s (X ; Z) of all spinc structure is an affine sublattice

of H2(X ; Z). Obviously, there are b2 independent generators s of the transitive action on

H2
s (X ; Z). Thus we have a family of the TQCD parametrized by the space H2

s (X ; Z) of

the spinc structures on X . It would be worthy to remark that even in a spin manifold one

can consider the theory defined by an arbitrary spinc structure. In our viewpoint, the only

difference between the spin and non-spin manifold is that the spin manifold has the spinc

bundle with the trivial determinant line bundle (trivial background U(1) connections).

Let P be a principal G-bundle over a simply connected compact oriented Riemann

manifold X . Pick a representation R of G such that c2(adj) − T (R) ≥ 0 and consider the

associated vector bundle E whose fiber is the vector space V , R : G→ V . We pick a spinc

structure c on X and consider the associated spinc bundle W±
c

.2 Let A be the space of

all connections on P and Γ(W+
c ⊗E) the space of the sections of the spinc bundle twisted

by the vector bundle E. After twisting, the complex boson (squark) in the hypermultiplet

become a section of W+
c

⊗ E;

q ∈ Γ(W+
c

⊗ E), q† ∈ Γ(W
+

c
⊗ Ẽ), (2.1)

where Ẽ denotes the vector bundle conjugate to E. The spinc Dirac operator

σµDµ : Γ(W+
c

⊗ E) → Γ(W−
c

⊗E), (2.2)

is the Dirac operator for the spinc bundle twisted by E. We will sometimes denote σµDµ

by D/ or by D/Ec . One effect of twisting the hypermultiplet is that the Dirac operator is

2 We will occasionally confuse with the determinant line bundle det(W±
c ) = Lc and its first

Chern class c1(det(W±
c )). Both will be denoted by c. To avoid possible confusion we will always

denote the intersection number explicitly using ′·′. For example, c · c = Lc ·Lc = c1(Lc) · c1(Lc) =∫
X

c1(Lc) ∧ c1(Lc). The expression c
2 can mean L2

c or 2c. Note also that c + 2ζ ≡ Lc ⊗ L2
ζ .
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coupled with the background U(1) connection of the determinant line bundle det(W+
c ).

This can be summarized by the Weitzenböck formula;

(D/ )2 = −gµνDµDν − F+
A − p+ +

1

4
R, (2.3)

where F+
A is the self-dual part of the gauge field strength, p+ denotes the self-dual part of

the curvature 2-form on det(W+
c

) and R denotes the scalar curvature of the metric.

Throughout this paper, we restrict our attention to the case that the gauge group

is SU(2) and the theory is coupled with one hypermultiplet carrying the fundamental

representation (the 2-dimensional representation).

2.2. The Action Functional

The topological action of the twisted N = 2 super-Yang-Mills theory coupled with the

hypermultiplet is given by

S = −i{Q, VT }, (2.4)

where

VT =
1

h2

∫
d4x

√
g

[
χµνa

(
Ha
µν − i(F+a

µν + q†σµνT
aq)
)
− 1

2
gµν(Dµφ̄)aλ

a
ν +

1

8
[φ, φ̄]aη

a

+
(
Xα
q̃ ψqα + ψαq̃ Xqα

)
+ i
(
q†α̇φ̄aT

aψ̄α̇q̃ + ψ̄qα̇φ̄aT
aqα̇
)]
.

(2.5)

The supersymmetry transformation laws for the fields in the adjoint representation are

δ̂Aµ = i̺λµ,

δ̂λµ = −̺Dµφ,
δ̂φ = 0,

δ̂χµν = ̺Hµν ,

δ̂φ̄ = i̺η,

δ̂Hµν = i̺[φ, χµν ],

δ̂η = ̺[φ, φ̄],
(2.6)

where δ̂(field) = −i̺{Q, field}. The fields carrying the representation R and R̃ transform

as
δ̂qα̇ = − ̺ψ̄α̇q̃ ,

δ̂q†α̇ = − ̺ψ̄qα̇,

δ̂ψ̄α̇q̃ = − i̺φaTaq
α̇,

δ̂ψ̄qα̇ =i̺q†α̇φ
aTa,

(2.7)

and
δ̂ψqα = −i̺σµαα̇Dµqα̇ + ̺Xqα,

δ̂Xqα = i̺φaTaψqα − i̺σµαα̇Dµψ̄
α̇
q̃ + ̺σµαα̇λ

a
µTaq

α̇,

δ̂ψαq̃ = i̺Dµq
†
α̇σ̄

µα̇α − ̺Xα
q̃ ,

δ̂Xα
q̃ = i̺ψαq̃ φ

aTa − i̺Dµψ̄qα̇σ̄
µα̇α + ̺q†α̇σ̄

µα̇αλaµTa.

(2.8)
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The above transformation laws satisfy

(δ̺̂δ̺̂′ − δ̺̂′ δ̺̂)(field) = Tε(field), (2.9)

where Tε(field) denotes the variation of a field under a gauge transformation generated by

an infinitesimal parameter ε = −2i̺̺′ · φ. We introduce an additive quantum U -number

called the ghost number. The global supercharge Q carries U = 1 and VT is designed

to have U = −1 such that the action has the zero-ghost number. So the theory has the

U -number symmetry at the classical level. The U -number for the various fields are given

by

Aµ λµ φ φ̄ η χµν Hµν qα̇ q†α ψ̄α̇q̃ ψ̄qα̇ ψqα ψαq̃ Xqα Xα
q̃

0 1 2 −2 −1 −1 0 0 0 1 1 −1 −1 0 0
. (2.10)

The topological action is given by3

S =
1

h2

∫
d4x

√
g

[(
Hµν
a − i

2
(F+µν
a + q†σ̄µνTaq)

)(
Ha
µν −

i

2
(F+a
µν + q†σ̄µνT

aq)

)

+
1

4

(
F+µν
a + q†σ̄µνTaq

) (
F+a
µν + q†σ̄µνT

aq
)
− 2Xα

q̃ Xqα

+ iXα
q̃ σ

µ
αα̇Dµq

α̇ + iDµq
†
α̇σ̄

µα̇αXqα − 1

2
gµν(Dµφ̄)a(Dνφ)a +

1

8
[φ, φ̄]a[φ, φ̄]a

− iχµνa [φ, χµν ]
a + χµνa (dAλ)+aµν +

i

2
gµν(Dµη)aλ

a
ν −

i

2
gµν [λµ, φ̄]aλ

a
ν +

i

8
[φ, η]aη

a

− iχµνa ψ̄qσ̄µνT
aq + iχµνa q†σ̄µνT

aψ̄q̃ − iDµψ̄qα̇σ̄
µα̇αψqα − iψαq̃ σ

µ
αα̇Dµψ̄

α̇
q̃

+ 2iψαq̃ φaT
aψqα − 2iψ̄qα̇φ̄aT

aψ̄α̇q̃ − q†α̇λµaT
aσ̄µα̇αψqα − ψαq̃ σ

µ
αα̇λµaT

aqα̇.

+ q†α̇ηaT
aψ̄α̇q̃ − ψ̄qα̇ηaT

aqα̇ − q†α̇T
aT b

(
φaφ̄b + φbφ̄a

)
qα̇
]
.

(2.11)

3 We replaced the complex scalar fields B and B̄ of the physical theory with i

2
√

2
φ and i

√
2φ̄.

This does not necessarily mean that φ and −φ̄ should be complex conjugate after twisting.
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After integrating out the auxiliary fields Hµν , X
α
q̃ and Xqα, we have

S =
1

h2

∫
d4x

√
g

[
1

4
F+µν
a F+a

µν − 1

2
p+
µνq

†σ̄µνq +
1

2
gµνDµq

†
α̇Dνq

α̇

+
1

4
(q†σ̄µνTaq)(q

†σ̄µνT
aq) +

1

8
R(q†α̇q

α̇) − 1

2
gµν(Dµφ̄)a(Dνφ)a +

1

8
[φ, φ̄]a[φ, φ̄]a

− iχµνa [φ, χµν ]
a + χµνa (dAλ)+aµν +

i

2
gµν(Dµη)aλ

a
ν −

i

2
gµν [λµ, φ̄]aλ

a
ν +

i

8
[φ, η]aη

a

− iχµνa ψ̄qσ̄µνT
aq + iχµνa q†σ̄µνT

aψ̄q̃ − iDµψ̄qα̇σ̄
µα̇αψqα − iψαq̃ σ

µ
αα̇Dµψ̄

α̇
q̃

+ 2iψαq̃ φaT
aψqα − 2iψ̄qα̇φ̄aT

aψ̄α̇q̃ + q†α̇λµaT
aσ̄µα̇αψqα + ψαq̃ σ

µ
αα̇λµaT

aqα̇.

+ q†α̇ηaT
aψ̄α̇q̃ − ψ̄qα̇ηaT

aqα̇ − q†α̇T
aT b

(
φaφ̄b + φbφ̄a

)
qα̇
]
.

(2.12)

The above action is Q invariant after changing the transformation law as

δ̂χaµν =
i

2
̺(F+a

µν + q†σ̄µνT
aq),

δ̂ψqα = − i

2
̺σµαα̇Dµq

α̇,

δ̂ψαq̃ =
i

2
̺Dµq

†
α̇σ̄

µα̇α.

(2.13)

By the fixed point theorem of Witten the path integral is localized to the locus of the

fixed point of the global supersymmetry, modulo gauge symmetry. The important fixed

points are δχµν = δψqα = 0;

F+a
µν + q†σ̄µνT

aq = 0, σµDµq = 0, (2.14)

which is the non-abelian version of the Seiberg-Witten monopoles. Note that the curvature

Fµν is the curvature of the bundle E (or P ), while q ∈ Γ(W+
c

⊗ E) is the section of

W+
c
⊗E. The Dirac operator σµDµ : Γ(W+

c
⊗E) → Γ(W−

c
⊗E) is the Dirac operator for

the spinc bundle twisted by E.4 Note also that the curvature F is a ad(P )-valued 2-form

4 In particular, if we consider the U(1) gauge theory, G = U(1) such that E is a line bundle,

the equation (2.14) is not identical to the Seiberg-Witten monopole equation. The only special

property for the U(1) theory is that if the first Chern class c1(E) is integral the tensor product

bundle W+
c ⊗ E becomes another spinc bundle W+

c′
defined by the new spinc structure c

′ =

c + 2c1(E). Thus the equation that can be obtained by twisting the N = 2 super-Maxwell theory

coupled with hypermultiplet is a perturbed Seiberg-Witten equation rather than the original

equation.

8



(or trace-free endomorphism End(E) = E ⊗ Ẽ valued 2-form). Since q ∈ Γ(W+
c ⊗E) and

q† ∈ Γ(W
+

c ⊗ Ẽ), the product q ⊗ q† lies in

W+ ⊗c E ⊗W
+

c
⊗ Ẽ ∼ Ω0(End(E))⊕ Ω2

+(End(E)),

where Ω0(End(E)) and Ω2
+(End(E)) denote the spaces of End(E)-valued zero-forms and

End(E)-valued self-dual-two-forms respectively. An equivalent description can be obtained

by examining the semi-classical limit h2 → 0, which is exact. The relevant bosonic part of

the action can be written as

1

h2

∫
d4x

√
g

(
1

4
|s|2 +

1

2
|k|2
)

=
1

h2

∫
d4x

√
g

(
1

4
F+µν
a F+a

µν − 1

2
p+
µνq

†σ̄µνq +
1

2
gµνDµq

†
α̇Dνq

α̇

+
1

4
(q†σ̄µνTaq)(q

†σ̄µνT
aq) +

1

8
R(q†α̇q

α̇)

)
,

(2.15)

where s = F+a
µν + q†σ̄µνT

aq and k = σµDµq. Thus, the path integral has the dominant

contributions from the solutions of (2.14).

We also have another fixed point equation δλµ = δη = 0;

Dµφ = 0, [φ, φ̄] = 0. (2.16)

A connection is reducible if there exists non-zero solution φ of Dµφ = 0.

The virtual (or formal) dimension of the moduli space M(c, k), the space of solutions

of (2.14) in A× Γ(W+
c

⊗ E) modulo the gauge symmetry, is

dimM(k, c) = index
(
d+
A ⊕ d∗A

)
+ 2index

(
D/E

c

)
= dimM(k) + 2index

(
D/E

c

)

= 8k − 3

2
(χ+ σ) − 2k +

1

2
(c · c − σ),

(2.17)

where M(k) denotes the moduli space of SU(2) ASD connection with the instanton number

k and ′·′ denotes the intersection pairing. We will use the following notations;

2d(c, k) = dim M(k, c), 2d(k) = dim M(k), d0(c, k) = d(c, k)− d(k) = index D/E
c
.

(2.18)

With the choice of b+2 = 1 + 2a for a positive integer a, both dimensions are even. We

would like to remind the reader that the net U -number violation △U in the path integral

measure due to the fermionic zero-modes equals the virtual dimension of the moduli space

M(k, c) [18]. The virtual dimension of M(c, k) becomes the real dimension if there are no

9



fermionic zero-modes except those of λ and (ψ̄q̃α̇, ψ̄
α̇
q̃ ) which span the tangent space over

M(c, k). However, such an ideal situation will hardly be the case.

The actions (2.11) and (2.12) are also invariant under the global scaling of the metric

if the scaling dimensions of the various fields are assigned as

Aµ λµ φ φ̄ η χµν Hµν qα̇ q†α ψ̄α̇q̃ ψ̄qα̇ ψqα ψαq̃ Xqα Xα
q̃

1 1 0 2 2 2 2 1 1 1 1 2 2 2 2
. (2.19)

If an operator O has the scaling dimension n, the integral
∫
d4x

√
gO scales as t4−n under

g → tg. The transformation laws (2.6)(2.7) and (2.8) also preserve the scaling dimensions.

The crucial property of any cohomological field theory is that the energy-momentum

tensor should be a Q-commutator,

δS =
1

2

∫

X

√
gδgµνTµν , Tµν = {Q, λµν}. (2.20)

This immediately follows from the relation (2.4) if the variation operator δ/δgµν commutes

with Q in off shell. The only subtlety comes from the fields which are subject to the self-

duality condition that the variation of the metric should be accompanied by the variations

of the fields to preserve the self-duality. Since the algebra (2.6) is closed in off shell it can be

guaranteed. Most of the important properties of the topological theory can be derived from

the property (2.20). In particular, the topological invariance of the suitable correlation

function is based on the property. The only obstruction is the possible metric dependency

of the path integral measure. For a more detailed discussion on those properties, we refer

the reader to [4].

2.3. The G-Equivariant Cohomology

In this subsection, we briefly describe the relation between the twisted supersymmetry

and the equivariant cohomology [20][6].

Consider the space A× Γ(W+
c

⊗ E). The group G = Map(X,G) of the gauge trans-

formation acts on A in the usual way and on Γ(W+
c ⊗ E) according to the representation

R and R̃ of G. Let Lie(G) be the Lie algebra of G. The G action on A × Γ(W+
c

⊗ E)

is generated by vector fields Va, where we pick an orthonormal basis Ta of Lie(G). Let

Fun(Lie(G)) be the algebra of polynomial functions, generated by φa with degree 2, on

Lie(G).
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Now, one can formally define the (infinite dimensional) G-equivariant de Rham coho-

mology. Let Ω∗(A × Γ(W+
c ⊗ E)) be the de Rham complex on A × Γ(W+

c ⊗ E). The

equivariant de Rham complex is defined by

Ω∗
G(A× Γ(W+

c ⊗ E) =
(
Ω∗(A× Γ(W+

c ⊗ E)) ⊗ Fun(Lie(G))
)G
. (2.21)

The associated differential operator δ can be formally represented as

δ = −
∫
d4x

√
gΨI(x)

δ

δAI(x)
+ i

∫
d4x

√
gV (φ(x))

δ

δΨI(x)
, (2.22)

where AI denote collectively the local coordinates on A× Γ(W+
c

⊗E) and ΨI denote the

basis of the cotangent space. We have

δ2 = −i
∫
d4x

√
gφa(x)La(x), (2.23)

where La is the Lie derivative with respect to Va. Thus, δ2 = 0 on the G-invariant subspace

Ω∗
G(A× Γ(W+

c ⊗E)) of Ω∗(A× Γ(W+
c ⊗E))⊗ Fun(Lie(G)). The G-equivariant de Rham

cohomology H∗
G(A× Γ(W+

c ⊗ E)) is defined as the pairs (Ω∗
G(A× Γ(W+

c ⊗ E)), δ).

The basic supersymmetry algebra

δ̂Aµ = + i̺λµ,

δ̂qα̇ = − ̺ψ̄α̇q̃ ,

δ̂q†α = − ̺ψ̄qα̇,

δ̂λµ = − ̺Dµφ,

δ̂ψ̄α̇q̃ = − i̺φaTaq
α̇,

δ̂ψ̄qα̇ = + i̺q†α̇φ
aTa,

δ̂φ = 0, (2.24)

suggests that the twisted supercharge of the theory without the mass term can be inter-

preted as the generator of the G-equivariant de Rham cohomology H∗
G(A× Γ(W+

c ⊗ E)).

The relation

(δ̺̂δ̺̂′ − δ̺̂′ δ̺̂)(field) = Tε(field), where ε = −2i̺̺′ · φ, (2.25)

corresponds to the property (2.23).

Similarly to the TYM theory, one can interpret the twisted supercharge Q of TQCD

as the G-equivariant cohomology operator. Then, the topological action can also be in-

terpreted as a certain Mathai-Quillen representative of a universal Thom class [21] based

on the non-abelian version of Seiberg-Witten equations. For such a construction of the

similar topological theory, we refer the reader to the paper [16].
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2.4. The Observable and the Correlation Function

In the simply connected Riemann manifold, the second cohomology class determines

the essential cohomological data. Picking a 2-dimensional homology class Σ ∈ H2(X ; Z)

which is Poincarè dual to v ∈ H2(X ; Z), one defines the associated topological observable

v̂ =
1

4π2

∫

Σ

Tr (iφF +
1

2
λ ∧ λ), (2.26)

which carries the U -number 2. This observable v̂ defines a 2-dimensional G-equivariant

cohomology class, i.e., v̂ ∈ H2
G(A × Γ(W+

c
⊗ E)). The Q-cohomology class of v̂ depends

only on the homology class of Σ. One also has the topological observable

û = − 1

8π2
Trφ2, (2.27)

carrying the U -number 4 and depending only on H0(X ; Z). The observable û defines a 4-

dimensional class H4
G . TQCD has no additional non-trivial topological observables beyond

those of the TYM theory. This may be an indication that the theory would have no new

differential-topological information.

Now we consider the topological correlation function

〈v̂rûs〉TQCD =
1

vol(G)

∫
DY e−S · v̂rûs. (2.28)

Due to the ghost number anomaly in the path integral measure the above topological

amplitude vanishes unless 2r + 4s is identical to the formal dimension 2d(c, k) of the

moduli space M(c, k). If we consider, presumably, the favorable condition that the formal

dimension of the moduli space is the actual dimension, the path integral reduces to an

integration of the wedge product of differential forms on the moduli space M(c, k). This can

be seen by both the Q-fixed point theorem and the semi-classical analysis. The differential

form is given by the restriction and the reduction v̂0 of v̂ to the moduli space M(c, k).

That is, v̂0 defines an element of the de Rham cohomology class on M(c, k).5 The standard

recipe similar to the TYM theory leads that v̂0 can be obtained by replacing λ by its zero-

modes, F by the Q-fixed point value and φ by < φ >.

5 Of course, the above cohomological definition can be mathematically meaningful after some

suitable compactification of the moduli space is understood. Here the above argument is just a

formal cohomological interpretation of the path integral. Whatever properties the moduli space

has, the path integral, as we shall see, gives a perfectly concrete formula for those invariants. See

[4].
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The integration over φ̄ in (2.12) gives a delta-function constraint

1

2
gµνDµDνφ

a +
i

2
gµν [λµ, λν ]

a + q†α̇(T aT b + T bT a)qα̇φb − 2iψ̄qα̇T
aψ̄α̇q̃ = 0. (2.29)

The η equation of motion of (2.12) gives

1

2
gµνDµλν + iq†α̇T

aψ̄α̇q̃ + iψ̄qȧT
aqα̇ = 0, (2.30)

which expresses the fact that the zero-modes of (λ, ψ̄α̇q̃ , iψ̄qȧ) are orthogonal to the gauge

variation. The φ̄ equation of motion (2.29) is just the supersymmetry transformation of

(2.30). We can write (2.29) as
(
DµDµδ

a
b + 2q†α̇(T aT b + T bT a)qα̇

)
φb = −i[λµ, λµ]a + 4iψ̄qα̇T

aψ̄α̇q̃ . (2.31)

On the other hand, the theory without coupling to the matter leads to

(DµDµ)φ = −i[λµ, λµ]. (2.32)

Furthermore, we can substitute the vacuum expectation value < φ > of φ by

< φa >= −i
∫

X

d4y
√
g Gab(x, y)

(
[λµ(y), λµ(y)]

b − 4ψ̄qα̇(y)T bψ̄α̇q̃ (y)
)
, (2.33)

where (
DµDµδab + 2q†α̇(TaTb + TbTa)q

α̇
)
Gab(x, y) = δabδ4(x− y), (2.34)

provided that we replace qα̇, q†α̇ by the non-abelian Seiberg-Witten monopole (2.14) and

λµ, ψ̄qα̇ and ψ̄α̇q̃ by their zero-modes which represent the tangent vectors of the moduli

space M(k, c). As the standard recipe of the TYM theory, we can replace φ with (2.33)

whenever it appears in the topological observables.6 This explains one of the mysteries of

TQCD that no new and non-trivial observables are introduced due to the hypermultiplet.

3. The Massive TQCD

In the previous sections we only considered the theory with massless hyper-multiplet

and its topological twisting. If we twist the N = 2 supersymmetric Yang-Mills theory

coupled with massive hypermultiplet, a remarkable thing happens. We will show that the

correlation function can be expressed by the sum of the contributions due to the Donaldson

invariants and the Seiberg-Witten invariants.

6 In TYM theory, the replacement of φ with 〈φ〉 is the procedure for recovering the universal

bundle construction of the cohomology class on A/G [3][5][6]. The formula (2.33) implies that

such a replacement in (2.26) and (2.27) will recover the analogous universal bundle construction

for the extended space.
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3.1. The Massive Hypermultiplet

In the N = 2 supersymmetric QCD, the hypermultiplets can have the bare mass term

which is invariant under the N = 2 supersymmetry. We will always consider the theory

with one hypermultiplet. In the on-shell action, the mass term can be written as7

Smass =

∫
d4x

[
−m2q†i q

i−
√

2mq†iB
aTaq

i+
√

2mq†i B̄
aTaq

i−mψ̄α̇q̃ ψ̄qα̇−mψαq̃ ψqα
]
. (3.1)

Adding the mass term leads to the following on-shell supersymmetry transformation of the

hypermultiplet

δqi = −
√

2ξαiψqα +
√

2ξ̄α̇
iψ̄α̇q̃ ,

δψ̄α̇q̃ = −
√

2iσ̄mα̇αDmq
iξαi + 2Taq

iBaξ̄α̇i +
√

2mqiξ̄α̇i,

δψqα = −
√

2iσmαα̇Dmq
iξ̄α̇i − 2Taq

iB̄aξαi +
√

2mqiξαi,

(3.2)

and of the conjugate fields

δq†i = −
√

2ψ̄qα̇ξ̄
α̇
i −

√
2ψαq̃ ξαi,

δψ̄qα̇ =
√

2iξαiDmq
†
i σ

m
αα̇ − 2ξ̄α̇

iq†iB
aTa −

√
2mξ̄α̇

iq†i ,

δψαq̃ = −
√

2iξ̄iα̇Dmq
†
i σ̄

mα̇α − 2ξαiB̄aq†iTa +
√

2mξαiq†i .

(3.3)

If we twist the above supersymmetry, there appear several problems concerning the

mass term of the hypermultiplet. We first twist the supersymmetry transformation laws

of the hypermultiplet following the recipe of our previous paper [14]. The twisted trans-

formation laws of the hypermultiplet are given by

δ̂mq
α̇ = − ̺ψ̄α̇q̃ ,

δ̂mq
†
α = − ̺ψ̄qα̇,

δ̂mψ̄
α̇
q̃ = − i̺φaTaq

α̇ − ̺mqα̇,

δ̂mψ̄qα̇ =i̺q†α̇φ
aTa + ̺mq†α̇,

(3.4)

and
δ̂mψ

α
q̃ = i̺Dµq

†
α̇σ̄

µα̇α − ̺Xα
q̃ ,

δ̂mX
α
q̃ = i̺ψαq̃ φ

aTa − i̺Dµψ̄qα̇σ̄
µα̇α + ̺q†α̇σ̄

µα̇αλaµTa + ̺mψαq̃ ,

δ̂mψqα = −i̺σµαα̇Dµqα̇ + ̺Xqα,

δ̂mXqα = i̺φaTaψqα − i̺σµαα̇Dµψ̄
α̇
q̃ + ̺σµαα̇λ

a
µTaq

α̇ + ̺mψqα,

(3.5)

7 In terms of N = 1 superspace notation, the action functional for hypermultiplet is given by

W =
√

2Q̃hΦQh+mQ̃hQh, where Qh and Q̃h are chiral superfields carrying a representation R and

its conjugate R̃, respectively, Φ is the N = 1 chiral multiplet carrying the adjoint representation

and m is the bare mass for hypermultiplet. The untwisted action functional we are using is just

the expansion of W in terms of the component fields. We follow the conventions in our previous

paper [14].
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while the transformation laws for theN = 2 vector multiplet remains unchanged. Note that

the twisted algebra (3.4) and (3.5) closed in off shell. Due to the new terms proportional to

the mass m, the commutator of the supersymmetry is no longer the gauge transformation

generated by φ. Furthermore, the above twisted supersymmetry does not preserve the

U -number. Note, however, the global scaling dimensions (2.19) are preserved if the scaling

dimension of m is 0.

Due to the new transformation laws, the action functional has the following additional

terms;

S′ = −i{Qm, VT} = S +
1

h2

∫

X

d4x
√
g
(
2imq†α̇φ̄

aTaq
α̇ +mψαq̃ ψqα

)
. (3.6)

Note that the additional terms carry the U -number −2 while S′ maintains the global scale

invariance. The property that the energy-momentum tensor is a Qm commutator remains

unchanged.

T ′
µν = {Qm, λµν}. (3.7)

Now we have two problems;

(1) The modified transformation laws (3.4) and (3.5) for the hypermultiplet break the

basic commutation relation (2.25) due to the mass term;

(δ̂m̺δ̂m̺′ − δ̺̂′ δ̺̂)(hypermultiplet) = Tε(hypermultiplet) − 2̺̺′ ·m, (3.8)

where ε = −2i̺̺′ · φ as before. Furthermore, they do not preserve the U -number. Note,

however, that if we assign the U -number 2 to m the U -number is preserved.

(2) The modified action (3.6) does not contain the full mass terms of the hypermulti-

plet.

We will temporarily ignore the problem (1) which will be resolved in Sect. 3.5.

Another very important effect is that the φ̄ equation of motion is changed from (2.29)

to

1

2
gµνDµDνφ

a +
i

2
gµν [λµ, λν ]

a + q†α̇(T aT b + T bT a)qα̇φb − 2iψ̄qα̇T
aψ̄α̇q̃ − 2imq†α̇T

aqα̇ = 0.
(
DµDµδ

a
b + 2q†α̇(T aT b + T bT a)qα̇

)
φb = −i[λµ, λµ]a + 4iψ̄qα̇T

aψ̄α̇q̃ + 4imq†α̇T
aqα̇,

(3.9)

and the equation (2.33)is changed accordingly.

We have the same form of topological observable v̂ in (2.26) which carries the U -number

2 and is invariant under the global scaling of the metric. The Q or Qm-cohomology class
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of v̂ depends only on the homology class of Σ. The same is true for û in (2.27). However,

they are effectively different from the massless case due to the difference between (2.31)

and (3.9). We shall see that the key simplification occurs due to the extra term in (3.9).

The topological correlation function of the massive theory

〈v̂rûs〉TQCD,m =
1

vol(G)

∫
DY e−S′ · v̂rûs, (3.10)

also has the same U -number anomaly cancellation laws, r + 2s = d(c, k).

3.2. The Qm-Fixed Points

The effect of introducing the bare mass to the hypermultiplet can be most easily seen

by checking the fixed point equations for the new global supercharge Qm. In addition to

the fixed point equations (2.14) and (2.16) of the original supersymmetry, we have new

fixed point equations

{
δ̂mψ̄

α̇
q̃ = 0,

δ̂mψ̄qα̇ = 0,
=⇒

{
mqα̇ + iφaT

aqα̇ = 0,

mq†α̇ + iq†α̇φ
aTa = 0,

(3.11)

If we collect the other Qm-fixed point equations, δ̂mχµν = δ̂mψqα = δ̂mλµ = δ̂mη = 0, we

have {
F+a
µν + q†σ̄µνT

aq = 0,

σµDµq = 0,

{
Dµφ = 0,

[φ, φ̄] = 0,
(3.12)

The first pair of the equations say that the fixed point locus is the moduli space M(c, k).

The second pair of the equations means that φ is zero at the fixed point locus if the con-

nection is irreducible (the gauge symmetry is unbroken) and φ is non-zero if the connection

is reducible (the gauge symmetry is broken down to U(1)).

This is the judicious moment to study the new fixed point equation (3.11). One obvious

fixed point is q†α̇ = qα̇ = 0, which will be called branch (i). In this branch, the fixed point

equations reduce to those of the TYM theory;

F+a
µν = 0, Dµφ = 0, [φ, φ̄] = 0. (3.13)

Thus the fixed point locus is the moduli space of irreducible ASD connections for φ = 0.8

Note also that the fixed point equation (3.11) reduces to q†α̇ = qα̇ = 0 if φ = 0. So,

8 For the manifold with b+
2 > 1, there are no reducible ASD connections for a generic choice

of the metric as well as for a smooth path joining two generic metrics. We will assume that the

moduli space M(k) is connected.
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whenever gauge symmetry is unbroken, the fixed point locus of Qm is the moduli space

M(k) of ASD connections.

Another type of fixed points with q 6= 0, which will be called branch (ii), are in the

abelian Coulomb phase (Dµφ = 0 and φ 6= 0). In this branch the gauge symmetry is broken

down to U(1) and the vector bundle E reduces to the sum of line bundles E = ζ ⊕ ζ−1

where

ζ · ζ = −k, c1(ζ) = −c1(ζ−1) ∈ H2(X ; Z). (3.14)

The curvature two-form F of E reduces to

F → 1

2i

(
F3 0
0 −F3

)
∈ su(2), (3.15)

where 1
2F3 is the curvature of the line bundle ζ. Now equation (3.11) becomes

mqα̇ + iφ3T3q
α̇ = 0, where φaT

a → φ3T3 =
1

2i

(
φ3 0
0 −φ3

)
, (3.16)

which can be written as

mqα̇(1) +
1

2
φ3q

α̇
(1) = 0,

mqα̇(2) −
1

2
φ3q

α̇
(2) = 0,

(3.17)

where

qα̇ =

(
qα̇(1)
qα̇(2)

)
, (3.18)

and (1), (2) denote the color index. Thus the only nontrivial solutions for qα̇ are either

qα̇ =

(
qα̇(1)
0

)
and 2m+ φ3 = 0, (3.19)

or

qα̇ =

(
0
qα̇(2)

)
and 2m− φ3 = 0. (3.20)

Now the Qm fixed point equation (3.12) (or the monopole equation (2.14)) becomes

F+3
µν +

1

2i

(
q†(1)σ̄µνq(1) − q†(2)σ̄µνq(2)

)
= 0,

(
σµDµ+ 0

0 σµDµ−

)(
q(1)
q(2)

)
= 0,

(3.21)

where we have either q(1) = 0 or q(2) = 0. Here, σµDµ± denotes the abelian spinc the

Dirac operator acting on Γ(W+
c

⊗ ζ±1) satisfying the following Weitzenbök formula

(σµDµ±)2 = −gµνDµ±Dν± ∓ F+
3µν − p+

µν +
1

4
R, (3.22)
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and p+ is the self-dual part of the curvature of det(W+
c ) = Lc. If we exchange A3 → −A3

and q(1) → q(2) the equation is symmetric. Since we always have a pair of line bundles ±ζ
for each bundle reduction, we can always fix q(2) = 0 and q(1) = M 6= 0, and regard the

two solutions as the same equation for the line bundles satisfying ζ · ζ = −k. We also set

σµDµ+ to σµDµ.

Now we have the celebrated Seiberg-Witten monopole equations

F+
3µν +

1

2i
M †σ̄µνM = 0,

σµDµM = 0.
(3.23)

Note that curvature F+
3µν is the curvature of the line bundle ζ2, while M is the section of

W+
c ⊗ ζ. Since ζ is an integral class, one can regard W+

c ⊗ ζ = W+
c′

as a different spinc

bundle for the different spinc structure c
′ = c + 2ζ, i.e., det(W+

c
⊗ ζ) = Lc ⊗ ζ2. The

Weitzenböck formula (3.22), which can be written as

(σµDµ)
2 = −gµνDµDν − (F+

3µν + p+
µν) +

1

4
R, (3.24)

also shows that σµDµ is the spinc Dirac operator acting onW+
c′

. We will frequently use the

notation D/ c
′

for σµDµ. The original Seiberg-Witten equation consists of the curvature of

det(W+
c′

) and the section of W+
c′

[1]. The equation (3.23) should be viewed as a perturbed

Seiberg-Witten monopole equation for the spinc structure c
′;

F c
′+
µν +

1

2i
M †σ̄µνM = p+

µν ,

D/ c
′

M = 0,
(3.25)

where F c
′

= F+
3µν + p+

µν denotes the curvature of det(W+
c′

).

All this can also be seen from the action (2.11) or (2.12). The relevant part is the

Cartan subalgebra part of Eq. (2.15). Note that

1

h2

∫
d4x

√
g

[
1

4
F+µν

3 F+
3µν −

1

2
p+
µνM

†σµνM +
1

2
gµνDµM

†
α̇DνM

α̇

− 1

16
(M †σ̄µνM)(M †σ̄µνM) +

1

8
R(M †

α̇sM
α̇)

]
,

(3.26)

which can be rewritten as 1
h2

∫√
gd4x

(
1
4
|s3|2 + 1

2
|k3|2

)
, where s3 = F+

3µν + 1
2i
M †σ̄µνM and

k3 = σµDµM . The perturbation can be removed by replacing F+
3µν with F+

3µν + p+
µν in s3.
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Then, we have

1

h2

∫√
gd4x

(
1

4
|s3|2 +

1

2
|k3|2

)

=
1

h2

∫
d4x

√
g

[
1

4
F c

′+µν
3 F c

′+
µν − 1

16
(M †σ̄µνM)(M †σ̄µνM)

+
1

2
gµνDµM

†
α̇DνM

α̇ +
1

8
R(M †

α̇M
α̇)

]
.

(3.27)

That is, one can rewrite (3.26) in terms of the the curvature of det(W+
c′

), which is equivalent

to absorbing the term −1
2p

+
µνM

†σµνM by a field redefinition.

Thus we have the localization to the moduli space M(c′) of Seiberg-Witten monopole

with the spinc structure c
′, i.e., the space of solutions of (3.25) in Adet(W+

c
′ )

× Γ(W+
c′

)

modulo the gauge symmetry S1. The formal dimension of the moduli space M(c′) is given

by

dimM(c′) = 2index
(
D/ c

′
)
− χ+ σ

2
=

c
′ · c′
4

− 2χ+ 3σ

4
. (3.28)

We will denote a spinc structure c
′ by x if dimM(c′) = 0, i.e.,9

x · x =
2χ+ 3σ

4
. (3.29)

Then the moduli space M(x) consists of a finite collection of points. The Seiberg-Witten

invariant nx is the algebraic sum of the number of points counted with sign.

Applying the fixed point theorem of Witten for the global supersymmetry (see Sect. 3.1

of [17]), the path integral can be written as the sum of contributions of the branch (i) and

the branch (ii). So the path integrals can be written as a certain sum of the Donaldson

and the Seiberg-Witten invariants.

Note that we should have chosen a spinc structure c to define the twisting of the hyper-

multiplet. And the TQCD depends on the choice of the spinc structure. Now, in branch

(ii), one can view the choice of different twisting as the choice of different perturbation of

the Seiberg-Witten equations.10 It is shown that the Seiberg-Witten invariant nx is inde-

pendent of the (generic) perturbation [1]. Consequently, the family of TQCD parametrized

9 This condition can be written by c
′ = c + 2ζ with

ζ · ζ < 0, c · ζ = −index
(
D/ E

c

)
+ 2∆,

where D = (χ + σ)/4.
10 Note that the perturbed term p+

µν in (3.25) is the self-dual part of the curvature of det(W+
c ).

See [1] for the applications of the perturbation.
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by the different choice of the spinc structure is governed by the the same Seiberg-Witten

invariants in branch (ii). This is a crucial property since we will use the path integral of

TQCD, which depends on the choice of the spinc structure, to obtain the path integral of

the TYM theory.

Before moving to the next topic, we review the orientation of both moduli spaces

M(k) and M(x). The proof of the orientability of a moduli space amounts to showing

the triviality of a determinant line of elliptic operator arising from the linearization of the

moduli space [3]. For the moduli space M(k) of ASD connection, the elliptic operator

is (d+
A ⊕ d∗A). Donaldson showed that an orientation of the space H1(X ; R) ⊕ H+(X ; R)

induces orientations of M(k). For the moduli space M(x) of the Seiberg-Witten monopoles

the elliptic operator is ((d+ d∗)⊕D/ x) and the triviality of its determinant line was shown

[1]. The orientation of determinant line of (d+ d∗) is fixed once and for all by picking an

orientation of H1(X ; R)⊕H+(X ; R). Since the determinant line bundle of Dirac operator

D/ x is naturally trivial, one can define an orientation of M(x). If we replace x with −x
which corresponds to different trivialization of the determinant line, we have

n−x = (−1)∆nx, ∆ =
χ+ σ

4
= index D/

x
. (3.30)

Since we will compare the contribution from the moduli space M(k) with those from

the moduli spaces M(x), the relative orientations are important. Since the orientations of

det ind(d+
A⊕d∗A) and det ind(d+d∗) are governed by the same data H1(X ; R)⊕H+(X ; R),

the ambiguity in the comparison can only come from the determinant line of the Dirac

operator D/
x
. We will fix the orientation of det ind(d+

A⊕d∗A) to the opposite of det ind(d+

d∗).

3.3. The Stationary Phases

In this subsection, we will address the problem (2) mentioned in Sect. 3.1. One can

find the following combination is Qm invariant

1

2π

∫

X

d4x
√
g
(
mq†α̇q

α̇ + iφaq†α̇Taq
α̇ + ψ̄α̇q̃ ψ̄qα̇

)
, (3.31)

which is Qm exact;

− i

{
Qm,−

1

4π

∫

X

d4x
√
g
(
q†α̇ψ̄

α̇
q̃ + ψ̄qα̇q

α̇
)}

=
1

2π

∫

X

d4x
√
g
(
mq†α̇q

α̇ + iφaq†α̇Taq
α̇ + ψ̄α̇q̃ ψ̄qα̇

)
.

(3.32)
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If we remove the term proportional to m in the supersymmetry transformation laws, the

above term is no-longer invariant under the original supercharge Q. Instead, the Q invari-

ant combination is
1

2π

∫

X

d4x
√
g
(
iφaq†α̇Taq

α̇ + ψ̄α̇q̃ ψ̄qα̇

)
. (3.33)

We add the Qm-exact term (3.31) to the topological action S′ to get a one-parameter

family of the topological theory

S′(t) = S′ +
t

2π

∫

X

d4x
√
g
(
mq†α̇q

α̇ + iφaq†α̇Taq
α̇ + ψ̄α̇q̃ ψ̄qα̇

)
. (3.34)

If, in particular, we choose t = 2πm/h2 we superficially recover the full mass terms of the

hypermultiplet as the physical theory. Since the t dependent term is Qm-exact, the theory

does not depend on t as long as t 6= 0 by the standard argument of the cohomological

theory.

Now we consider the topological correlation function

〈v̂rûs〉TQCD(m,t) =
1

vol(G)

∫
DY e−S

′− t
2π

∫
X
d4x

√
g(mq†α̇q

α̇+iφaq†
α̇
Taq

α̇+ψ̄α̇
q̃ ψ̄qα̇) · v̂rûs. (3.35)

In the t = 0 limit, the above formula is identical to (3.10). Thus, the path integral (3.35)

can be evaluated in a suitable limit. One can consider t as purely imaginary and take the

limit Im(t) = ∞, one may use the method of the stationary phases. In the Im(t) → ∞
limit, the dominant contribution to the path integral comes from the stationary phases

(the critical points). Such an approximation is exact, provided that we sum over the

contributions of the all critical points.

The equation for the stationary phases in the t-dependent terms in (3.35) is

mqα̇ + iφaT
aqα̇ = 0, mq†α̇ + iq†α̇φ

aTa = 0. (3.36)

Thus the stationary phase equation is identical to the Qm-fixed point equation, δmψ̄
α̇
q̃ =

δmψ̄qα̇ = 0. This is not surprising as can be seen from relation (3.32).

Thus, the stationary phases have the same two branches as discussed in the previ-

ous subsection. Combining with the exact semi-classical limit h2 → 0, the exactness of

the stationary phase approximation recovers the same localization of the path integral as

predicted by the fixed point argument of the global supersymmetry Qm.

Consequently, one can use either the Qm-fixed point theorem or the combination of the

semi-classical and the stationary phase approximation. Both methods say that one should
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evaluate the path integral exactly at the two branches and calculate Gaussian integral over

the quadratic terms due to the transverse degrees of freedom.

Before moving to the next topic we should remark on three subtle points related to

the stationary phase. There are some criteria for the independence on a BRST trivial

deformation [20].

First of all, there should be no new fixed points flowing from infinity. In our case, the

t-dependent term does not change any fixed points of the global supercharge Qm. It is a

rather natural deformation for the theory having the bare mass term.

Secondly, the additional BRST trivial term should preserve the U -number symmetry

of the original theory. Note that the expression (3.31) contains the term with U -number

0 as well as the term with U -number 2. This means that the theory with t 6= 0 and t = 0

can be actually different.

Thirdly, the deformation term should not change the property that the energy-

momentum tensor is a Qm commutator. It can easily be seen that the particular defor-

mation does not alter the property. However, the Qm-exact term (3.31) does not preserve

the global scaling invariance of the theory. Showing the global scaling invariance amounts

to proving that the trace of energy-momentum tensor is a total divergence. The failure

of the property can be seen by counting the net scaling dimension of the fields in (3.31)

which is 2 rather than 4. We will return to this important issue later on.

3.4. The global S1 symmetry

In this subsection, we study the global U(1) symmetry on the hypermultiplet. We will

show that there are two different types of the S1 fixed points which are identical to the

two branches of the stationary phases.

The theory has a global U(1) symmetry acting on the hypermultiplet;

q → eiθq, (3.37)

which leaves the action11 as well as the fixed point equation of the global supersymmetry

invariant
F+a
µν + q†σ̄µνT

aq = 0,

σµDµq = 0.
(3.38)

11 This S1 symmetry should be read in general as Qh → eiθQh and Q̃h → Q̃he−iθ which

obviously leaves the action invariant.
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This U(1) action has two branches of the fixed points.

The obvious fixed point is when q = 0 and all the other fields belonging to the hy-

permultiplet vanish as well. Then the monopole equation (3.38) becomes the standard

anti-self-duality equation. We will call this fixed point branch (i). There is another type

of the fixed point. Note that the path integral is defined over the space of fields modulo

the local gauge symmetry. Thus the S1 action can have another fixed point if there are

gauge transformations such that

g(θ)q = eiθq, g(θ)−1dAg(θ) = dA. (3.39)

The situation is very similar to the self-duality equations of Hitchin [22].12 The first

equation implies that if q 6= 0, then g(θ) is not an identity for θ 6= 2nπ where n is an

integer. And, then, the second equation implies that the connection A is reducible and

that the SU(2) bundle reduces to the direct sum of line bundles, i.e., E = ζ ⊕ ζ−1 . Then,

g(θ) becomes diagonalized. Since q belongs to the fundamental representation, q must be

either q = (q(1), 0)T or q = (0, q(2))
T to satisfy the first equation.

Thus, two branches of the fixed point of S1 action are identical to two branches of the

stationary phases.

3.5. The G × S1-equivariant Cohomology

The relation between the Qm-fixed points and the fixed points of the S1 action sug-

gests that Qm has a close relation with the S1-equivariant cohomology. The commutation

relation (3.8) implies that one can identify −im as the generator of the Fun(Lie(S1))

associated with the global S1 action on the hypermultiplet. If we consider the space

A × Γ(W+
c ⊗ E), the global S1-symmetry acts on (A, q, q†) by (A, eiθq, q†e−iθ). The G

action on A×Γ(W+
c ⊗E) is generated by vector fields V (φ). We can consider the algebra

12 In ref. [23], the similar symmetry was considered for the twisted N = 4 super-Yang-Mills

theory which is a close cousin of TQCD as well as of the Hitchin equations. Vafa and Witten

showed and computed that the path integral of the theory is the Euler character of the instanton

moduli space provided that certain vanishing theorems hold. The vanishing theorem amounts to

the absence of the branch (ii) contributions. In our case, we will express the invariant due to

the branch (i) in terms of the contributions of the branch (ii). It will be interesting to see if the

method we develop in this paper can be applied for computing the Euler character and testing

the S-duality in a general case. An obvious starting point will be to study the model by adding

the mass term which breaks N = 4 down to the N = 2 supersymmetry.
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of polynomial functions Fun(Lie(S1)) generated by −im. Now, one can define the (infinite

dimensional) G ×S1-equivariant de Rham cohomology. The equivariant de Rham complex

is defined by

Ω∗
G×S1(A×Γ(W+

c ⊗E)

=
(
Ω∗(A× Γ(W+

c
⊗E)) ⊗ Fun(Lie(G)) ⊗ Fun(Lie(S1))

)G×S1

.
(3.40)

The associated differential operator is δ which can be formally represented as

δ = −
∫
d4x

√
gΨI(x)

δ

δAI(x)
+ i

∫
d4x

√
gV (φ(x))I

δ

δΨI(x)
+

∫
d4x

√
gV (m)J

δ

δΨJ (x)
.

(3.41)

We have

δ2 = −
∫
d4x

√
g(LV (φ(x)) + LV (m)). (3.42)

Thus, δ2 = 0 on the G × S1-invariant subspace Ω∗
G×S1(A × Γ(W+

c ⊗ E) of Ω∗(A ×
Γ(W+

c
⊗E))⊗Fun(Lie(G))⊗Fun(Lie(S1)). The G×S1-equivariant de Rham cohomology

H∗
G×S1(A× Γ(W+

c
⊗ E)) is defined as the pairs

(Ω∗
G×S1(A× Γ(W+

c
⊗ E)), δ).

The basic supersymmetry algebra

δ̂mAµ = + i̺λµ,

δ̂mq
α̇ = − ̺ψ̄α̇q̃ ,

δ̂mq
†
α = − ̺ψ̄qα̇,

δ̂mλµ = − ̺Dµφ,

δ̂mψ̄
α̇
q̃ = − i̺φaTaq

α̇ − ̺mqα̇,

δ̂mψ̄qα̇ = + i̺q†α̇φ
aTa + ̺mq†α̇,

δ̂mφ = 0,

δ̂mm = 0,
(3.43)

shows that the twisted supercharge of the theory with the massive hypermultiplet can be

interpreted as the generator of the G × S1-equivariant de Rham cohomology H∗
G×S1(A ×

Γ(W+
c

⊗ E)).

Now, the problem of the U -number can be resolved. We define the degree of the

G × S1-equivariant complex by the formula

deg(α⊗ β ⊗ γ) = deg(α) + 2deg(β) + 2deg(γ), (3.44)

for α ∈ Ω∗(A× Γ(W+
c ⊗ E)), β ∈ Fun(Lie(G)) and γ ∈ Fun(Lie(S1)). That is, we assign

U = 2 to the mass m,13 regarding m as an operator or a constant field. Then Qm increases

13 The interpretation of the S1-equivariant cohomology generator as a parameter or vise versa

is not new [24].
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the degree by one, as expected. Note that the action S′ of (3.6) now has the U -number

zero. The expression (3.31) also has the correct U -number 2. The familiar topological

observable v̂ (2.26) can be viewed as G × S1-equivariant extension of a differential two-

form on A × Γ(W+
c

⊗ E). Although v̂ has the same form in the TYM, the massless

TQCD and the massive TQCD, due to the differences between (2.32), (2.31) and (3.9), it

is effectively different in each theory.

It is interesting to note that the last term in (3.31) is a closed form. The first and the

second terms in (3.31) give the S1 and G-equivariant extensions of the last term, respec-

tively. By comparing (3.31) with (3.32), one can view the changing of the supersymmetry

from Q to Qm as the recipe to introduce the term

1

2π

∫

X

d4x
√
g
(
mq†α̇q

α̇
)
, (3.45)

in the supersymmetric way. The TQCD with one hypermultiplet depends on the choice of

the spinc structure c. Thus, we have a family of TQCD parametrized by the space of spinc

structures on X . Since the TQCD depends on a choice of the spinc structure c, it may

be possible to embed the moduli space M(k) of anti-self-dual connections to the moduli

space M(k, c) as a connected component of the fixed points locus of global S1 action on

M(k, c) by varying the spinc structure. The S1 action has also another type of the fixed

points whose locus is the moduli space of the (abelian) Seiberg-Witten monopoles. Thus,

in the formal level, the path integral evaluation can be quite similar to the Duistermaat-

Heckmann (DH)14 integral formula [25] or the equivariant integration formula of Berline

and Vergne [26][24]. However, such an interpretation is clearly problematic unless the

moduli space M(c, k) has highly favorable properties. We shall see that our path integral

computation gives a perfectly concrete formula in any case.

An alternative formal viewpoint is to consider the equivariant S1 localization from the

beginning without referring to the moduli space M(c, k).

3.6. A Synthesis

The massless TQCD has almost the same properties and problems as the TYM theory.

The cohomological interpretation of those two theories leads us to some integrals of dif-

ferential forms over the moduli spaces which are rarely compact. Even though we assume

14 If we consider the Kähler case, the term (3.45) without m can be identified with the momen-

tum map (Hamiltonian) of the S1 action on A× Γ(W+
c ⊗ E) Thus, the analogy between the DH

integration formula and our path integral computation becomes much closer on Kähler manifolds.

This is one way to see why the massive deformation dramatically enhances the computability of

the path integral.
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the case when the moduli space is actually compact, it is rarely possible to compute such

an integral explicitly.

Now the role of introducing the bare mass term to the hypermultiplet becomes clear.

The massive deformation we introduced further localizes the path integral to the moduli

space M(k) of ASD connections and the moduli spaces M(x) of the (abelian) Seiberg-

Witten monopoles. The latter spaces are compact and, if we assume the simple type

condition, they are zero-dimensional. Although the path integral contributed from the

moduli space M(k) would be almost impossible to compute, we can certainly get explicit

results for the contributions of M(x).

We have seen the above localization by the various arguments which are closely related

with each other. It is quite amusing to see that the massive deformation of TQCD leads

to a beautiful synthesis of the various aspects of the cohomological field theory and the

equivariant cohomology. However, some subtle points remain to be resolved.

The localization due to the global supersymmetry is based on a very general assump-

tion. For example, even if we regard the action S′ (3.6) as the complete action functional,

the supersymmetry transformation law (3.4) predicts that the path integral should be lo-

calized according to equation (3.11). However, such a localization can be seen only after

adding the Qm exact term (3.31) to the action. In TYM theory and the massless TQCD,

one can recover the same localization by the semi-classical limit as predicted by the Q-fixed

point arguments. In fact, there is a drawback in the semi-classical analysis [4]. The kinetic

energy term for the scalar fields φ and φ̄ is not positive definite. After twisting it seems to

be more natural to regard those fields as independent fields. One can regard that φ is real

and φ̄ is purely imaginary. Then, the localization Dµφ = 0 can be seen by the stationary

phase for h2 → 0. If we maintain the complex conjugation relation φ ∼ −φ̄∗ for φ and φ̄

as the physical theory, the kinetic energy is positive definite and the localization can be

seen by the usual semi-classical limit.

The power of Witten’s fixed point theorem is that it does not refer to such complica-

tions. However, this does not necessarily mean that we don’t need to add the remaining

mass term (3.31) to the action. To ensure the correct localization of the path integral, we

should include all terms that produce all the relevant fixed point equations of the global

supersymmetry by the equations of the motion. For example, even the problematic kinetic

term for the scalar fields may not be necessary. However, the fixed point theorem says that

one should replace a field by its fixed point value. In the TYM theory or in the branch

(i) of our theory, the fixed point value for φ should be zero to avoid reducible instantons.

Thus, the above replacement is obviously incorrect. The resolution is to try to integrate

26



out φ which results in the replacement of (2.32). The kinetic term for the scalar fields is

crucial.

In our viewpoint, one should maintain all the terms coming from the physical action.

In fact, we can readily justify this. In the physical theory, the supercharge comes from

the conserved supercurrent which can be calculated by the various terms in the action.

The supersymmetry algebra then naturally follows. That is, the particular supersymmetry

responsible for the crucial fixed point equation (3.11) originates from the full mass term

for the hypermultiplet. The twisting procedure just couples one of the spinor indices to

the internal global symmetry of the theory. Thus, we can not discard any term coming

from the physical theory. Actually, our computation of the path integral will confirm the

above assertion.

Now, the remaining problem is that the crucial term (3.31) in the exponent of (3.34)

violates the global symmetries of the theory. We argue that the mass term should carry

the U -number 2. This means that the theories with t = 0 and t 6= 0 are different, although

there are no new fixed points flowing from infinity, since the positive ghost number of (3.31)

will effect the ghost number anomaly cancellation due to the observables.15 By choosing

t = 1/m, we can make the t-dependent term in (3.34) to carry the U -number 0,

1

2πm

∫

X

d4x
√
g
(
mq†α̇q

α̇ + iφaq†α̇Taq
α̇ + ψ̄α̇q̃ ψ̄qα̇

)
, (3.46)

such that the deformed theory does not depend on the additional Qm-exact term. Now we

can exponentiate the observable v̂

〈exp(v̂ + τ û)〉m,c,k =
1

vol(G)

∫
DY e−S

′− 1
2π

∫
X
d4x

√
g(q†α̇q

α̇+iφaq†
α̇
Taq

α̇/m+ψ̄α̇
q̃ ψ̄qα̇/m)+v̂+τû,

(3.47)

such that

〈exp(v̂ + τ û)〉m,c,k =
∑

r+2s=d(c,k)

(2τ)s

r!s!
〈v̂rûs〉m,c,k . (3.48)

The final problem is that such a deformation violates the global scaling invariance.

If we scale the metric by a constant g → tg both S′ and v̂′ remain invariant. On the

other hand the deformation term (3.46) is scaled as t2. Fortunately, this property does

not change the independence of the correlation function on the metric.16 Thus, we can

15 One may still add the original term (3.31) to the action and control the theory if one can.
16 The scaling independence can be seen by showing that the trace of energy-momentum tensor

is a total divergence, which is independent of the Qm-exactness of the energy-momentum tensor.

Eventually, we will set m = 0. This limit is smooth since the additional term can be written as
1
m
{Qm, O} and there is no obstruction for going to m = 0. Such an argument is not valid in

general, see the footnotes (10) and (11) of [4].
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identify the stationary phase limit as the large scaling limit of the metric. Actually, only

the large scaling limit of the metric is the true stationary phase limit. One may introduce

an extra parameter and take the infinite limit. However, its effect can be absorbed by a

rescaling of the metric. Since we are dealing with the metric invariant theory, the large

scaling limit of the metric is the true stationary phase limit. It is quite amusing to see

that the localization of the path integral, which is the key step of this paper, is achieved

by the large scale limit of the metric.

In the physical theory, the analogous step would be taking the infinite mass limit such

that the hypermultiplet can be integrated out. Then, the theory will reduce to the theory

without the matter field. Though this is the most natural step to localize the theory to

branch (i), it is not clear how the path integral localizes to branch (ii) as well. On the

other hand, the physical theory has the asymptotic freedom so that it is scale-dependent.

The N = 2 SYM theory interpolates the two branches by the genuine quantum scaling

behaviours. The seminal work of Seiberg and Witten shows that the key simplification

responsible for the Seiberg-Witten invariants occurs in the strong coupling vacuum which

is equivalent to the weakly coupled vacua of massless U(1) hypermultiplet.

In our case, the twisted theory with additional matter multiplet having the bare mass

in the large scale limit of the metric localizes to the two branches corresponding to two

different limits of the physical N = 2 SYM theory. Furthermore, condition (3.19) says

that the U(1) hypermultiplet is massless in branch (ii). This is an amazing property. How

is it that the essentially classical treatment of a theory understands the genuine quantum

property of a different theory? The only answer to this question seems to be the self-

duality of the critical theory [27]. All those properties of the asymptotically free theories

and their twisted versions can be some remnants of the critical theory through the massive

deformations.

In the remaining sections, we will concretely realize the above picture. As all the three

different viewpoints of the localization suggest, the path integral amounts to evaluating

exactly at the locus of the each branch and computes the Gaussian integrals of quadratic

terms due to the transverse degree. The favorable interpretation is to take the large scaling

limit first. We define the action Sm by

Sm =S′ +
1

2π

∫

X

d4x
√
g
(
q†α̇q

α̇ + iφaq†α̇Taq
α̇/m+ ψ̄α̇q̃ ψ̄qα̇/m

)

=S +
1

h2

∫

X

d4x
√
g
(
2imφ̄aq†α̇Taq

α̇ +mψαq̃ ψqα

)

+
1

2π

∫

X

d4x
√
g
(
q†α̇q

α̇ + iφaq†α̇Taq
α̇/m+ ψ̄α̇q̃ ψ̄qα̇/m

)
.

(3.49)
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where we use the action S in the form of Eq. (2.11).

Picking a Riemann metric g, we rescale g → tg and take t → ∞ limit. In branch (i),

the gauge symmetry is unbroken and the matter fields decouple as the transverse degrees

of freedom. The dominant contribution to the path integral comes from the path integral

of the TYM theory. In branch (ii), the gauge symmetry breaks down to U(1) and the

hypermultiplet reduces to one of its color. The suppressed color degrees of freedom for

hypermultiplet and the components of the N = 2 vector multiplet which do not belong

to the Cartan subalgebra part become the transverse degrees of freedom. In the infinite

scaling limit, it is sufficient to keep only quadratic terms for the transverse degrees and

compute the one-loop approximations which are arbitrarily good.

On the other hand, the path integrals for the non-transverse degrees should be com-

puted exactly. These path integrals correspond to the path integral of TYM theory in

branch (i) and the path integral of topological QED (Seiberg-Witten theory) in branch

(ii).

We will use the notations 〈O〉m,c,k, 〈O〉
c,k, 〈O〉k, and 〈O〉 for the correlation func-

tions evaluated in the massive TQCD for given spinc structure and instanton number, in

the massless TQCD for given spinc structure and instanton number, in the TYM theory

for given instanton number and in the TYM theory with summation over all instanton

numbers, respectively.

4. The Computation of the Path Integral

In this section, we compute the path integral in the large scaling limit of the metric.

4.1. Branch (i) and the Donaldson-Witten theory

In this branch, the degree of freedom for the hypermultiplet becomes transverse. One

can decompose the action Sm into two parts

Sm ≈ Sm(i) + δ(2)Sm(i). (4.1)

where δ(2)Sm(i) denotes the quadratic action due to the transverse degrees (the matter

fields Qh and Q̃h). The action Sm(i) in branch (i) locus reduces to the familiar action of

the TYM theory [4]

Sm(i) =
1

h2

∫ √
gd4x

[
1

4
F+µν
a F+a

µν − 1

2
gµν(Dµφ̄)a(Dνφ)a +

1

8
[φ, φ̄]a[φ, φ̄]a − iχµνa [φ, χµν ]

a

+ χµνa (dAλ)+aµν +
i

2
gµν(Dµη)aλ

a
ν −

i

2
gµν [λµ, φ̄]aλ

a
ν +

i

8
[φ, η]aη

a,

(4.2)
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which is the standard action for the TYM theory. Or, equivalently

Sm(i) = − i{Qm, VT (i)}

= − i

{
Q,

1

h2

∫ √
gd4x

[
χµνa

(
Ha
µν − iF+a

µν

)
− 1

2
gµν(Dµφ̄)aλ

a
ν +

1

8
[φ, φ̄]aη

a

]}
,

(4.3)

and integrate Hµν out. Note that Q = Qm.

The contribution of the branch (i) to the correlation function
〈
ev̂
〉

c,m,k
can be written

as

〈
ev̂
〉

c,m,k
(i) =

1

vol(G)

∫
DWe−S(i)+v̂(i) ×

∫
DQ̃hDQhe−δ

(2)Sm(i)+δ(2)v̂(i), (4.4)

where v̂(i) denotes the usual observable for TYM theory, (DW ) denotes the path integral

measure for TYM theory and δ(2)v̂(i) denotes the quadratic term of v̂ due to the transverse

degrees. Note that δ(2)v̂(i) = 0.

4.2. Transverse Path Integral for the Branch (i)

The quadratic action due to the matter fields is

δ(2)Sm(i) =
1

h2

∫
d4x

√
g

[
−2Xα

q̃ Xqα + iXα
q̃ σ

µ
αα̇Dµq

α̇ + iDµq
†
α̇σ̄

µα̇αXqα +
h2

2π
q†α̇q

α̇

− iDµψ̄qα̇σ̄
µα̇αψqα − iψαq̃ σ

µ
αα̇Dµψ̄

α̇
q̃ + 2mψαq̃ ψqα +

h2

2πm
ψ̄α̇q̃ ψ̄qα̇

]
.

(4.5)

The Gaussian integrals over auxiliary fields ψαq̃ , ψqα, X
α
q̃ and Xqα give

δ(2)Sm(i) =
1

h2

∫
d4x

√
g

[
1

2
Dµq

†
α̇σ̄

µα̇ασναα̇Dνq
α̇ +

h2

2π
q†α̇q

α̇

− 1

2m
Dµψ̄qα̇σ̄

µα̇ασναα̇Dν ψ̄
α̇
q̃ − h2

2πm
ψ̄qα̇ψ̄

α̇
q̃

]
,

(4.6)

with the following determinant;

[
det (2m)

]

(ψα
q ,ψq̃α)[

det
(
− 1
π

)]

(Xα
q̃
,Xqα)

=

[
det (−2πm)

]

Γ(W−
c

⊗E)

. (4.7)
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Usually the infinite dimensional determinants are not well defined and need regulariza-

tion. However, the above determinant ratio is perfectly well defined due to the global

supersymmetry. Now we are left with

∫
Dq†DqDψ̄q̃Dψ̄qe−

1
h2

∫
d4x

√
g( 1

2 q
†[D/ 2+ 1

π
h2]q+ 1

2m
ψ̄q[D/ 2+ 1

2h
2]ψ̄q̃). (4.8)

If we perform the Gaussian integral over (q†α̇, q
α̇) and (ψ̄qα̇, ψ̄

α̇
q̃ ) by ignoring δ(2)v̂(i) term,

we have the following determinant17

[
det
(
−D/ 2+ 1

2π
h2

m

)]

(ψ̄qα̇,ψ̄α̇
q̃

)[
det
(

1
2π

(D/ 2 + 1
2π
h2)
)]

(q†
α̇
,qα̇)

=

[
det

(
−2π

m

)]

Γ(W+
c
⊗E)

. (4.9)

Combining (4.7) and (4.9), we have

∫
DQhDQ̃he−δ

(2)Sm(i) =

[
det

(
−2π

m

)]

Γ(W+
c
⊗E)⊖Γ(W−

c
⊗E)

=

(
−2π

m

)index(D/E
c

)

. (4.10)

Thus, we have

〈
ev̂
〉

c,m,k
(i) =

(
−2π

m

)index(D/ E
c

)

×
〈
ev̂
〉
k
. (4.11)

4.3. Branch (ii) and the Seiberg-Witten Theory

In this branch, the gauge symmetry breaks down to U(1) (the maximal torus). The

components of any field which do not belong to the Cartan subalgebra part becomes the

transverse variable. One can decompose the action Sm into two parts

Sm ≈ Sm(ii) + δ(2)Sm(ii). (4.12)

17 If we apply the Weitzenbóck formula, D/ 2 contains the usual connection Laplacian, the scalar

curvature of metric and the curvature for connection. If we scale g → tg, all the terms scale out

as t−2. The following formula clearly shows that the determinant ratio is independent of such a

scaling.
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To begin with, we regard that action Sm(ii) consists of the Cartan subalgebra part of all

the adjoint fields

Sm(ii) =
1

h2

∫
d4x

√
g

[
1

4
F+µν

3 F+
3µν +

i

4
p+
µν(M

α̇†σ̄µνM α̇) +
1

2
gµνDµM

†
α̇DνM

α̇

− 1

16
(M †σ̄µνM)(M †σ̄µνM) +

1

8
R(M †

α̇M
α̇) − 1

2
gµν∂µφ̄3∂νφ3

+ χµν3 (dλ3)
+
µν −

1

2
χµν3 ψ̄M σ̄µνM +

1

2
χµν3 M †σ̄µν ψ̄M̃ +

i

2
gµν∂µη3λ3ν

+
1

2i
M †
α̇η3ψ̄

α̇
M̃

− 1

2i
ψ̄Mα̇η3M

α̇ +
1

2i
M †
α̇λµσ̄

µα̇αψMα +
1

2i
ψα
M̃
σµαα̇λ3µM

α̇

− iDµψ̄Mα̇σ̄
µα̇αψMα − iψα

M̃
σµαα̇Dµψ̄

α̇
M̃

− ψ̄Mα̇φ̄3ψ̄
α̇
M̃

+ ψα
M̃

(φ3 + 2m)ψMα

+
1

2
M †
α̇M

α̇φ̄3(φ3 + 2m) +
h2

2π
(1 +

φ3

2m
)M †

α̇M
α̇ +

h2

2πm
ψ̄Mα̇ψ̄

α̇
M̃

]
.

(4.13)

The above action has the following supersymmetry

δ̂mA3µ = i̺λ3µ,

δ̂mλ3µ = −̺∂µφ3,

δ̂mφ3 = 0,

δ̂mχ3µν =
i

2
̺(F+

3µν +
1

2i
M †σ̄µνM),

δ̂mφ̄3 = i̺η3,

δ̂mH3µν = 0,

δ̂mη3 = 0,
(4.14)

and

δ̂mM
α̇ = − ̺ψ̄α̇

M̃
, δ̂mψ̄

α̇
M̃

= −1

2
̺(φ3 + 2m)M α̇,

δ̂mM
†
α = − ̺ψ̄Mα̇, δ̂mψ̄Mα̇ = +

1

2
M †
α̺̇(φ3 + 2m),

δ̂mψMα = − i

2
̺σµαα̇DµM

α̇,

δ̂mψ
α
M̃

= +
i

2
̺DµM

†
α̇σ̄

µα̇α.

(4.15)

One can view the reduced action Sm(ii) as a purely abelian theory which is the twisted

version of the N = 2 super-Maxwell theory coupled with hypermultiplet having the bare

mass. The fixed point equations δ̂mχµν = δ̂mψMα = 0 show that this theory describes the

Seiberg-Witten invariants. Another important fixed point equation δ̂mψ̄
α̇
M̃

= 0 shows that

one can replace φ with −2m,

φ→ φ3T3 =
1

2i

(
φ3 0
0 −φ3

)
=

1

i

(
−m 0
0 m

)
. (4.16)

Of course, the above theory should be viewed as a subsector of the bigger theory. More

precisely, we should interpret the theory as an effective theory in one of the two types
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of branches in the large scaling limit. As an embedded theory, the fixed point equation

(φ+2m) = 0 implies that the U(1) hypermultiplet is massless. Then our previous discussion

clearly shows that branch (ii) of massive QCD in the large scale limit is described by the

U(1) massless hypermultiplet. The condition (φ + 2m) = 0 also implies that the U(1)

hypermultiplet becomes massless at the S1-fixed points. Up to now, we have regarded the

bare mass m as a constant field carrying the U -number 2. This interpretation was based on

the identification of m with the S1-equivariant cohomology generator. Since this branch is

in the fixed point of S1 action we can treat m as a number. This is because branch (ii) are

S1-fixed points where we undo the S1 action by the local U(1) gauge symmetry. This can

also be seen by writing Sm(ii) honestly in the large scaling limit. Then the terms involving

m in (4.13) decouple from the path integral. Of course, m should be treated as carrying

the U -number 2 in the transverse integrations.

The contribution of branch (ii) to the correlation function
〈
ev̂
〉

c,m,k
can be written as

〈
ev̂
〉

c,m,k
(ii) =

1

vol(G)

∫
DQ̃h(1)DQh(1)DW3

∫
DWe−S(ii)+v̂(ii)

×
∫

DQ̃h(2)DQh(2)DW+DW−e
−δ(2)Sm(ii)+δ(2)v̂(ii).

(4.17)

The contribution from

1

vol(G3)

∫
DQ̃h(1)DQh(1)DW3e

−S(ii)+v̂(ii), (4.18)

can be easily determined. First of all, in a simple type manifold we only need to consider

the zero-dimensional moduli space of the Seiberg-Witten monopoles. Then there are no

fermionic zero-modes. So one can simply replace v̂(ii) with its fixed point values

v̂(ii) =
m

2π
(v · x). (4.19)

One can expand the action around the fixed points (a point in the zero dimensional moduli

space M(x)) up to the quadratic term. The action has the following general form:

1

h2

∫
d4x

√
g

[
Φ∆BΦ + iΨDFΨ

]
, (4.20)

where Φ and Ψ denote the bosonic and fermionic fields, respectively, and ∆B and DF are

their corresponding operators. The similar situation is discussed, in detail, in [4]. The

Gaussian integral gives
PfaffDF√
det∆B

= ±1. (4.21)
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The sign depends on a choice of orientation. To make the assignment of the sign mean-

ingful, one should prove that the determinant line bundle of DF (called the Pfaffian line

bundle) can be trivialized. Note that DF is precisely the linearization of the abelian

Seiberg-Witten equations. Thus the orientatibility of Pfaffian line bundle follows from the

orientability of the moduli space M(x). Thus we can read the result immediately as

〈1〉x = Nnx, where nx =
∑

s∈M(x)

(−1)εs , (4.22)

where N denotes the standard renormalization due to the local operators constructed from

metric depending only on χ and σ [4][11][23]. Consequently, we have
∫

DQ̃h(1)DQh(1)DW3

∫
DXe−S(ii)+v̂(ii) = N

∑

x

nxe
m
2π

(v·x). (4.23)

Before leaving this subsection, we should address the problem of the compatibility

between the replacement φ → −2m and φ → 〈φ〉. In the TYM theory, there should be

no zero-modes of φ (the non-zero solution of φ for Dµφ = 0). Since all the topological

observables contain φ, the replacement of φ with its zero modes gives the vanishing results.

The correct field theoretical treatment is to replace φ with its expectation value 〈φ〉 which

amounts to integrating it out [11]. In the massive TQCD, φ has the zero-modes in branch

(ii) and the preferred value is −2m. This can be seen from the fixed point equation (4.15)

as well as the large scaling limit, which we are considering, for the deformation term

1

2π

∫

X

d4x
√
g

(
q†α̇q

α̇ + iq†α̇
φaT a

m
qα̇ +

ψ̄α̇q̃ ψ̄qα̇

m

)
. (4.24)

At branch (ii) the above expression is zero by definition. Of course, this is equivalent to

the substitution (4.16). This means that the expectation value 〈φ〉 reduces to φ(ii) in

(4.16) for the effective U(1) theory. The question is how this can be consistent with the

substitution due to (3.9).

The relevant part is the φ3 component in (3.9), we have

−
(
q†α̇q

α̇
)
〈φ3〉 (ii) = − (DµD

µ) 〈φ3〉 (ii) − i[λµ, λν ]3

+ 2ψ̄qα̇

(
1 0
0 −1

)
ψ̄α̇q̃ + 2mq†α̇

(
1 0
0 −1

)
qα̇.

(4.25)

In the branch (ii) stationary phase or the Qm-fixed point, φ3 is a non-zero covariant

constant and there are no-zero modes of ψ̄qα̇, ψ̄α̇q̃ and λµ. Furthermore, we have ψ̄qα̇(2) =

ψ̄
α̇(2)
q̃ = q†α̇(2) = qα̇(2) = 0. Thus, the above formula reduces to

(
q†α̇(1)q

α̇(1)
)
〈φ3〉 (ii) = −2mq†α̇(1)q

α̇(1). (4.26)
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The solution for 〈φ3〉 (ii) is −2m as desired.

The formula (4.25) is useful to extract the precise form of the quadratic terms for

iq†α̇φ
aT aqα̇ due to the transverse variables ψ̄qα̇(2), ψ̄

α̇(2)
q̃ , q†α̇(2), q

α̇(2). From (4.25), we have

the relation

−1

2

(
q†α̇(2)q

α̇(2)
)
〈φ3〉 (ii) =

i

2
〈φ3〉 (ii)[Aµ, A

µ]3 −
i

2
[λµ, λµ]3 − ψ̄qα̇(2)ψ̄

α̇
q̃(2) −mq†α̇(2)q

α̇(2).

(4.27)

Thus, the quadratic term for the deformation term (4.24) is

δ(2)
(

1

2π

∫

X

d4x
√
g

(
q†α̇q

α̇ + iq†α̇
φaT a

m
qα̇ +

ψ̄α̇q̃ ψ̄qα̇

m

))
(ii)

=

∫

X

d4x
√
g

(
1

π
A+
µA

µ− +
λ+
µ λ

µ−

2πm

)
.

(4.28)

Note that this quadratic expansion is compatible with the obvious choice

1

2π

∫

X

d4x
√
g

(
q†α̇(2)q

α̇(2) +
ψ̄α̇q̃(2)ψ̄qα̇(2)

m

)
, (4.29)

due to the Qm-fixed point equation18, δ̂mχµν = F+a
µν + q†σ̄µνT

aq = 0.

4.4. Transverse Path Integral for Branch (ii)

In this branch the gauge symmetry is broken down to U(1) and the ± components of

the adjoint fields19 and the components of the hypermultiplet with the suppressed color

index become the transverse variable. Basically, we will integrate out all the transverse

degrees. The relevant quadratic action is given by

δ(2)Sm(ii) =
1

h2

∫
d4x

√
g

[
4Hµν

+ Hµν− − 2iHµν
+ (DA−)+µν − 2iHµν

− (DA+)+µν + 4ϕχµν+ χµν−

+ 2χµν+ (Dλ−)+µν + 2χµν− (Dλ+)µν − 2X
α(2)
q̃ X(2)

qα + iX
α(2)
q̃ σµαα̇Dµq

α̇(2)

+ iDµq
†(2)
α̇ σ̄µα̇αX(2)

qα − ϕψ
α(2)
q̃ ψ(2)

qα − iψ
α(2)
q̃ σµαα̇Dµψ̄

α̇(2)
q̃

− iDµψ̄
α̇(2)
q σ̄µα̇αψ(2)

qα +
1

4
ϕ2φ̄+φ̄− − iϕφ̄+(DµA

µ
−) + iϕφ̄−(DµA

µ
+)

+
1

4
ϕη+η− + iη+(Dµλ

µ
−) + iη−(Dµλ

µ
+) +

h2

π
Aµ+A

µ
− +

h2

2πm
λµ+λ

µ
−

]
,

(4.30)

18 Obviously, the quadratic expansion in the neighborhood of the fixed point locus should be

taken in the Qm invariant way.
19 Note that W decomposes as W = W3T3 + W+T+ + W−T−.
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where ± in the subscript denotes the T± components while + in the superscript denotes

the self-dual part, and the substitution ϕ = −2m is understood

Now we evaluate the transverse integral

1

vol(G±)

∫
DQ̃h(2)DQh(2)DW+DW−e

−δ(2)Sm(ii)+δ(2)v̂(ii). (4.31)

Note the ordering of the path integral measure should be used consistently. We choose

unitary gauge in which

φ± = 0, (4.32)

where

φ = ϕT3 + φ+T+ + φ−T−. (4.33)

In this gauge φ has values on the maximal torus (Cartan sub-algebra). By following the

standard Faddev-Povov gauge fixing, we introduce a new nilpotent BRST operator δ with

the algebra

δφ± = ±ic±ϕ, δc± = 0,

δφ3 = 0, δc̄± = b±, δb± = 0,
(4.34)

where c± and c̄± are anti-commuting ghosts and anti-ghosts, respectively, and b± are

commuting auxiliary fields. The action for gauge fixing terms reads

Sm,gauge(ii) =δ

[
1

h2

∫

X

i
(
c̄− ∗ ϕ+ + c̄+ ∗ ϕ−

)]

=
1

h2

∫

X

[
i
(
b− ∗ φ+ + b+ ∗ φ−

)
− c̄− ∗ (ϕ)c+ + c̄+(ϕ)c−

]
.

(4.35)

The integrations over the auxiliary fields b± lead to the gauge fixing condition (4.32). The

Gaussian integrations over c̄ and c give

[
det (ϕ)

]1/2

(c+,c̄−)

[
det (ϕ)

]1/2

(c̄+,c−)

. (4.36)

Now consider the transverse part involving φ̄± and η±. The quadratic action relevant

to this sector is given by

δ(2)Sm(ii) =
1

h2

∫
d4x

√
g

[
1

4
ϕ2φ̄+φ̄− − iϕφ̄+(DµA

µ
−) + iϕφ̄−(DµA

µ
+)

+
1

4
ϕη+η− + iη+(Dµλ

µ
−) + iη−(Dµλ

µ
+)

]
.

(4.37)
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The integrations over (φ̄+, φ̄−) and over (η+, η−) combined with (4.36) give

[
det

(
ϕ2

4π

)]−1/2

(φ+,φ−)

[
det
(ϕ

4

)]1/2

(η+,η−)

[
det (ϕ)

]1/2

(c+,c̄−)

[
det (ϕ)

]1/2

(c̄+,c−)

≡
[
det(−2πm)

]1/2

Ω0(±)

.

(4.38)

The transverse part involving Hµν
± and χµν± is given by

δ(2)S(ii) =
1

h2

∫
d4x

√
g

[
4Hµν

+ Hµν− − 2iHµν
+ (DA−)+µν − 2iHµν

− (DA+)+µν

+ 4ϕχµν+ χµν− + 2χµν+ (Dλ−)+µν + 2χµν− (Dλ+)+µν

]
.

(4.39)

The integrations over (H+, H−) and over (χ+, χ−) give

[
det(4ϕ)

]1/2

(χ+,χ−)

×
[
det

(
4

π

)]−1/2

(H+,H−)

≡
[
det(−2πm)

]1/2

Ω2+(±)

. (4.40)

The transverse part involving X
α(2)
q̃ , X

(2)
qα , ψ

(2)
qα and ψ

α(2)
q̃ is

δ(2)S(ii) =
1

h2

∫
d4x

√
g

[
−2X

α(2)
q̃ X(2)

qα − ϕψ
α(2)
q̃ ψ(2)

qα

+ iX
α(2)
q̃ σµαα̇Dµq

α̇(2) + iDµq
†(2)
α̇ σ̄µα̇αX(2)

qα

− iψ
α(2)
q̃ σµαα̇Dµψ̄

α̇(2)
q̃ − iDµψ̄

α̇(2)
q σ̄µα̇αψ(2)

qα

]
.

(4.41)

The integrations over (X
α(2)
q̃ , X

(2)
qα ) and over (ψ

(2)
qα , ψ

α(2)
q̃ ) give

[
det

(
− 1

π

)]−1

(X
α(2)

q̃
,X

(2)
qα )

×
[
det(2m)

]1/2

(ψ
(2)
qα ,ψ

α(2)

q̃
)

. (4.42)

Now we collect all the remaining terms which came from the various Gaussian inte-

grations

δ(2)Sm(ii) =
1

h2

∫
d4x

√
g

[
(DµA

µ
−)(DνA

ν
+) − 1

4
(DA−)+µν(DA−)+µν +

h2

π
Aµ−A

µ
+

+
1

2m

(
(Dµλ

µ
−)(Dνλ

ν
+) − 1

4
(Dλ−)+µν(Dλ+)+µν +

h2

π
λµ+λ

µ
−

)

+
1

2
D/ q

†(2)
α̇ D/ qα̇(2) − 1

2m
D/ ψ̄

(2)
qα̇ D/ ψ̄

α̇(2)
q̃

]
.

(4.43)
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The Gaussian integrals over (q
†(2)
α̇ , qα̇(2)) and over (ψ̄

(2)
qα̇ , ψ̄

α̇(2)
q̃ ) give

[
det

(
D/ 2

4π

)]−1

(q
†(2)

α̇
,qα̇(2))

[
det

(
−D/ 2

2m

)]

(ψ̄
(2)

qα̇
,ψ̄

α̇(2)

q̃
)

. (4.44)

Now we are only left with A± and λ± whose quadratic action can be rewritten in a

compact form

δ(2)S(ii) =
1

h2

∫

X

(
A+ ∧ ∗(∇ +

h2

π
)A− − 1

2m
λ+ ∧ ∗(∇ +

h2

π
)λ−

)
, (4.45)

where ∇ ≡ DD
∗ − 1

4D
+∗

D
+.

If we integrate over (A+, A−) and over (λ+, λ−), we get
[
det

(∇ + h2/π

2π

)]−1/2

(A+,A−)

×
[
det

(
−∇ + h2/π

m

)]1/2

(λ+,λ−)

≡
[
det(−2πm)

]−1/2

Ω1(±)

. (4.46)

Collecting all the determinant ratios (4.38), (4.40), (4.42), (4.44) and (4.46), we have
[
det(−2πm)

]1/2

Ω0(±)⊖Ω1(±)⊕Ω2+(±)

[
det(−2πm)

]−1

[ψ̄
α̇(2)

q̃
]⊖[ψ

(2)
qα ]

=(−2πm)−
1
2×index±(D++D

∗)(−2πm)−(index(D/E
c

)− 1
8 (x·x−σ))

=(−2πm)−
1
2×index(d

+
A

+d∗A)−∆ · (−2πm)−index(D/
E
c

)+∆

=(−2πm)−(4k−3∆) · (−2πm)−index(D/
E
c

)

=(−2πm)−d(k)−index(D/
E
c

)

=(−2πm)−
1
2×dimM(c,k) = (−2πm)−d(c,k).

(4.47)

In the above, we used

1

2
× index

(
d+
A + d∗A

)
≡ d(k) =

1

2

(
dimH1

A − dimH0
A − dimH2

A

)

= 4k − dim(G)∆,
(4.48)

where Hi
A denotes the three cohomology groups of the instanton complex (See for example

[3]).20 We also used

indexD/E
c

= −k +
rank(E)

8
(c · c − σ), (4.49)

20 Note that dim(SU(2)) = 3. Since we already fixed gauge, we have index(D+ + D
∗) =

index(d+
A + d∗

A). The action of D
+ + D

∗ to the gauge singlet (the Cartan subalgebra part) is

identical to that of (d+ + d∗) which contributes −2∆ to the index(D+ + D
∗). So we have

index±(D+ + D
∗) = index(d+

A + d∗
A) + 2∆.

We used a similar procedure for the Dirac index.
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and

∆ =
1

8
(x · x− σ), (4.50)

which follows from the zero-dimensionality of the abelian Seiberg-Witten monopole moduli

space M(x). As a check, we consider the case when dimM(x) = 2n such that

n =
1

8
(x · x− σ) − ∆. (4.51)

The formula (4.47) becomes

(−2πm)−d(k)−indexD/
E
c

+n = (−2πm)−(dimM(c,k)−dimM(x))/2, (4.52)

which is consistent.

Finally we evaluate the path integral

∫
DA+DA−Dλ+Dλ−e

− 1
h2

∫
X

(
A+∧∗(∇+h2

π
)A−+ 1

2m
λ+∧∗(∇+ h2

π
)λ−

)

× exp

(
1

4π2

∫

Σ

(
mA+ ∧A− +

1

2
λ+ ∧ λ−

))
.

(4.53)

The path integral (4.53) can easily be done using the elementary techniques of quantum

field theory. (See Appendix A.) The first step is to determine the Green’s functions. For

A+ and A−, we have

∆F (x1 − x2) =

∫
d4p

(2π)4
√
ge−ip·(x1−x2)

h2

p2 + h2

π

, (4.54)

where p denotes the Fourier transformed variable or the four-momentum such that

(
∇ +

h2

π

)
∆F (x1 − x2) = h2δ(4)(x1 − x2). (4.55)

The integral (4.54) is obviously divergent in the ultraviolet (the large momentum). How-

ever, the infinite scaling limit of the metric in a compact manifold is identical to the

infinitesimally small limit of the momentum.21 Thus, the above integral is simply a delta

function;

∆F (x1 − x2) = πδ(4)(x1 − x2). (4.56)

21 It may be tempting to think that a similar thing would happen if we set h2 → 0, which is

not the case. The key simplification of the theory comes from the large scaling limit of the metric

rather than the semi-classical limit.
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The similar analysis for λ+ and λ− shows their propagator is given by

∆F (x1 − x2) = 2πmδ(4)(x1, x2). (4.57)

Now we can perform the Gaussian integral which gives

exp

(
m2

4π2

(v · v
2

))
, (4.58)

together with the determinant (4.46). Thus, we find

1

vol(G±)

∫
DQ̃h(2)DQh(2)DW+DW−e

−δ(2)Sm(ii)+δ(2)v̂(ii)

=

(
−2π

m

)d(k)+index(D/ E
c

)

e
m2

4π2 ( v·v
2 ).

(4.59)

Combining (4.59) with (4.23), we have the total contribution of branch (ii),

〈
ev̂
〉
m,c,k

(ii) = N
(
−2π

m

)d(k)+index(D/ E
c

)∑

x

nxe
m2

4π2 ( v·v
2 )+ m

2π
(v·x). (4.60)

4.5. The Results

Collecting everything in the previous subsections, we get
〈
ev̂
〉
m,c,k

= −
(
−2π

m

)d0(c,k) 〈
ev̂
〉
k

+ N
(
−2π

m

)d(c,k)∑

x

nxe
m
2π

(v·x)+ m2

4π2 ( v·v
2 ),

= −(−1)d0(c,k)

(
2π

m

)d0(c,k) [〈
ev̂
〉
k
− (−1)∆N

(
2π

m

)d(k)∑

x

nxe
m
2π

(v·x)+ m2

4π2 ( v·v
2 )
]
,

(4.61)

where d0(c, k) = index
(
D/E

c

)
, and d(c, k) = d0(c, k)+d(k). We multiplied the factor −1 to〈

ev̂
〉
k

since we introduced the opposite orientations for det(d+
A⊕d∗A) relative to det(d+d∗).

Note that we have an additional relative sign (−1)∆ between the contributions of the two

branches. If we replace m with −m, we have
〈
ev̂
〉
−m,c,k

= −
(

2π

m

)d0(c,k) [〈
ev̂
〉
k
−N

(
2π

m

)d(k)∑

x

nxe
− m

2π
(v·x)+ m2

4π2 ( v·v
2 )
]

= −
(

2π

m

)d0(c,k) [〈
ev̂
〉
k
− (−1)∆N

(
2π

m

)d(k)∑

x

nxe
m
2π

(v·x)+ m2

4π2 ( v·v
2 )
]
,

(4.62)
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where we have used
∑

x

nxe
− m

2π
(v·x)+ m2

4π2 ( v·v
2 ) = (−1)∆

∑

x

n−xe
m
2π

(v·(−x))+ m2

4π2 ( v·v
2 )

= (−1)∆
∑

x

nxe
m
2π

(v·x)+ m2

4π2 ( v·v
2 ).

(4.63)

Thus the relative sign −(−1)∆ between the two branches remains unchanged. This is a

crucial test since the theory without the bare mass or without hypermultiplet should be

independent of m. Note also that the relative sign −(−1)∆ does not depend on the spinc

structure chosen to define TQCD. This is also an important test of consistency since the

result for the theory without hypermultiplet (TYM) should be independent of whatever

TQCD we are using. We would like to emphasize again, as explained in Sect. 3.2, that

the Seiberg-Witten invariants in (4.61) or in (4.62) are independent of the spinc structure

which defines a particular TQCD.

This is a judicious moment to determine all the invariants. Since the left-hand side of

(4.61) or (4.62) is regular for m = 0, the non-zeroth powers in m of the right-hand side

should vanish order by order. In particular

〈exp(v̂)〉k = (−1)∆N
[d(k)/2]∑

r=0

(v · v)r
2r(d(k) − 2r)!r!

∑

x

nx(v · x)d(k)−2r. (4.64)

This is a universal relation independent of the family of TQCD parametrized by the space

of the spinc structure. At this stage, we can determine the normalization term N by

comparing with the known results, which turns out to be

N = (−1)∆22+ 1
4 (7χ+11σ), (4.65)

where the last power of 2 appears in similar fashion with [1][11]. The extra (−1)∆ originate

from the ambiguity due to trivialization of det ind(D/ x) in the relative orientation between

the instanton moduli space and the (abelian) Seiberg-Witten moduli spaces.

It is easy to include the observable û and compute the general correlation function

〈exp(v̂ + τ û)〉m,c,k . (4.66)

We replace û = − 1
8π2 Trφ2 with its value in branch (ii), û(ii) = m2/4π2. A similar

manipulation leads to

〈exp(v̂ + τ û)〉m,c,k = −
(
−2π

m

)d0(c,k)(〈
ev̂+τû

〉
k

− 22+ 1
4 (7χ+11σ)

(
2π

m

)d(k)∑

x

nxe
m
2π

(v·x)+ m2

4π2 ( v·v
2 )+τ m2

2π2

)
.

(4.67)
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We get

〈exp(v̂ + τ û)〉k = 22+ 1
4 (7χ+11σ)

[d(k)/2]∑

r+s=0

(
v·v
2

)r
(2τ)s

(d(k) − 2r − 2s))!r!s!

∑

x

nx(v·x)d(k)−2r−2s. (4.68)

In other words,

〈
v̂d(k)−2sûs

〉
k

= 22+ 1
4 (7χ+11σ)

[d(k)/2−s]∑

r=0

(d− 2s)!(2τ)s

(d(k) − 2r − 2s)!r!

(v · v
2

)r∑

x

nx(v ·x)d(k)−2r−2s.

(4.69)

Note that one can write 〈exp(v̂ + τ û)〉k as

〈exp(v̂ + τ û)〉k = 22+ 1
4 (7χ+11σ)

(
2π

m

)d(k)∑

x

nxe
m
2π

(v·x)+ m2

4π2 ( v·v
2 )+τ m2

2π2 , (4.70)

provided we take the zeroth order of m only in the formal expansion of RHS. Recall that

m was assigned to the U -number 2, so the U -number anomaly cancellation of the path

integral of TYM is beautifully summarized in the above formula.

The correlation function 〈exp(v̂ + τ û)〉
c,k of the massless TQCD can also be obtained

by collecting the zeroth order of m in the formal expansion of (4.67). We have

〈exp(v̂ + τ û)〉
c,k = 22+ 1

4 (7χ+11σ)(−1)d0(c,k)
(

2π

m

)d(c,k)∑

x

nxe
m
2π

(v·x)+ m2

4π2 ( v·v
2 )+τ m2

2π2 ,

(4.71)

provided we take the zeroth order of m only. The above formula summarizes the U -

number anomaly cancellation of the path integral of TQCD. There is a subtlety due to the

additional sign factor (−1)d0(c,k). If we replace m with −m, we have

〈exp(v̂ + τ û)〉
c,k = 22+ 1

4 (7χ+11σ)

(
2π

m

)d(c,k)∑

x

nxe
m
2π

(v·x)+ m2

4π2 ( v·v
2 )+τ m2

2π2 . (4.72)

This shows that the polynomials vanish unless

d0(c, k) ≡ −k +
1

4
(c · c − σ) = 0 mod 2. (4.73)

Since c · c = σ mod 8, the polynomial identically vanishes if the instanton number k is

odd. So the total degree of the polynomial 〈exp(v̂ + τ û)〉
c,k increases as 12Z rather than
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6Z. Note that the degree of Donaldson’s polynomial increases as 8Z.22 Thus, for an even

instanton number k, we have

〈exp(v̂ + τ û)〉
c,k = 22+ 1

4 (7χ+11σ)

[d(c,k)/2]∑

r+s=0

(
v·v
2

)r
(2τ)s

(d(c, k)− 2r − 2s))!r!s!

∑

x

nx(v · x)d(c,k)−2r−2s,

(4.74)

while for an odd instanton number k, we have

〈exp(v̂ + τ û)〉
c,k = 0. (4.75)

By substituting (4.68) to (4.67) we also get

〈
ev̂+τû

〉
m,c,k

=22+ 1
4 (7χ+11σ)

(
−2π

m

)d0(c,k) [(
2π

m

)d(k)∑

x

nxe
m
2π

(v·x)+ m2

4π2 ( v·v
2 )+τ m2

2π2

−
[d(k)/2]∑

r+s=0

(
v·v
2

)r
(2τ)s

(d(k) − 2r − 2s))!r!s!

∑

x

nx(v · x)d(k)−2r−2s

]
.

(4.76)

The final step of our computation is to construct the generating functional

〈exp (v̂ + λû)〉 =
∑

k

〈exp(v̂ + λû)〉k . (4.77)

Note that

d(k) = 4k − 3∆, n−x = (−1)∆nx. (4.78)

The result is

〈exp (v̂ + τ û)〉 =21+ 1
4 (7χ+11σ)

[
exp

(v · v
2

+ 2τ
)∑

x

nxe
v·x

+ i∆ exp
(
−v · v

2
− 2τ

)∑

x

nxe
−iv·x

]
,

(4.79)

22 We count the degrees of v̂ and û by 2 and 4, repectively. The dimensions of the moduli space

M(c, k) is proportional to the instanton number k by the factor 2(4 − 1) = 6. The dimension of

the moduli space M(k) is proportional to the instanton number k by the factor 2 · 4 = 8. These

factors are closely related to the anomaly free discrete subgroup of the global U(1)R symmetry

of the underlying physical theories. For the SU(2) and Nf = 0 theory, the discrete subgroup is

Z8. On the other hand, for Nf = 1 the anomaly free discrete subgroup is Z12 rather than Z6

[27]. After twisting the U(1)R charge becomes the U -number. The property that 〈exp(v̂ + τ û)〉
c,k

vanishes for odd k implies the fact that the anomaly free discrete subgroup is Z12 rather than Z6

and vice versa.
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which is the formula (1.1) of Witten. Note that

(
d2

dτ2
− 22

)
〈exp (v̂ + τ û)〉 = 0, (4.80)

or equivalently
〈(
û2 − 22

)
ẑ
〉

= 0, for any ẑ. (4.81)

The above two equivalent conditions are called the simple type conditions. One can define

the Donaldson series D

D(v) ≡ 1

2

(
1 +

1

2

d

dτ

)
〈exp(v̂ + τ û)〉

∣∣∣∣
τ=0

≡ 1

2

〈
(1 +

û

2
) exp(v̂)

〉

= 21+ 1
4 (7χ+11σ) exp

(v · v
2

)∑

x

nxe
v·x.

(4.82)

Kronheimer and Mrowka proved that[10]

D(v) = exp
(v · v

2

)∑

x

axe
v·x, (4.83)

where ax is a (non-zero) rational number and x is a basic class which is an integral lift of

the second Stifel-Whitney class w2(X) on X . The main predictions of the formula (1.1)

of Witten are that the basic class of Kronheimer-Mrowka is the Seiberg-Witten class and

that

ax = 21+ 1
4 (7χ+11σ)nx. (4.84)

The formula (4.82) confirms those predictions.23

The generating functional for TQCD is defined by

〈exp (v̂ + λû)〉
c
=
∑

k

〈exp(v̂ + τ û)〉
c,k . (4.85)

Note that

d(c, k) = 3k − 3∆ +
1

4
(c · c − σ), n−x = (−1)∆nx, (4.86)

23 To complete the proof, the factor 2
1
4
(7χ+11σ) should be derived without referring to the

known mathematical results. A step has been made by Witten in [13]. Our results suggest that

the factor is universal for the family of TQCD with Nf = 0, . . . , 4. Then, the factor may be

derived by imposing the exact self-duality of the critical (Nf = 4) theory [27][23].
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and the summation over k in (4.85) is only for even k. We have

〈
exp (v̂ + τ û)

〉

c

=
2

3
· 21+ 1

4 (7χ+11σ)

[
exp

(v · v
2

+ 2τ
)∑

x

nxe
(v·x)

+ (−1)∆e
πi
12 (c·c−σ) exp

(
e−

2πi
3

(v · v
2

+ 2τ
))∑

x

nxe
e−

πi
3 (v·x)

+ e
πi
6 (c·c−σ) exp

(
e−

4πi
3

(v · v
2

+ 2τ
))∑

x

nxe
e−

2πi
3 (v·x)

]
.

(4.87)

Note that

(
d3

dτ3
− 23

)
〈exp (v̂ + τ û)〉

c
= 0,

〈(
û3 − 23

)
ẑ
〉

c
= 0, for any ẑ. (4.88)

This is a generalized simple type condition for the polynomial invariants (4.87). Following

Kronheimer and Mrowka, one can define the Donaldson series D(v)c as

D(v)c ≡
1

2

(
1 +

1

2

d

dτ
+

1

22

d2

dτ2

)
〈exp(v̂ + τ û)〉

c

∣∣∣∣
τ=0

≡ 1

2

〈(
1 +

û

2
+
û2

22

)
exp(v̂)

〉

c

.

(4.89)

We have

D(v)c = 21+ 1
4 (7χ+11σ) exp

(v · v
2

)∑

x

nxe
v·x. (4.90)

Thus we get the same Donaldson series.

5. Relations with the Physical Theory

In paper [7], Seiberg and Witten studied the exact low energy effective theory of the

N = 2 supersymmetric SU(2) Yang-Mills theory on the flat 4-manifolds. It turns out that

the exact low energy effective theory can be determined by an analytic pre-potential which

can be expressed in terms of an auxiliary elliptic curve varying over the quantum moduli

space which parametrizes the different vacua. The elliptic curve is given by

y2 = (x2 − Λ4)(x− û), (5.1)

where Λ is the dynamically generated scale of the theory. In the finite region of the quantum

moduli space, there are two singularities at û = ±Λ2. At these two singular points, a

new massless particle appears, which forms N = 2 supersymmetric U(1) hypermultiplets.

Furthermore, the theory is weakly coupled near the singularities.
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The above two singular points also correspond to the two vacua of the N = 1 theory.

For a Kähler manifold with b+2 > 1, one can perturb the theory by adding N = 2 breaking,

but N = 1 preserving mass term related to the holomorphic two-form [11]. In the large

scale limit of the Kähler metric, the dominant contributions to the path integral only come

from these two points. Witten argues that a similar thing is happening in a simple type

manifold and that the contributions only come from a neighborhood of singular points

[1]. In computing the path integrals of the TYM theory, one expands all the operators

in terms of operators in the low energy effective theory. The simple type condition (4.81)

arises when one replaces the operator û in terms of the c-number ±Λ2.

In this paper, we computed the topological correlation functions of the twisted N = 2

supersymmetric Yang-Mills theory coupled with hypermultiplet having the bare mass.

Our purely semi-classical computation shows that the path integral of the TYM theory

(Donaldson invariants) is expressed in terms of the branch (ii) contributions due to the

U(1) massless hypermultiplet. Note that such a dramatic localization of the path integral

appears in the large scale limit of the metric. In that limit, the metric on the Riemann

manifoldsX becomes everywhere nearly flat. Thus, the topologically equivalent description

of the twisted N = 2 SYM theory can also be the physically equivalent description of the

untwisted theory in the low energy. This is reversing the logic of Witten. An interesting

comparison is that we replace û with the bare mass of the hypermultiplet instead of the

dynamically generated scaling parameter.

Our concrete and direct computation, then, clearly predicts the vacuum structure

of the underlying physical theories. The simple type conditions (4.81) and (4.88) can

be viewed as the predictions of the singularities in the quantum moduli spaces. The

vacuum structure of the underlying physical theory of our model was also determined by

Seiberg and Witten [27]. The simple type condition (4.88) is identical to the locus of the 3

singularities in the quantum moduli space of the N = 2 SU(2) SYM theory coupled with

one hypermultiplet. Our results can be viewed as a non-trivial check of their solutions. Our

result also suggests that there should be some intriguing structure hidden in the solutions

of Seiberg-Witten. Note also that the TYM theory and TQCD are governed by the same

data and define the same Donaldson series. They belong to the same universality class.

We believe those strange interrelations are originated from the critical theory Nf = 4.

The results in this paper can be generalized to the general gauge group. In the second

paper of the series [18], we will completely determine the topological correlation functions of

SU(Nc) TQCD on a simple type manifold coupled with hypermultiplets in the fundamental

representation having the bare mass. Similarly to this paper, we can also obtain the

invariants of the massless theory and the SU(Nc) Donaldson-Witten invariants as well. The

relation between the vacuum structures of underlying physical theories and the generalized

46



version of the simple type conditions for those invariants, as well as the universality of the

Donaldson series all remain unchanged.

We conclude this paper with an interesting question. Fintushel and Stern determined

the blowup formula for the SU(2) Donaldson invariants [28]. Surprisingly, their formula

is stated in terms of the same elliptic curve (5.1) which parametrizes the quantum moduli

space. They also pointed out the relation between the simple type condition (4.81) and

the discriminant locus of the curve. An analogous blowup formula might be constructed

for the invariants (4.87). It will be interesting to see if such a formula recovers the elliptic

curve for Nf = 1 theory [27].

After this work was completed, the announced paper [29] of Pidstrigach and Tyurin and

a related work [30] of Labastida and Mariño with this paper appeared. In [30], Labastida

and Mariño calculated the topological correlation functions of the SU(2) theory with Nf =

1 using the physical method on a spin manifold with the canonical spinc structure. They

also informed us that the twisting of N=2 hypermultiplets were considered in [31] and

further elaborated in [32] .
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Appendix A.

In this appendix, we briefly explain the relation between the 2m-point Green’s function

G(x1, . . . , x2m) for a free field theory and a multilinear form Q(m) on H2(X). We will

calculate the path integral of the simplest possible quantum field theory. The calculations

in this paper are just some slightly elaborated variations of the following model. We will

not consider the supersymmetric case.

Let X be a compact oriented Riemann four-manifold. The intersection form Q is a

bilinear form

Q : H2(X ; Z) ×H2(X ; Z) → Z. (A.1)

Let Σ1,Σ2 ∈ H2(X ; Z) be closed surfaces representing two dimensional homology cycles.

The intersection number is defined by the algebraic sum of the number of transverse

intersection points counted with a sign ± depending on the orientation near an intersection

point p

TXp = TpΣ1 ⊕ TpΣ2. (A.2)

We used notation Q(Σ1,Σ2) = v1 · v2. This definition also makes sense for the self-

intersection number v · v; one can perturb two closed surfaces within the same homology

class such that they intersect transversely at points. The multi-linear form Q(m) on H2(X)

defined by [3]

Q(m)(Σ1, ...,Σ2m) =
1

2mm!

∑

σ∈S2m

Q(Σσ(1),Σσ(2)) × . . .×Q(Σσ(2m−1),Σσ(2m)), (A.3)

where Q(., .) denotes the intersection form. For example

Q(2)(Σ1, . . . ,Σ4) = (Σ1 · Σ2)(Σ3 · Σ4) + (Σ1 · Σ3)(Σ2 · Σ4) + (Σ1 · Σ4)(Σ2 · Σ3). (A.4)

Now we consider a simple Gaussian integral

Z[J ] =

∫
Dφe− 1

2

∫
(φ(x),Aφ(x))+

∫
(J(x),φ(x)). (A.5)

The Gaussian integral over φ gives

Z[J ] = [det(A)]−1/2e
1
2

∫
(J,A−1J) = [det(A)]−1/2e

1
2

∫
d4xd4yJ(x)∆F (x−y)J(y), (A.6)

where ∆F (x− y) is called the Feynman propagator, defined by

∆F (x− y) =

∫
d4p

(2π)4
e−ip·(x−y)

˜(A−1)
, (A.7)
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where p is the Fourier transformation variable (four-momentum) for x and Ã is the Fourier

transform of A. One usually defines

〈φ(x1) . . . φ(xn)〉 =
δn

δJ(x1) · · · δJ(xn)
Z(J)|J=0 = G(x1, . . . , xn). (A.8)

Now we expand Z[J ]

Z[J ] = [det(A)]−1/2
∞∑

n=0

1

n!

∫
d4x1 · · ·d4xnGn(x1, . . . , xn)J(x1) . . . J(xn). (A.9)

By inspection, we find the odd order Green’s functions vanish and

G2(x1, x2) = ∆F (x1 − x2). (A.10)

One can also find that

G2n(x1, ..., x2m) =
1

2mm!

∑

σ∈S2m

G2(xσ(1), xσ(2)) × . . .×G2(xσ(2m−1), xσ(2m)). (A.11)

Now we assume that the operator A is the identity such thatG2(x, y) = δ(4)(x, y). Now

we assume that J(x) is a de Rham current supported on a closed surface Σ representing a

homology cycle such that
∫
X

(J, φ) =
∫
Σ
ĵ(φ). We can write

Z[J ] =

〈
e

∫
Σ
φ̂(x)

〉
= e

1
2

∫
d4xd4yJ(x)δ(4)(x−y)J(y). (A.12)

Near an intersection point p, we can write the exponent

∫
d4xd4yJ(x)δ(4)(x, y)J(y) =

∫

Σ1×Σ2

d2xd2yδ(4)(x, y) = ±1, (A.13)

where ±1 is determined by the orientation (A.2). Thus we have

Z[J ] = e
v·v
2 . (A.14)

We can also use the version (A.9), we have

Z[J ] =
∞∑

n=0

1

(2n)!
Q(n)(Σ1, ...,Σ2n) =

∞∑

n=0

(
1

2nn!
qn
)
, (A.15)

where q = v ·v. When the surfaces Σi belong to the different homology classes, the notation

Q(n)(Σ1, . . . ,Σ2n) will be more appropriate.
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